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Abstract: Cardiac and respiratory diseases are the primary causes of health problems. If we can
automate anomalous heart and lung sound diagnosis, we can improve the early detection of disease
and enable the screening of a wider population than possible with manual screening. We propose
a lightweight yet powerful model for simultaneous lung and heart sound diagnosis, which is de-
ployable in an embedded low-cost device and is valuable in remote areas or developing countries
where Internet access may not be available. We trained and tested the proposed model with the
ICBHI and the Yaseen datasets. The experimental results showed that our 11-class prediction model
could achieve 99.94% accuracy, 99.84% precision, 99.89% specificity, 99.66% sensitivity, and 99.72% F1
score. We designed a digital stethoscope (around USD 5) and connected it to a low-cost, single-board-
computer Raspberry Pi Zero 2W (around USD 20), on which our pretrained model can be smoothly
run. This AI-empowered digital stethoscope is beneficial for anyone in the medical field, as it can
automatically provide diagnostic results and produce digital audio records for further analysis.

Keywords: digital stethoscope; cardiac diseases; lung respiratory diseases; deep learning; random
forest

1. Introduction

According to a report of the WHO, cardiac and respiratory diseases are the pri-
mary causes of health problems, leading to the death of millions of people annually
worldwide [1]. Early detection is the key factor in enhancing the effectiveness of interven-
tion [1]. The stethoscope is a low-cost, yet efficient, auscultation device, which allows the
assessment of cardiac and respiratory status through the evaluation of respiratory rate and
effort, respiratory sounds, heart sounds, and heart rhythm [2]. However, auscultation heav-
ily relies on a physician’s experience, which is a highly subjective process [3]. Sometimes,
sound signals are highly complicated when detecting various heart or lung diseases [4].
Previous studies have reported the ambiguous identification and interpretation of sounds
in auscultation as a generic issue in the clinical setting [5], which should not be neglected, as
it may lead to inaccurate diagnosis and mistreatment [6]. Indeed, the European Respiratory
Society, International Lung Sounds Association, and American Thoracic Society call for the
standardization of the nomenclature of auscultation sounds [7].

Recently, there have been significant recent advances in applying deep learning an-
alytics in interpreting human body sounds for clinical purposes [8]. If we can develop
automated methods to detect such anomalous sounds, it will improve the early detection
of disease and enable the screening of a wider population than possible with manual
screening [9]. However, most previous studies have focused on separately training an
independent model for lung or heart sound diagnosis. It is important to have a model
that can simultaneously detect abnormal lung and heart sounds given that cardiac and
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respiratory diseases have many common features, such as cough, tachypnoea, dyspnoea,
syncope, and cyanosis, which can make diagnosis problematic [3]; additionally, it is a
common clinical procedure for physicians and nurses to conduct a holistic assessment of
the respiratory and cardiac system. In addition, there is a need to develop a lightweight yet
powerful model for lung and heart sound diagnosis that is deployable in an embedded
low-cost device and is valuable in remote areas or developing countries where Internet
access may not be available. Moreover, as COVID-19 sweeps the globe, an AI-empowered
electronic stethoscope can lower the infection risk in medical workers. Therefore, it is
imperative to leverage artificial intelligence to assist physicians and nurses in remotely and
accurately conducting auscultation.

Our study aimed to fill in the gaps by contributing the following: Firstly, we developed
a hybrid model that harnesses the power of CNN and best discrepancy forest (BDF, a variant
of random forest) to classify cardiac and respiratory dysfunction. The experiments showed
that the hybrid model outperforms the state-of-the-art methods. In addition, we designed
a cost-effective digital stethoscope, which we connected to a low-cost Raspberry Pi Zero 2w
single-board computer. The experiments showed that our proposed pretrained model ran
smoothly on the computer. The cost of this AI-empowered stethoscope is so low (around
USD 25) that it can be widely used in developing countries.

This article is organized as follows: Section 2 summarizes the related studies that have
applied deep learning or machine learning techniques to classify lung or heart sounds.
Section 3 describes our proposed model and the datasets. Section 4 shows the results and a
evaluation of our model. Finally, Section 5 presents the conclusions and future work.

2. Related Work
2.1. Heart Sound Diagnosis

Artificial intelligence techniques have long been used to identify and classify heart
diseases. Early works focused on traditional machine learning methods, for example, the
naïve-Bayes-based electrocardiogram grating method proposed by Cheema and Singh [10],
the SVM-based ventricular septal defects diagnosis method proposed by Sun et al. [11], and
the rule-based classification tree proposed by Karar et al. [12]. Most of these machine learn-
ing methods achieved satisfactory accuracy in abnormal heart sound detection (on average,
around 94%). Later on, people proposed neural network methods, for example, [13,14].
The average accuracy was around 90%. Recently, CNN-based methods have been built.
For example, Deperlioglu [15] proposed an eight-layer CNN and achieved an accuracy of
97.90%. The ensemble CNN developed by Noman et al. achieved an accuracy of 89.22%.
Yaseen et al. [16] used the mel frequency cepstral coefficient (MFCC) and discrete wavelet
transform (DWT) to extract the features from heart sound signals and proposed a hybrid
SVM and DNN model. Their model achieved an accuracy of more than 97%. Finally,
Alqudah et al. [17] developed a new methodology using bispectrum higher-order spectral
analysis and the CNN classification algorithm, which achieved an accuracy of 98.70%.

2.2. Lung Sound Diagnosis

Some of the pioneers of automatic lung sound diagnosis were Rocha et al. [18]. They
extracted sound features (i.e. wheezes, crackles, or both) and then used machine learning
models to perform classifications. However, there are two challenges in the field. The first
one is that lung sound data are rare and their distribution is usually skewed across different
classes. The second challenge is extracting useful features from soft breath sounds. For
the first challenge, recent studies (for example, Mikolajczyk et al. [19], Nguyen et al. [20],
and Lella [21]) have used data augmentation techniques, which not only add more training
data to the model while resolving class imbalance issues but also improve model prediction
accuracy and generalization ability. For example, Bardou et al. [22] achieved the highest
satisfactory classification accuracy of approximately 97% with a large CNN model. For the
second challenge, previous studies have also developed different feature extraction tech-
niques. For example, Demir et al. [23] converted lung sounds to spectrogram images using
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the short-time Fourier transform method. Hai et al. used an optimized S-transform method.
Shuvo et al. [24] used empirical mode decomposition and continue wavelet transform.
Finally, previous studies have employed various classifiers ranging from machine learning
methods (e.g., kNN, SVM, decision tree, and LDA, see [25]) to deep learning methods (e.g.,
CNN, CRNN, and ResNet) (see [26,27]).

3. Materials and Methods

Although previous deep learning models have achieved satisfactory performance,
there is room for improvement. Firstly, none of these models can simultaneously treat heart
and lung sound data. Secondly, these models are too large to be deployed to embedded
devices. Finally, the classification performance of these models can be further increased with
a new classifier. Motivated by the above-mentioned factors, we developed a lightweight
hybrid model that leverages the power of CNN and ensemble learning. The experiments
showed that the hybrid model is capable not only of diagnosing 11 types of heart and
lung diseases with satisfactory performance but also of being deployed on a low-cost
single-board computer.

The proposed methodology constitutes multiple steps:
Step 1: Both heart and lung sound data were acquired from two publicly available

databases.
Step 2: The data were preprocessed with three methods (i.e., bandpass filtering,

truncation, and normalization).
Step 3: The data were augmented to achieve balanced classes.
Step 4: The data were transformed into 2D bispectrum images.
Step 5: A lightweight hybrid model was developed, which constitutes a CNN model

and a forest-based classifier.
Step 6: The image dataset was randomly split into two subsets: 80% as the training

data and 20% as the test data.
Step 7: The hybrid model was trained with the training data.
Step 8: The hybrid model was tested with the test data, and multiple classification

performance indicators were calculated.
Step 9: The hybrid model was deployed on a Raspberry PI Zero 2W single-board

computer, which was connected to a digital stethoscope.

3.1. Dataset

We employed two publicly available datasets that are widely used as benchmark
datasets for lung or heart sound diagnosis. The lung sound dataset used is the International
Conference on Biomedical Health Informatics (ICBHI) 2017 dataset[28]. The dataset was
independently collected from 126 subjects in Greece and Portugal. It contains 5.5 h of audio
recordings sampled at different frequencies (4 kHz, 10 kHz, and 44.1 kHz). The length of
the recordings ranges from 10 s to 90 s. The respiratory sounds are professionally annotated,
while taking the following conditions into account: the subject’s pathological condition and
the presence of respiratory anomalies (i.e., crackles and wheezes) in each respiratory cycle.
The ICBHI samples include five classes: healthy (H), pneumonia (P), chronic obstructive
pulmonary disease (COPD), bronchiolitis (BO), bronchiectasis (BA)m and upper respiratory
tract infection (URTI).

In addition, the heart sound dataset we used is the one provided by Yaseen et al. [16].
It contains 1000 sound records that are evenly distributed in five main categories (i.e.,
200 records per category): normal (N), aortic stenosis (AS), mitral stenosis (MS), mitral re-
gurgitation (MR), and mitral valve prolapse (MVP). The heart sound records were collected
from different sources and resampled to an 8000 Hz frequency rate and finally converted to
a mono channel.
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3.2. Data Preprocessing

We followed the best practices in previous studies to preprocess the two sound datasets.
As mentioned in previous studies, auscultation signals generally reside in the frequency
range of 25–400 Hz [9]. Every data file (i.e., signal sequence) in both the lung and heart
sound dataset was first processed with a 2nd-order Butterworth bandpass filter with upper
and lower cut-off frequencies of 25 and 400 Hz, respectively. Then, all the sample audio
signals were resampled at 1000 Hz to ensure consistency while lowering the computational
cost [8]. Next, every sound signal sequence was truncated to 2.5 s (i.e., the first 2500 data
points, see [17,29,30]). Every signal sequence was normalized to (−1,1) in order to reduce
the effect of device/sensor variation [27].

Finally, we followed a previous approach [31] to employ a variation autoencoder
(VAE) to solve the problem of imbalanced classes in the original datasets. The VAE used
the mean and standard deviation layers to sample the latent vector (see Figure 1). The
distribution of classes before and after data augmentation are represented in Table 1. Finally,
the augmented dataset was used for our experiments.

3.3. Data Augmentation

The lung sound dataset is imbalanced, as one class label (i.e., COPD) has a very high
number of observations and the other classes have very low numbers of observations.
In addition, the heart sound dataset is relatively small (i.e., 200 samples per class). If
both datasets are merged into a single one, then the distribution of the classes would be
highly skewed.

The performance of a deep learning model particularly depends on the quality, quan-
tity, and relevance of the training data. Given that collecting new lung and heart sound
data is an exhausting and costly process, we leveraged data augmentation to make our
proposed model more robust. We followed a previous approach [31] to employ a variation
autoencoder (VAE) to solve the problem of imbalanced classes in the original datasets.
The VAE uses the mean and standard deviation layers used to sample the latent vector
(see Figure 1, for more details, see [31]). After data augmentation, the total number of
samples was increased from 1917 to 8067. The distribution of classes before and after data
augmentation is represented in Table 1. The 2 datasets were then combined into 1 with 11
evenly distributed classes.

Figure 1. VAE scheme configuration for data augmentation.
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Table 1. Number of samples per class before and after augmentation .

Type Class Original After

Heart Sound

AS 200 800
MS 200 800

MVP 200 800
MR 200 800
N 200 800

Lung Sound

COPD 793 793
P 37 667
H 35 665

URTI 23 653
BA 16 646
BO 13 643

3.4. Image Generation

Given that sound signals are nonstationary and non-Gaussian in nature, the bispec-
trum is one of the most widely used higher-order spectral analysis methods to generate
images from sound [30]. The bispectrum quantifies the degree of quadratic phase coupling
and nonlinearity interactions in nonstationary signals. A previous study [17] showed that
the accuracy of the models based on full 2D bispectrum images is significantly higher than
that of those based on contours.

Therefore, we followed prior studies [29,32] to define the bispectrum of a sound signal
with the second-order Fourier transform with the third-order cumulants of the signal. That
is, the bispectrum expresses the nature of a sound record as an image to extract the most
represented features for each class [33,34]. We computed the full 2D bispectrum images
of all sound records after data augmentation. The resultant images, each of which was
256 × 256 pixels, were stored in an image database with their class labels. We demonstrate
a few samples of the 11 classes in Figure 2. The image database is publicly available on
Github https://github.com/DataScienceSDU/Heart-Lung-Sound (accessed on 21 January
2023). Figure 3 illustrates how a sound record is transformed into an image. The image
database is publicly available.

3.5. Model Proposition

Building on the work of Tariq et al. [8,35], we developed a lightweight hybrid model
by adjusting the network structure and parameters and by replacing the last fully connected
layer with a best discrepancy forest classifier. Figure 3 illustrates the architecture of the
hybrid model.

The hybrid model consists of two parts. The first part is a 2D CNN structure for feature
extraction. The 2D CNN is composed of six layers, as shown in Table 2:

• The input layer is set to 256 × 256.
• The first 2D convolutional layer takes the bispectrum as the input with 24 filters.

The kernel size is set to 5 × 5 with a stride of 4 × 2 and with ReLU as the activation
function.

• The second 2D convolutional layer has 48 filters. The kernel size is set to 5 × 5 with a
stride of 1 × 1.

• Thirdly, a 2D max-pooling layer is set up with a 4 × 2 kernel and a 4 × 2 stride.
• Finally, a 2D convolutional is set up with 16 filters. The kernel size is set to 3 × 3 with

a stride of 1 × 1.

https://github.com/DataScienceSDU/Heart-Lung-Sound
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 2. Generated bispectrum illustrations for every category of the lung and heart sound records.
(a) BA, (b) BO, (c) COPD, (d) H, (e) P, (f) URTI, (g) AS, (h) MR, (i) MS, (j) MVP, and (k) N.
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Figure 3. Architecture of the hybrid model.

Table 2. Structure and parameters of proposed CNN model.

No. Layer Information Param

1 Input layer Size 256 × 256

2 Conv2D

Number of filters 24

624Kernel size 5 × 5
Stride 4 × 2

Activation RELU

3 Conv2D
Number of filters 48

28,848Kernel size 5 × 5
Stride 1 × 1

4 MaxPooling2D Kernel size 4 × 2
Stride 4 × 2

5 Conv2D

Number of filters 16

6928Kernel size 3 × 3
Stride 1 × 1

Activation RELU

As shown in Table 2, there were only 36,400 parameters in our proposed CNN that
needed to be estimated. This is much smaller than that proposed in previous studies [8,35].
We intended to keep the CNN relatively small so that our proposed model can be deployed
in embedded devices that are typically computational-resource-constrained.

After the high-level features are extracted through the convolutional and pooling
operations, the output feature maps are transformed into a 1D vector and transferred to a
fully connected layer with 64 neurons.

The fully connected layer is connected to the second part of the hybrid model, a best dis-
crepancy forest (BDF) classifier, which is a variant of random forest (RF), with 500 trees [36].
Like RF, BDF combines bagging and random selection of features in order to construct a
collection of decision trees (i.e., 500 trees in this study) with controlled variance.

Bagging means “bootstrap aggregating”. Given a training dataset D with N observa-
tions, bagging generates m new training sets Di, each of size n, where n < N, by sampling
from D randomly (RF) or systematically (BDF) and with replacement [36]. Each new train-
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ing set Di is used to train a single decision tree. The only difference between the BDF and
the RF is the way in which n observations are selected.

The RF uses the simple random sampling technique with replacement while the BDF
uses the systematic sampling technique with replacement [37]. The systematic sampling
is proven mathematically and empirically by the work [37] that it can make sure that
the distribution of selected n observations within each new training sets Di is similar to
that of the whole dataset D (please refer to [37] for the mathematical proof and empirical
experimental results with 160 datasets).

Our proposed model uses a BDF of 500 trees. That is, the 64 neurons of the first part
CNN serve as the input of the BDF classifier. By constructing 500 trees to form a “forest”,
the predictions of all trees are aggregated to identify the most popular result of classification.
The proposed model is illustrated in Figure 3.

3.6. Model Training and Testing

We followed the hold-out method by setting a random seed and then randomly split
the image data generated in Section 3.4 into a training dataset (80% or 6453 images) and
a test dataset (20% or 1614 images). The proposed model was first trained and then was
tested with the corresponding datasets on a workstation with NVIDIA Telsa T4 GPU card
of 16 GB display memory. All the systems were implemented using Tensorflow 2, using the
Adam optimizer with 100 epochs, a mini batch size of 128, and cross-entropy loss. Then,
the trained model was tested with the test dataset. The results in Table 3 show that, on
average, our 11-class prediction hybrid model achieved 99.97% accuracy, 99.89% F1 score,
99.90% precision, 99.99% specificity, and 99.88% sensitivity. The confusion matrix shown in
Table 4 indicates that among the 1614 testing samples, the hybrid model wrongly classified
only two samples.

To make sure that the results were not achieved by accident, we conducted a robustness
check and re-evaluated the proposed model with 10-fold cross-validation. That is, the
image data were randomly split into ten partitions. We used nine of those partitions for
training and reserve the tenth for testing. We repeated this procedure ten times, each
time reserving a different tenth for testing. The means of every performance indicator are
summarized in Table 3. We concluded that the results of the 10-fold cross-validation were
highly similar to those of the hold-out validations (i.e., 99.94% accuracy, 99.72% F1 score,
99.84% precision, 99.89% specificity, and 99.66% sensitivity).

Finally, in order to verify whether the BDF classifier is really effective, we retrained and
retested a pure CNN model without the BDF classifier. That is, the last layer of 64 neuros
was directly connected to 11 classes. The pure CNN model was first trained and tested with
the same hold-out datasets (i.e., 80% or 6453 images for training and 20% or 1614 images
for test). The results in Table 3 show that, on average, the 11-class pure CNN model
achieved 99.81% accuracy, 99.01% F1 score, 99.13% precision, 99.89% specificity, and 98.92%
sensitivity. The confusion matrix shown in Table 4 indicates that, among the 1614 testing
samples, the pure CNN model wrongly classified 17 samples. The pure CNN was also
trained and tested with 10-fold cross validation. The results summarized in Table 3 indicate
that it achieved 99.53% accuracy, 97.46% F1 score, 97.68% precision, 99.74% specificity, and
97.33% sensitivity. We also concluded that the hybrid model (i.e., CNN+BDF) outperformed
the pure CNN model, especially in terms of F1 score, precision, and sensitivity.
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Table 3. Performance expressed in percent of the hybrid model and of the pure CNN model based on
8:2 hold-out and 10-fold cross validation with comparisons.

Model Accuracy F1 Score Precision Specificity Sensitivity

8:2 Hold-Out CNN+BDF 99.97% 99.89% 99.90% 99.99% 99.88%
CNN 99.81% 99.01% 99.13% 99.89% 98.92%

10-Fold CV CNN+BDF 99.94% 99.72% 99.84% 99.89% 99.66%
CNN 99.53% 97.46% 97.68% 99.74% 97.33%

Pr. Studies Heart
Yaseen et al. [16] 97.90% 94.50%
Glosh et al. [38] 98.33% 98.33%
Alqudah et al. [29] 98.70% 98.70%

Pr. Studies Lung
Fraiwan et al. [26] 97.62% 98.56%
Pham et al. [9] 98.2% 84.0%
Shuvo et al. [24] 98.7% 98.6%

Table 4. Confusion matrix of 11 classes based on 20% of test dataset.

BA BO COPD H P URTI AS MR MS MVP N

BA 121/120 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
BO 0/0 125/125 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

COPD 0/1 0/0 179/179 1/5 1/4 0/2 0/0 0/0 0/0 0/0 0/0
H 0/0 0/0 0/0 144/140 0/1 0/1 0/0 0/0 0/0 0/0 0/0
P 0/0 0/0 0/0 0/0 148/144 0/0 0/0 0/0 0/0 0/0 0/0

URTI 0/0 0/0 0/0 0/0 0/0 133/130 0/0 0/0 0/0 0/0 0/0
AS 0/0 0/0 0/0 0/0 0/0 0/0 155/154 0/0 0/1 0/1 0/0
MR 0/0 0/0 0/0 0/0 0/0 0/0 0/0 158/158 0/0 0/0 0/0
MS 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 148/147 0/0 0/0

MVP 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 156/155 0/0
N 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 145/145

Note: CNN+BDF/CNN.

4. Model Deployment with Edge Computing

We aimed to develop a lightweight yet powerful model that can assist practitioners
in conducting lung and heart sound diagnoses with ordinal or digital stethoscopes. If the
proposed deep learning models could be directly deployed on edge devices, then it would
be possible to perform automated diagnosis and health care services at a distance.

We transformed an ordinary stethoscope into a digital one as follows: We first cut
the tube that connects to the disc-shaped resonator in half to fit an electret condenser
microphone (CMC-9745-44P). The microphone captured the signals of lung or heart sounds.
The signals were then amplified through an amplifier (NE5532N) with an op-amp. Then, the
signals were converted into digital ones through an analog-to-digital converter (CM108B).
Finally, the converter was connected to a Raspberry PI Zero 2W (but could be connected
to any other single-board/low cost computer) through a micro-USB port. An SPI LED
screen was connected to the Raspberry Pi for displaying the diagnosis result. The schematic
diagram of the digital stethoscope is shown in Figure 4 and the bill of materials (BOM) is
listed in Table 5.

We now demonstrate how to deploy the pretrained proposed hybrid model into a
Raspberry PI computer to make inferences. Firstly, given that the proposed hybrid model
has two parts (i.e., CNN part to extract high-level features and BDF classifier), we converted
the pretrained CNN model into a TFLite model through Tensorflow’s TFLiteConverter
module and saved the pretrained BDF model through the Joblib module.
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Figure 4. Schematic diagram of the proposed digital stethoscope.

Table 5. Bill of materials of the electronic stethoscope.

No. Quantity Comment Designator Footprint

1 4 4.7 uF C1, C3, C7, C8 C0603
2 1 2200 uF C1 CP_16X25MM
3 2 100 nF C2, C4 C0603
4 1 0.1 u C2 C0805
5 2 220 uF C3, C4 CAP-TH_BD8.0-P3.50-D1.0-FD
6 2 20 p C5, C6 C0603
7 2 10 UF C9, C10 C0603
8 1 470 nF C11 C0603
9 1 1 UF C12 C0603
10 1 XH2.54*2P CN1 CONN-TH_2P-P2.50-XH2.54-2P
11 1 1N5824 D1 SMA/DO-214AC
12 1 33 uH L1 IND-SMD_L7.7-W7.3
13 2 0805G (green) LED1, LED2 led0805
14 1 LED-0805_R LED1 LED0805_RED
15 1 MIC MIC1 MIC-TH_BD6.0-P2.00
16 2 1 kΩ R1, R2 R0603
17 1 10 k R1 R0805
18 2 2K2 R3, R7 R0603
19 1 1K2 R4 R0603
20 2 22 R5, R6 R0603
21 1 2 K R8 R0603
22 3 10 K R9, R12, R13 R0603
23 1 100 K R10 R0603
24 1 1 K R11 R0603
25 1 CM108B U1 LQFP-48_L7.0-W7.0-P0.50-LS9.0-BL
26 1 LM2596 U2 TO-263-5_L10.6-W9.6-P1.70-LS15.9-BR
27 1 NE5532N U4 DIP-8_L9.3-W6.4-P2.54-LS7.6-BL
28 1 XH2.54-WI-3P U5 CONN-TH_XH2.54-WI-3P

29 1 8 MHZ 20 PF
10 PPM X1 OSC-SMD_L5.0-W3.2
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Then, we installed the relevant packages (i.e., TFLite Runtime, scikit-learn, soundfile,
and libsndfile) on the Raspberry PI computer. We used the arecord command to record a
15 s sound through the USB-connected digital stethoscope and saved the sound signals a
.wav file. We used the soundfile library to convert the .wav file into a Numpy array and then
conducted the preprocessing analysis specified in Section 3.2. The resulting normalized
signal was then converted to a 2D bispectrum image (i.e., a 256 × 256 matrix) using the
method specified in Section 3.4. The image was fed into the pretrained CNN TFLite model
to extract high-level features and then into the pretrained BDF for classification. The
classification result was shown on the SPI LED screen. We conducted 10 experiments on
a Raspberry PI Zero 2W. On average, the whole inference process required around nine
seconds and consumes around 27.79% of 512M memory.

5. Discussion

This study contributes to the literature in the following ways: Firstly, we developed
a new hybrid model that can simultaneously detect lung and heart diseases. Note that
classification problems with many classes with imbalanced datasets present more of a
challenge a problem with fewer classes. The experiments showed that our proposed hybrid
model that deals with 11 classes can achieve better performance than other relevant models
that deal with fewer classes using the two same datasets (see Table 3). For example, with the
five-class heart sound dataset, Yaseen et al. [16] achieved 97.90% accuracy and 94.50% sen-
sitivity; Glosh et al. [38] achieved 98.33% accuracy and sensitivity; and Alqudah et al. [29]
achieved 98.70% accuracy and sensitivity.

With the six-class lung sound dataset (ICBHI), Fraiwan et al. [26] achieved 99.62%
accuracy and 98.56% F1 score; Pham et al. [9] achieved 98.2% sensitivity and 84% F1 score;
and Shuvo et al. [24] achieved 98.7% accuracy and 98.6% sensitivity.

Secondly, our findings confirm the those of prior studies [39–41] that ensemble learning
classifiers (i.e., BDF in this study) can solve the over-fitting problem because, on the one
hand, ensemble learning maximizes the diversity through the random selection of high-
level input features extracted from the CNN part of our hybrid model; on the other hand,
the bootstrap bagging mechanism can increase the strength among multiple decision trees
and improve classification performance [36].

Finally, our proposed hybrid model is capable of being deployed in a low-cost single-
board computer. Connecting the computer to a digital stethoscope through a mini-USB port
can make automation in lung and heart disease diagnosis possible. Our work supports the
claim that AI systems have the potential to improve diagnostic efficiency while reducing
human errors in medicine [42]. Our findings also reveal that harnessing the power of edge
computing can transform the healthcare field, as with most other industries, which offers
unprecedented occasions to improve patient and clinical group results, decrease costs, and
so on.

However, our study has a limitation. Although our proposed hybrid model has
achieved satisfactory results in rigorous cross-validation experiments, we have not tested it
in hospitals. This is because the cost of large-scale clinical data is relatively high, and it was
difficult for us to work with patients under the high-risk conditions of COVID-19 infection.
In the future, we hope to obtain additional research funding to produce numerous digital
stethoscopes and to collaborate with hospital staff on new data acquisition and testing of
our model.

6. Conclusions

Since its earliest appearance in 1816 as an impromptu paper cone rolled by Dr. René
Laennec, designs for stethoscopes have the familiar consensus configuration: a chest piece,
a pair of earpieces, and a tube or tubes connecting them. The stethoscope continues to
play an important role in the digital age. In this study, we developed a hybrid model that
harness the power of CNN and the random forest classifier. The experiments confirmed
the superiority of the proposed model, which not only achieves satisfactory performance
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but is also lightweight enough to be deployed in a low-cost single-board computer to form
a digital stethoscope. Therefore, our study and the AI-empowered stethoscope solution are
particularly important for people in remote areas and developing countries or practitioners
involved in humanitarian relief.
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