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Abstract

Background—Few studies have simultaneously examined the effect of long-term exposure to 

air pollution and ambient temperature on the rate of hospital admissions with cardiovascular and 

respiratory disease using causal inference methods.

Methods—We used a variation of a difference-in-difference (DID) approach to assess the effects 

of long-term exposure to warm-season temperature, cold-season temperature, NO2, O3, and PM2.5 

on the rate of hospital admissions for cardiovascular disease (CVD), myocardial infarction (MI), 

ischemic stroke, and respiratory diseases from 2001 to 2016 among Medicare beneficiaries 

who use fee-for-service programs. We computed the rate of admissions by zip code and year. 

Covariates included demographic and socioeconomic variables which were obtained from the 

decennial Census, the American Community Survey, the Behavioral Risk Factor Surveillance 

System, and the Dartmouth Health Atlas. As a secondary analysis, we restricted the analysis to zip 

code-years that had exposure to low concentrations of our pollutants.
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Results—PM2.5 was associated with a significant increase in the absolute rate of annual 

admissions with cardiovascular disease by 47.71 admissions (95% CI: 41.25–56.05) per 100,000 

person-years, myocardial infarction by 7.44 admissions (95% CI: 5.53–9.63) per 100,000 person-

years, and 18.58 respiratory admissions (95% CI: 12.42–23.72) for each one μg/m3 increase in 

two-year average levels. O3 significantly increased the rates of all the studied outcomes. NO2 

was associated with a decreased rate of admissions with MI by 0.83 admissions (95% CI: 0.10–

1.55) per 100,000 person-years but increased rate of admissions for respiratory disease by 3.16 

admissions (95% CI: 1.34–5.24) per 100,000 person-years. Warmer cold-season temperature was 

associated with a decreased admissions rate for all outcomes.

Conclusion—Air pollutants, particularly PM2.5 and O3, increased the rate of hospital admissions 

with cardiovascular and respiratory disease among the elderly, while higher cold-season 

temperatures decreased the rate of admissions with these conditions.
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1. Introduction

There have been two major recent trends in air pollution epidemiology research: the first is 

the use of multi-pollutant models to look at the effect of long-term exposure to a pollutant 

while simultaneously adjusting for confounding by others(Beelen et al., 2014; Crouse et 

al., 2015; Klompmaker et al., 2021) and the second is the use of causal methodology to 

look at exposure-outcome relationships (Abu Awad et al., 2019; Schwartz et al., 2021; 
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Wang et al., 2017, 2016; Wei et al., 2021; Wu et al., 2020; Yitshak-Sade et al., 2019). 

These developments address concerns common to all epidemiological studies, namely, 

potential unmeasured confounding. The use of multi-pollutants models and the use of causal 

methodology ameliorates these concerns and lends weight to the results obtained from large 

longitudinal cohort studies. Such advances are necessary in order to convince policymakers 

of the importance of air pollution and climate research and the need for urgent action to 

address these exposures.

While some progress has been made, there have been fewer studies looking at the effects of 

long-term exposure to air pollution and hospitalizations with cardiovascular and respiratory 

outcomes using causal methods and controlling for multiple pollutants (Danesh Yazdi et al., 

2021, 2019; Klompmaker et al., 2021). This leaves an incomplete picture of the full effects 

of air pollution on human health.

On the other hand, the relationship between temperature and cardiovascular disease is also 

of great interest given global climate change. It is important, however, to examine this 

relationship in the context of air pollution as these variables are related to one another. 

Previous studies have found that the effect of air pollution on cardiovascular disease may 

be modified by temperature(Klompmaker et al., 2021). However, the effect of air pollution 

on health might also be confounded by temperature. Some of the negative impacts of 

temperature on health may be mediated through air pollution and it is important to account 

for this.

We conducted a study examining the relationship between long-term exposure to air 

pollution and temperature and hospital admission rates with cardiovascular and respiratory 

disease. We used a causal difference-in-difference multi-pollutant analysis which would 

account for both measured and unmeasured between-zip code confounding in the method 

itself. This strategy reduces the risk of unmeasured confounding causing bias in our effect 

estimates. We also used an additive model to ease the interpretation of our results.

2. Materials and Methods

2.1 Study Population

We used the Medicare denominator file and hospital admissions data from the Medicare 

Provider Analysis and Review (MEDPAR) files to construct a dataset of rates of hospital 

admissions for fee-for-service Medicare beneficiaries aged 65 years and over by zip code 

and year from 2000 to 2016 in the contiguous United States. MEDPAR data were available 

on a ZIP code spatial resolution.

2.2 Exposure Assessment

Air pollution levels for PM2.5, NO2, and O3, were estimated for each zip code-year 

using predictions from previously published models. Each pollutant was predicted from 

an ensemble spatio-temporal model incorporating three machine learning algorithms(Di 

et al., 2019a, 2019b; Requia et al., 2020). Input variables included land use terms, 

meteorological data, satellite data, and chemical transport models. These variables were 

used to generate predicted pollutant levels using a random forest (RF), a gradient boosting 
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machine (GBM), and a neural network (NN). These predictions were in turn used as 

independent variables in a geographically-weighted generalized additive model (GAM) 

against monitored values obtained from the Environmental Protection Agency (US EPA) 

and other monitors (IMPROVE, SEARCH, CASTNET, etc.) to estimate the final pollutant 

levels. These estimations were on a 1 km2 spatial scale and a daily temporal scale. All 

models demonstrated strong performance, with ten-fold cross-validation R2 values of 0.89 

for PM2.5, 0.84 for NO2, and 0.86 for O3 for annual averages(Di et al., 2019a, 2019b; 

Requia et al., 2020). We then aggregated these annual levels to a zip code spatial scale and a 

two-year calendar average temporal scale for our analysis.

For ozone, we used the average warm-season O3 levels (i.e., levels averaged from April 1st 

through September 30th) as our exposure of interest, because O3 is more readily formed in 

the warm season, and most monitoring occurs then. In this analysis, any future reference to 

“ozone” or “O3” refers to the two-year warm-season average.

Our temperature data was derived from the gridMET dataset, which estimated levels of 

various meteorological parameters on a 4 km by 4 km scale(Abatzoglou, 2013). We 

aggregated these levels to zip code and calculated warm-season averages (April through 

the end of September) and cold-season averages (January through the end of March and 

October through the end of December). We averaged these values over two calendar years to 

create the exposures in our study.

2.3 Outcome Definition

We looked at four outcomes in this study: annual rates of hospital admissions with 

cardiovascular disease (CVD), myocardial infarction (MI), ischemic stroke, and respiratory 

disease. We used ICD-9 and ICD-10 codes in the primary discharge code positions to 

identify our outcomes. CVD was defined as ICD-9 codes 390–459 and ICD-10 codes 

beginning with “I”. Myocardial infarction was defined as ICD-9 codes 410.X0 and 410.X1 

and ICD 10-code: I21. Ischemic stroke was defined as ICD-9 codes: 433.X1, 434.X1, 436, 

and ICD-10 code: I63. Finally, respiratory disease was defined as ICD-9 codes 460–519 and 

ICD-10 codes beginning with “J”. To calculate annual rates, we divided the number of cases 

of admissions with these four outcomes by the number of Medicare beneficiaries enrolled in 

fee-for-service programs that year in that ZIP code.

2.4 Covariate Assessment

We included demographic information for each zip code-year based on data in the Medicare 

denominator file. We estimated the proportion of the study population who were female, 

identified as black, identified as race other than black or white, were Medicaid-eligible, and 

by age group (65–74,75–84).

We obtained zip code-level socioeconomic variables from survey data generated by the US 

Decennial Census and the American Community Survey (ACS) in 2000, 2010, 2011, 2012, 

2013, 2014, 2015, and 2016. The variables we included in our models for each zip code and 

year were: population density, percent of the population over 65 living below the poverty 

line, percentage of the housing occupied by the owners, median value of housing occupied 

by owners, median household income, and percentage of the elderly population who did 
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not graduate from high school. We further derived information on the percentage of the 

population who have ever smoked and the mean body mass index (BMI) at a county level 

from the respondents to the Behavioral Risk Factor Surveillance System (BRFSS). We used 

the Dartmouth Health Atlas to obtain information on: proportion of Medicare beneficiaries 

with at least one Hgb A1c test in a year, the proportion of diabetic beneficiaries over 65 

years of age who had a lipid panel test in a year, the proportion of beneficiaries who had 

an eye examination in a year, proportion beneficiaries with at least one ambulatory doctor’s 

visit in a year, proportion of female beneficiaries who had a mammogram over a two-year 

period. We took these variables as indicative of access to care. We filled in the values in 

years not measured using linear interpolation and extrapolation. Any remaining missingness 

was assumed to be at random, and those observations were excluded from further study. We 

further calculated the distance to the nearest hospital using the distance from the centroid 

of the postal code to the nearest facility based on data from ESRI in 2010 (ESRI Data and 

Maps; United States Geological Survey, 2010).

2.5 Statistical Analysis

We used a variation of a difference-in-difference analysis, adapted from Schwartz, et al. 

2021. In this model, we looked at year-to-year within-zip code changes in the rate of 

hospital admissions with each of our outcomes, given our exposures of interest and the 

covariates. By conditioning on zip code, we removed any confounding by between-zip code 

variables including slowly changing individual characteristics, measured or unmeasured. 

Time trends in outcomes due to time-varying common factors (improvement in medical care, 

etc.) are captured using a natural spline for time. The main limitation in using this modeling 

approach is the parallel trends assumption, which states that each zip code would have had 

the same change in the outcome rate over time, except those differences due to changes in 

exposure (i.e. pollution level). This cannot be verified directly. To address this concern, first, 

we added time-varying socioeconomic and demographic variables in the model to account 

for any differences in time trends in outcome that may differ among zip codes due to 

different trends in those variables. Second, to further relax the parallel trends assumption, we 

classified each zip code into one of five clusters whose long-term trends might differ, using 

Ward’s Hierarchical Cluster Analysis and average values for the following socioeconomic 

and demographic variables: percent of the population who identify as black, percent of the 

population who identify as Hispanic, median household income, median house value, the 

proportion with at least one ambulatory doctor’s visit in a year, percent of the population 

over 65 living below the poverty line, percentage of the elderly population who did not 

graduate from high school, smoking rate, population density, and distance of zip code to the 

nearest hospital. Five clusters were chosen based on an optimization of Euclidean distance 

and thirty indices in the “NbClust” package(Charrad et al., 2014). The characteristics of 

the clusters can be seen in Supplemental Table 1. Cluster 1 seems to represent fairly white, 

rural, middle-income zip codes with a relatively low poverty rate and good access to health 

care. Cluster 2 seems to represent slightly more diverse, probably suburban, high-income zip 

codes with a low poverty rate. Clusters 3, 4, and 5 represent zip codes with larger minority 

populations. Clusters 3 and 4 are lower income and have higher poverty rates. Cluster 5 

seems to indicate densely populated cities with wide disparities (i.e. high median house 

values but also high poverty and lower rates of high school graduation).
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We included an interaction term between the assigned cluster and a smooth year term to 

allow for differences in outcome rate over time by cluster that previously may not have been 

controlled. If the assumption of parallel trends in admissions rates now holds for the zip 

codes within each cluster, this would be considered a causal model. The equation for the 

final model was:

E ARij = β0 + β1 exposure + β2 Covariates + ns((year, 3)) + ns(year, 3) ∗ as . factor (cluster ) + δi + εij

where ARij is the admission rate for zip code i in year j, ns is the natural spline of the 

year term (with three degrees of freedom) and δi is an indicator term for each zip code and 

εij is the error term. Linear rate models give unbiased estimates, but because rates do not 

have constant variance, may have biased confidence intervals. Consequently, to calculate 

empirical confidence intervals, we used 1000 bootstraps. We chose a linear model to assess 

our outcome as the residuals from the model were fairly normally distributed (Figure 1). 

Furthermore, a linear model is an additive model which eases the interpretation of the 

results. Our effect estimates would represent the absolute change in the average rate of 

hospital admissions with our outcomes given a one unit increase in the exposure within a zip 

code, after adjusting for the covariates.

Our primary model was a multi-pollutant model, which included all five exposures of 

interest to adjust for confounding between exposures. We restricted the data to zip code-

years that had at least 100 individuals enrolled in Medicare to have enough population to 

give rise to cases. We further conducted subgroup analyses looking at zip code-years where 

the two-year levels of PM2.5 were ≤ 10 μg/m3, the levels of NO2 were ≤ 53 ppb, and levels 

of O3 were ≤ 50 ppb. Due to the high correlation between warm-season temperature and 

cold-season temperature (Figure S1), we also conducted a sensitivity analysis where we 

looked at multi-pollutant models with only warm-season temperature but not cold-season 

temperature and vice versa. We also ran single pollutant analyses and looked at effect 

measure modification by region and cluster using interaction terms for our temperature 

exposures and these variables. Since our models used a two-year average of exposures and 

our data began in 2000, our statistical analysis was based on data from 2001 through 2016. 

All data cleaning and statistical analyses were conducted in R Statistical Software Version 

3.5.1. In particular the “NBClust” package and “gnm” package were used(Charrad et al., 

2014; Turner and Firth, 2020).

3. Results

We analyzed a dataset of 436,684 zip code-years which included 28,992 unique zip codes. 

The demographic characteristics of the population can be seen in Table 1. The proportion 

of women in each zip code-year was on average 55.2%, most observations were for 

individuals between 65–74 years of age (55.7%), and on average, 13.1% were also eligible 

for Medicaid. Blacks and other minorities constituted about 12% of the individuals in each 

zip code-year (Table 1). The lower exposure analyses had largely similar demographic 

characteristics and can be seen in Supplemental Table S2. The zip code-years with lower 

values of PM2.5 tended to have a lower proportion of individuals who identified as black 
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which indicates that a larger proportion of those who identified as black lived in zip code-

years which have higher PM2.5 values.

The average temperature was 20.26 °C for the warm-season and 6.28 °C for the cold-season. 

Average levels of air pollution were 16.22 ppb for NO2, 45.29 ppb for O3, and 9.77 

μg/m3 for PM2.5 (Table 2) over a two-year period. These air pollutants had relatively low 

concentrations across the contiguous US.

The main results of our study can be seen in Table 3. An increase in two-year warm-season 

temperature of 1°C was associated with an increase in the overall absolute rate of respiratory 

disease (rate difference: 62.13 admissions (95% CI: 51.68–73.02) per 100,000 person-years) 

but was not associated with a significant change in the rate of CVD, MI, or stroke. An 

increase in two-year cold-season temperature was associated with a decreased rate of all 

studied outcomes. An increase of two-year average NO2 by one ppb was associated with a 

decreased rate of MI and an increased rate of respiratory disease. O3 increased the rate of 

all our outcomes, with an increase of 9.08 admissions (95% CI: 4.78–13.19) per 100,000 

person-years in the rate for CVD, 2.23 admissions (95%CI: 1.12–3.37) per 100,000 person-

years in the rate for MI, 1.18 admissions (95% CI: 0.24–2.13) per 100,000 person-years in 

the rate for stroke, 9.51 admissions (95% CI: 6.59–12.13) per 100,000 person-years in the 

rate for respiratory disease for each ppb increase in pollution levels over two calendar years. 

PM2.5 increased the rate of hospitalizations with cardiovascular diseases in general (rate 

difference: 47.71 admissions (95% CI: 41.25–56.05) per 100,000 person-years) and MIs in 

particular (rate difference: 7.44 admissions (95% CI: 5.53–9.63) per 100,000 person-years) 

as well as respiratory disease (rate difference: 18.58 admissions (95% CI: 12.42–23.72) 

per 100,000 person-years). The comparison of single-pollutant and multi-pollutant models 

showed a slightly lower effect estimate in the multi-pollutant model (Table S3). This is 

expected as in the multi-pollutant model the air pollutants adjust for one another.

In the subgroup analysis, we restricted our dataset to lower exposure values. For zip code-

years with two-year PM2.5 levels ≤ 10 μg/m3, we found that PM2.5 had a larger effect on 

hospital admission rates for CVD (53.89 vs. 47.71 admissions per 100,000 person-years) 

and MI (17.66 vs. 7.44 admissions per 100,000 person-years), but not respiratory disease 

(15.21 vs. 18.58 admissions per 1000,000 person-years), as compared to the full analysis. 

In the low NO2 dataset, NO2 was slightly less harmful for respiratory disease (2.97 vs. 3.16 

admissions per 100,000 person-years). In the low ozone dataset, ozone was less harmful for 

CVD (7.35 vs. 9.08 admissions per 100,000 person-years), stroke (0.49 vs. 1.18 admissions 

per person-years), and MI (1.97 vs. 2.23 admissions per 100,000 person-years), but more 

harmful for respiratory disease (11.18 vs. 9.51 admissions per 100,000 person-years) though 

the effects for stroke were no longer significant in the low exposure dataset (Figure 2 and 

Table S4a–4c).

Since there was a high correlation between warm-season temperature and cold-season 

temperature (ρ=0.85), we ran multi-pollutant models with only one of these variables as 

a sensitivity analysis. We found that increased two-year warm-season temperature was 

associated with a lower rate of admissions with CVD, MI, and stroke but a higher rate 

of admissions with respiratory disease. In the main analyses, the relationship between 
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warm-season temperature and CVD, MI, and stroke was non-significant. An increase in 

two-year cold-season temperature was still significantly associated with a decrease in the 

rate of hospital admissions with all outcomes (Figure 3 and Table S5a–5b). In the analyses 

with interaction terms between seasonal temperature and region, we find that though the 

main effect of higher cold-season temperatures is generally protective, it is less protective in 

the Western region, where temperatures remain mild during the cold season. For clusters, it 

seems that warmer cold-season temperatures are most protective for Cluster 4 as compared 

to the other clusters, which tended to have lower socioeconomic characteristics, particularly 

in terms of admissions for respiratory diseases (Figure S3 & Figure S4).

4. Discussion

This study looked at the relationship between long-term exposures to PM2.5, NO2, O3, 

warm-season temperature, and cold-season temperature and annual hospital admission rates 

with cardiovascular disease, myocardial infarction, ischemic stroke, and respiratory disease 

using a variation of the difference-in-difference approach. We found that among the air 

pollutants, PM2.5 increased the rate of CVD, MI, and respiratory disease and O3 was 

harmful for all our outcomes. NO2 was protective for MI but harmful for respiratory 

disease. However, when we restricted to lower levels of NO2, the protective effect on MI 

became non-significant and harmful (Supplemental Figure S2). An increase in warm-season 

temperature was found to be harmful for overall admission rates with respiratory disease, 

and a decrease in cold-season temperature was found to increase admission rates for all 

our outcomes. For some of our significantly harmful air pollution effects, we found more 

substantial effects at lower concentration exposures, consistent with previous studies(Danesh 

Yazdi et al., 2021, 2019; Di et al., 2017). Our study design adds additive effect estimates and 

considerable assurance by controlling for all unmeasured confounders that differ spatially, 

that differ temporally due to temporal changes in socio-demographic variables and captures 

unmeasured temporal confounders whose trends differ by clusters based on socioeconomic 

and racial factors. It provides a causal interpretation if the assumptions of the model are met.

Our results reinforce conclusions from other literature that air pollution, even at low 

concentrations, below national standards, results in adverse health outcomes. This is 

particularly true of PM2.5 and O3 which consistently showed harmful effects across 

outcomes. The US Environmental Protection Agency (EPA) does not currently have any 

guidelines for long-term exposure to O3 and is re-assessing PM2.5 standards. Our study 

points to the need for stricter air pollution regulations.

It is difficult to compare our results to other studies as most other literature assesses these 

relationships on a multiplicative scale or with adjustment for different sets of co-exposures 

if any at all. A previous study looking at long-term air pollution and cardiovascular and 

respiratory outcomes using a doubly robust additive model in the same population found 

PM2.5 to be harmful for MI, stroke, and pneumonia. In this study, the PM2.5 effects on stroke 

while not significant, were positive. The lack of significance may reflect the lower power 

in this study where all difference in pollution between zip codes are controlled away by the 

indicator variables for every zip code. In the prior study, ozone was harmful for pneumonia 

admissions and protective in MI and stroke. NO2 had a protective effect for pneumonia and 
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MI and was harmful for stroke. However, those models did not adjust for temperature and 

also looked at ozone as annual average ozone and not warm-season average ozone(Danesh 

Yazdi et al., 2021). In another study, also conducted among Medicare participants across 

the US from 2000–2016, the researchers found that PM2.5 and NO2 increased the risk of 

cardiovascular admissions (PM2.5: HR 1.041 (95% CI: 1.038–1.045) and NO2: HR 1.033 

(95% CI: 1.028–1.037) per IQR increase) and cerebrovascular admissions (PM2.5: HR 1.405 

(1.380– 1.430) and NO2: HR 1.237 (1.215–1.259) per IQR increase) but ozone had a 

protective effect. All the pollutants were harmful at lower concentrations(Klompmaker et al., 

2021). We also found PM2.5 and ozone to be harmful for cardiovascular disease, though in 

our study we found non-significant effects for NO2. It is important to note that in that study, 

a non-causal multiplicative approach was used as well as other covariates such as greenness 

and oxidant capacity. Another study in the Medicare population in the southeast region using 

a marginal structural model approach found significantly harmful effects for both PM2.5 

and ozone on myocardial infarction and stroke, though those models did not adjust for 

NO2 or temperature(Danesh Yazdi et al., 2019). A meta-analysis looking at the effect of 

long-term exposure to PM2.5 on cardiovascular events and mortality found a relative risk 

of 1.09 (95% CI: 0.99–1.20) for each 10 μg/m3 increase in pollution levels for incident 

myocardial infarction and a relative risk of 1.13 (95% CI: 1.11–1.15) for incident stroke, 

which is consistent with the direction of effects in our results, though the effect for MI was 

significant and the effect for stroke was non-significant in our study(Alexeeff et al., 2021). 

Another meta-analysis looking at long-term exposure to PM2.5 and MI found a pooled 

relative risk of 1.18 (95% CI: 1.11–1.26) for each 10 μg/m3 increase in pollution levels(Zou 

et al., 2021). A systemic review of literature on ambient temperature and cardiopulmonary 

outcomes found higher winter temperatures to be associated with lower mortality from 

cardiovascular and respiratory disease which is consistent with what we found for our 

outcomes as well(Zafeiratou et al., 2021). Methodologically speaking, other difference-in-

difference papers have looked at mortality as the outcome of interest as opposed to hospital 

admission. The most directly comparable study which looked at long-term exposure to 

PM2.5 and mortality found a harmful effect, an increase in the mortality rate of 3.85 × 

10−4 for each one μg/m3 increase in PM2.5 levels. This is similar our results which found 

a 4.77 × 10−4 increase in rate of CVD admissions for each unit increase in two-year PM2.5 

levels(Schwartz et al., 2021).

Air pollution is generally believed to cause harm to the cardiovascular and respiratory 

systems by penetrating into lung tissue and the systemic circulation and causing increased 

levels of inflammation and oxidative stress(Hajat et al., 2015; Viehmann et al., 2015). 

There is also evidence that air pollution can accelerate biological aging(Ward-Caviness 

et al., 2016). It is further believed that exposure to particulate matter can lead to 

vasoconstriction, hypertension, and plaque destabilization, all of which may increase the risk 

of cardiovascular disease(Fiordelisi et al., 2017). Ozone has also been linked to increased 

vasoconstriction, peripheral blood pressure, as well as autonomic dysregulation(Srebot et 

al., 2009). Lower temperatures have also been associated with an increase in inflammatory 

biomarkers such C-reactive protein (CRP) and interleukin-6 (IL-6) which is consistent with 

the protective effects we saw with higher cold-season temperatures(Halonen et al., 2010; 
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Schneider et al., 2008). Lower temperatures have also been associated with higher blood 

pressure which is also a risk factor for cardiovascular disease(Halonen et al., 2011).

Our study had several strengths. Firstly, we used a very large national cohort to look at the 

exposure-outcome relationship. Secondly, we looked at multiple exposures simultaneously, 

which better reflects real-life exposure to air pollutants. Thirdly, our model was on an 

additive scale, which means that our effect estimates can be directly interpreted as the 

change in rate. Moreover, we used a causal modeling approach with an indicator term for 

zip code which would have eliminated confounding by any variables that may vary between 

zip codes, both measured and unmeasured, leaving only potential confounding within a zip 

code over time. Finally, we adjusted for several measures of socioeconomic status on a 

time-varying basis, which would be the main confounders of concern in the air pollution and 

hospital admissions relationship. This likely accounted for a large portion of the within-zip 

code confounding. We also included an interaction term between a smooth term for year and 

zip code cluster to account for time trends by unmeasured confounders whose trends were 

similar within clusters defined by socioeconomic characteristics. This should also account 

for confounding by these characteristics and relax the parallel trends assumption of the 

model.

Our approach also had some limitations. We assigned exposure based on spatio-temporal 

models derived from machine learning estimations. While these exposures had strong 

validation measures, there is still some residual measurement error that may influence 

the results. Furthermore, we used an administrative dataset and billing codes to identify 

our outcomes which is subject to potential misclassification, though we would expect this 

to be non-differential with regards to pollution exposure. Further, in a linear model, the 

misclassification error tends to be absorbed into the residual error and produce no bias, 

which is another advantage of the linear rate model. Finally, our causal approach relies 

on the parallel trends assumption, which we cannot verify. However, we did attempt to 

address it by including numerous time-varying socioeconomic variables in the model and by 

including an interaction term between time and zip code socioeconomic cluster.

5. Conclusion

Among the elderly population in the United States, air pollution generally increased the rate 

of hospital admissions with CVD, MI, stroke, and respiratory disease. PM2.5 and ozone, 

in particular, were found to increase the risk of admissions across several health comes. 

Increasing cold-season temperature reduced the rate of admissions with CVD, MI, stroke, 

and respiratory disease. These results strengthen the need for stricter air pollution guidelines 

in order to protect human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PM2.5 and O3 increased the rate of hospital admissions.

• Warmer cold-season temperature reduces the rates of hospital admissions.

• Effects were seen on an additive scale.

• Harmful effects were seen at low air pollution concentrations as well.
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Figure 1. 
Distribution of residuals for each outcome in main model
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Figure 2. 
Hospital Admission Rates in Low Exposure Analyses
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Figure 3. 
Hospital Admission Rates and Exposure to Air Pollution and Temperature. A) All exposures 

included in multipollutant model. B) Cold-season temperature excluded from multipollutant 

model. C) Warm-season temperature excluded from multipollutant model.
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Table 1.

Demographic Characteristics of Data (2001–2016)

Total Observations (N) 436,684

Zip Codes 28,992

Demographic Characteristic Average Percentage Across Zip Code-Years

Sex: Female 55.2%

Race: Black 7.5%

Race: Other/Unknown 4.4%

Medicaid-Eligible 13.1%

Age Group: 65 ≤ Age < 75 55.7%

Age Group: 7 5 ≤ Age < 85 32.0%
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Table 2.

Distribution of Exposures Over a Two-year Period (2001–2016)

Exposure Minimum
10th 

Percentile
25th 

Percentile Mean Median
75th 

Percentile
90th 

Percentile Maximum

Warm-Season 
Temperature (°C) 6.49 15.67 17.49 20.26 19.92 22.98 25.61 31.92

Cold-Season 
Temperature (°C) −9.73 −0.58 1.94 6.28 5.38 10.55 14.69 24.01

NO2 (ppb) 0.03 7.15 9.63 16.22 13.86 20.63 29.14 98.59

O3 (ppb) 19.75 38.76 42.29 45.29 45.19 48.56 51.66 80.44

PM2.5 (μg/m3) 0.79 5.78 7.82 9.77 9.73 11.76 13.71 28.85
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Table 3.

Main Results-Difference-in-Difference Analysis of Air Pollution and Temperature and Hospital Admissions

Cardiovascular Disease
1,2

Myocardial Infarction
1,2

Stroke
1,2

Respiratory Disease
1,2

Rate 
Difference

Lower 
95% 
CI

Upper 
95% 
CI

Rate 
Difference

Lower 
95% 
CI

Upper 
95% 
CI

Rate 
Difference

Lower 
95% 
CI

Upper 
95% 
CI

Rate 
Difference

Lower 
95% 
CI

Upper 
95% 
CI

Warm 
Temp 3.79 −12.18 16.77 −3.76 −7.92 0.31 0.74 −2.86 4.09 62.13 51.68 73.02

Cold 
Temp −50.48 −60.18 −40.20 −5.01 −7.67 −2.18 −9.66 −11.95 −7.45 −66.42 −73.73 −59.93

NO2 −0.84 −3.79 1.61 −0.83 −1.55 −0.10 0.49 −0.12 1.11 3.16 1.34 5.24

O3 9.08 4.78 13.19 2.23 1.12 3.37 1.18 0.24 2.13 9.51 6.59 12.13

PM2.5 47.71 41.25 56.05 7.44 5.53 9.63 1.75 −0.10 3.60 18.58 12.42 23.72

1
All results are presented per 100,000 person-years

2
Results reflect the effect for each one unit increase in annual exposure levels. For warm and cold-season temperature the units are degrees Celsius. 

For NO2 and O3, the units are parts per billion (ppb) and for PM2.5 the units are μg/m3
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