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Abstract 

Background  The Infinium EPIC array measures the methylation status of > 850,000 CpG sites. The EPIC BeadChip 
uses a two-array design: Infinium Type I and Type II probes. These probe types exhibit different technical characteris‑
tics which may confound analyses. Numerous normalization and pre-processing methods have been developed to 
reduce probe type bias as well as other issues such as background and dye bias.

Methods  This study evaluates the performance of various normalization methods using 16 replicated samples and 
three metrics: absolute beta-value difference, overlap of non-replicated CpGs between replicate pairs, and effect on 
beta-value distributions. Additionally, we carried out Pearson’s correlation and intraclass correlation coefficient (ICC) 
analyses using both raw and SeSAMe 2 normalized data.

Results  The method we define as SeSAMe 2, which consists of the application of the regular SeSAMe pipeline with 
an additional round of QC, pOOBAH masking, was found to be the best performing normalization method, while 
quantile-based methods were found to be the worst performing methods. Whole-array Pearson’s correlations were 
found to be high. However, in agreement with previous studies, a substantial proportion of the probes on the EPIC 
array showed poor reproducibility (ICC < 0.50). The majority of poor performing probes have beta values close to 
either 0 or 1, and relatively low standard deviations. These results suggest that probe reliability is largely the result 
of limited biological variation rather than technical measurement variation. Importantly, normalizing the data with 
SeSAMe 2 dramatically improved ICC estimates, with the proportion of probes with ICC values > 0.50 increasing from 
45.18% (raw data) to 61.35% (SeSAMe 2).
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Introduction
Epigenetic mechanisms, such as DNA methylation, are 
known to regulate gene function and phenotypic expres-
sion [1–3]. Variation in DNA methylation is associated 
with premature aging and a variety of age-related ill-
nesses including cancer, diabetes, cardiovascular disease, 
metabolic disease, and neurological diseases [4, 5]. There-
fore, analysing DNA methylation can provide important 
information regarding disease risk and health outcomes.

Whole-genome bisulphite sequencing (WGBS) is the 
gold standard for sequencing and mapping CpG meth-
ylation [6]. However, due to lower costs, low input DNA 
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requirements and high-throughput capabilities, array-
based methods for assessing DNA methylation have been 
widely used. The Illumina DNA methylation BeadChips 
(HumanMethylation27, HumanMethylation450, Human-
MethylationEPIC) have been the most popular high-
density microarrays for methylation studies [7, 8]. The 
Infinium HumanMethylationEPIC (EPIC) array, released 
in 2015, is the most recent and robust Illumina microar-
ray [9]. Illumina’s EPIC array is designed to assess meth-
ylation levels at 863,904 CpG sites [10].

The Illumina microarrays are built on the same 
technology used for genotyping single-nucleotide 
polymorphisms (SNPs) [10]. The Illumina HumanMeth-
ylation450k (450k) and EPIC BeadChips use a two-array 
design: Infinium Type I probes and Infinium Type II 
probes. Type I probes have two beads per CpG site, the 
first to measure the methylated intensity and the sec-
ond to measure the unmethylated intensity [9, 11]. Type 
II probes use a single bead to interrogate each CpG site. 
This bead only measures methylated intensity [11]. The 
intensities are used to determine the proportion of meth-
ylation at each CpG site, which are reported as either 
beta (β) values or logit transformed M-values [10, 11].

The accuracy of certain probes and methylation out-
put can be influenced by confounding factors such as the 
presence of SNPs, probe cross-reactivity, cell heteroge-
neity, between-array biases (batch effects), and within-
array biases [9, 10]. Within-array biases can include 
background, dye bias, and probe-type bias [9]. Correct-
ing probe-type bias is especially critical as it is the main 
source of decreasing data quality [9, 12] and occurs 
because Infinium Type I and Type II probes differ in their 
design and produce different beta-value distributions [7, 
13]. However, various pre-processing and normalization 
tools are available to increase output reliability [14].

Normalization procedures currently available for cor-
recting EPIC array methylation output include Quantile 
normalization (QN) [15], beta-mixture quantile normali-
zation (BMIQ) [16], subset-quantiles within microar-
ray normalization (SWAN) [17], peak-based correction 
(PBC) [18], functional normalization (Funnorm) [19], 
normal-exponential convolution using out-of-band 
probes (Noob) [20], single-sample noob (SSnoob) [21], 
and sensible step-wise analysis of DNA methylation 
BeadChips (SeSAMe) [22]. While there are a variety of 
normalization options for methylation data, BMIQ is the 
most widely used method for correcting probe distribu-
tions [7]. Some studies comparing different normaliza-
tion methods using the 450k array did not find significant 
differences in the overall results [13, 23]. However, when 
comparing normalized 450k data to WGBS data, Wang 
et  al. found that PBC and Quantile normalization plus 
BMIQ normalization (QN.BMIQ) performed better 

than other normalization methods [24]. Similarly, Wu 
et  al. [13] found BMIQ to outperform other normaliza-
tion methods, and Marabita et al. [25] found BMIQ and 
QN.BMIQ to be the most effective normalization meth-
ods for correcting probe-type bias. Yet, some research-
ers suggest that background correction or other forms of 
normalization are unnecessary as they may introduce a 
new source of variance [13, 26]. Unfortunately, very few 
studies have compared available normalization methods 
using the new EPIC array.

Replication studies using Illumina BeadChips (i.e. 450k 
or EPIC) have shown that at the array level, DNA meth-
ylation values are highly correlated [6, 14, 27–29]. At the 
individual probe level, however, thousands of individual 
CpG sites have been identified as unreliable. Probe reli-
ability is influenced by both biological variation and 
technical variation [14]. Studies often identify unreliable 
probes using intraclass correlation coefficients (ICCs) 
[3, 14, 30, 31]. When using ICC to measure individual 
CpG sites, many studies find that the majority of CpG 
sites have low correlation [14, 28, 31]. The low correla-
tion observed amongst the majority of CpG sites largely 
occurs due to low variation in methylation status, as most 
CpG sites are usually completely methylated or com-
pletely unmethylated [28]. Some researchers have sug-
gested that CpG sites with low ICCs should be excluded 
from analyses or interpreted with extra caution [30]. 
However, excluding all of the sites with low variability 
may lead to the exclusion of important regulatory regions 
[14].

This study looks to evaluate the reliability of the EPIC 
array and identify the best normalization techniques 
using technical replicate samples (e.g. samples charac-
terized twice using the EPIC array) of elderly individu-
als from Brazil. We also carried out correlation and ICC 
analyses to explore the extent to which the best normali-
zation approach improved probe reliability and replica-
bility with respect to the raw data.

Materials and methods
Study participants and samples
The whole blood samples used in this paper were 
obtained from the Health, Well-being and Aging (Saúde, 
Bem-estar e Envelhecimento, SABE) study cohort. SABE 
is a cohort of census-withdrawn elderly from the city of 
São Paulo, Brazil, followed-up every five years since the 
year 2000, with DNA first collected in 2010, and previ-
ously described in genomic studies [32, 33]. Samples 
from 24 elderly adults were collected at two time points 
for a total of 48 samples. The first time point is the 2010 
collection wave, performed from 2010 to 2012, and the 
second time point was set in 2020 in a COVID-19 moni-
toring project (9 ± 0.71  years apart). The 24 individuals 
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were 67.41 ± 5.52  years of age (mean ± standard devia-
tion) at time point one, and 76.41 ± 6.17 at time point 
two and comprised 13 men and 11 women. Individuals 
are admixed (mean ancestry proportions of 0.65 Euro-
pean, 0.21 African and 0.14 Native American), based on 
previous global ancestry analyses [33].

Blood collection and processing
Genomic DNA was extracted from whole peripheral 
blood samples collected in EDTA tubes. DNA extrac-
tion and purification followed manufacturer’s recom-
mended protocols, using Qiagen AutoPure LS kit with 
Gentra automated extraction (first time point) or manual 
extraction (second time point), due to discontinuation of 
the equipment but using the same commercial reagents. 
DNA was quantified using Nanodrop spectrometer and 
diluted to 50 ng/uL. To assess the reproducibility of the 
EPIC array, a subset of 16 of the 48 samples was ran-
domly selected for technical replicates, for a total of 64 
samples submitted for further analyses. Whole-genome 
sequencing data are also available for the samples 
described above.

Characterization of DNA methylation using the EPIC array
Approximately 1000  ng of human genomic DNA was 
used for bisulphite conversion. Methylation status was 
evaluated using the MethylationEPIC array at The Cen-
tre for Applied Genomics (TCAG, Hospital for Sick Chil-
dren, Toronto, Ontario, Canada), following protocols 
recommended by Illumina (San Diego, California, USA).

Processing and analysis of DNA methylation data
The R/Bioconductor packages Meffil (version 1.1.0), 
RnBeads (version 2.6.0), minfi (version 1.34.0), and 
wateRmelon (version 1.32.0) were used to import, pro-
cess, and perform quality control (QC) analyses on the 
methylation data. Starting with the 64 samples, we first 
used Meffil to infer the sex of the 64 samples and com-
pared the inferred sex to reported sex. Utilizing the 
59 SNP probes that are available as part of the EPIC 
array, we calculated concordance between the meth-
ylation intensities of the samples and the correspond-
ing genotype calls extracted from their WGS data. 
We then performed comprehensive sample-level and 
probe-level QC using the RnBeads QC pipeline. Specif-
ically, we (1) removed probes if their target sequences 
overlap with a SNP at any base, (2) removed known 
cross-reactive probes (3) used the iterative Greedy-
cut algorithm to filter out samples and probes, using 
a detection p value threshold of 0.01, and (4) removed 
probes if more than 5% of the samples had a missing 
value. Since RnBeads does not have a function to per-
form probe filtering based on bead number, we used 

the wateRmelon package to extract bead numbers from 
the IDAT files and calculated the proportion of samples 
with  a bead number < 3. Probes with more than 5% of 
samples having a low bead number (< 3) were removed. 
For the comparison of normalization methods, we also 
computed detection p values using out-of-band probes 
empirical distribution with the pOOBAH() function in 
the SeSAMe (version 1.14.2) R package, with a p value 
threshold of 0.05, and the combine.neg parameter set 
to TRUE. In the scenario, where pOOBAH filtering was 
carried out, it was done in parallel with the previously 
mentioned QC steps, and the resulting probes flagged 
in both analyses were combined and removed from the 
data.

Normalization methods evaluated
The normalization methods compared in this study were 
implemented using different R/Bioconductor packages 
and are summarized in Fig. 1. All data were read into R 
workspace as RG Channel Sets using minfi’s read.meth-
array.exp() function. One sample that was flagged during 
QC was removed, and further normalization steps were 
carried out in the remaining set of 63 samples. Prior to 
all normalizations with minfi, probes that did not pass 
QC were removed. Noob, SWAN, Quantile, Funnorm, 
and Illumina normalizations were implemented using 
minfi. BMIQ normalization was implemented with 
ChAMP (version 2.26.0), using Raw input data produced 
by minfi’s preprocessRaw() function. In the combination 
of Noob with BMIQ (Noob + BMIQ), BMIQ normaliza-
tion was carried out using as input minfi’s Noob normal-
ized data. Noob normalization was also implemented 
with SeSAMe, using a nonlinear dye-bias correction. For 
all normalization methods, two scenarios were tested. In 
the first, which we call version 1 (e.g. BMIQ 1, SeSAMe 
1, SWAN 1, etc.), SeSAMe’s pOOBAH masking was not 
executed, and the only probes filtered out of the dataset 
prior to normalization were the ones that did not pass 
QC in the previous analyses. In the second scenario, 
which we call version 2 (e.g. BMIQ 2, SeSAMe 2, SWAN 
2, etc.), pOOBAH masking was carried out in the unfil-
tered dataset, and masked probes were removed. This 
removal was followed by a further removal of probes 
that did not pass previous QC and that had not been 
removed by pOOBAH. Therefore, the version 2 of each 
method had two rounds of probe removal. Methods were 
then compared by subsetting the 16 replicated samples 
and evaluating the effects that the different normaliza-
tion methods had in the beta-value distributions and in 
the absolute difference of beta values (|β|) between repli-
cated samples. Results were plotted either with base R, or 
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with the ggplot2 (version 3.3.6) or limma (version 3.52.2) 
R packages.

Reproducibility analyses
We used R (version 4.2.0) and Bioconductor packages 
to compute summary statistics and conduct statisti-
cal analyses. We first examined the distributions of the 
raw and normalized β values, including standard devia-
tion (SD), mean, median, and range (maximum β–mini-
mum β). To assess the reproducibility and reliability of 
probe measures, we used the cor() function to compute 
Pearson’s correlation of the technical replicates at each 
probe. We then calculated the intraclass correlation 
coefficients (ICCs) using the icc() function from the irr 
package (version 0.84.1). Since there are many forms of 
ICCs, we followed the recommendations by Koo and Li 
[34] and calculated the ICCs under the ‘two-way ran-
dom effects, absolute agreement, single rater/meas-
urement’ model (with the ‘twoway’, ‘agreement’, and 
‘single’ options in the icc() function). Through boxplots 
and Hexbin scatterplots, we examined the relationship 
between probe reproducibility, as measured by Pearson’s 
correlations and ICCs, and the distributions of β values 
(SD and mean).

Results
Normalization results
In the current paper, we evaluated probe replicability 
using raw and normalized beta values. The normaliza-
tion techniques employed reduce technical variability. 
The normalization methods considered, and the pipelines 
used, can be found in Fig. 1. Each normalization method 
included a quality control step, which filtered out 182,562 
probes. Additionally, 17,789 unique probes were filtered 
using pOOBAH for the second version of each normali-
zation method (e.g. SeSAMe 2). Therefore, the first itera-
tion of the datasets consider 684,274 probes for analyses, 
whereas the second iterations consider 666,485 probes. 
Our first set of analyses compare the performance of the 
first version of each normalization method with the full 
SeSAMe pipeline, which includes pOOBAH masking (i.e. 
SeSAMe 2).

Table  1 provides details of the raw and normalized 
absolute beta value differences (|∆β|) for all replicate 
samples, highlighting the percentage of CpGs surpass-
ing |∆β|= 0.05 or 0.1. Additional file  1: Figs. S1 and 
S2 show these distributions in graphical format. Addi-
tional file  1: Fig. S3 depicts the distributions for the 
individual replicate pairs. With respect to absolute 
beta-value differences, SeSAMe 2 produced the most 
favourable results, exhibiting the smallest median |∆β| 
value (0.00815) and the lowest proportion of probes 
with |∆β|  > 0.05 and |∆β|  > 0.10 (1.97% and 0.10%, 

Fig. 1  The normalization pipelines for all normalization methods considered
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respectively, Table  1). It is important to note, how-
ever, that SeSAMe 2 includes an additional round of 
probe removal. If we compare only the other methods, 
which underwent the same probe removal procedure, 
the best method is either SeSAMe 1 or Noob + BMIQ 
1, depending on the criteria used. Noob + BMIQ 
1 showed smaller |∆β| values for the median and 
Q1, while SeSAMe 1 showed better results for more 
extreme values. The additional probe removal using 
pOOBAH, therefore, seems to have removed a good 
proportion of poorly replicated probes in SeSAMe 
1. Overall, the raw data produced the least favour-
able results, with the highest median values (0.01627) 
and the highest proportion of probes with |∆β| > 0.05. 
Quantile 1 and BMIQ 1 normalization produced the 
highest proportions of CpGs with an |∆β| > 0.10 (0.43% 
and 0.33%).

Additional file  1: Fig. S4 shows a table depicting the 
number of probes with |∆β| > 0.10, as well as the num-
ber of replication pairs in which the probes exceeded 
this threshold (1–16). This is also shown in graphical 
format in the figure. In concordance with the results 
described above, SeSAMe 2 exhibits the best perfor-
mance, with a total of 7942 CpGs exceeding |∆β| > 0.10 
between replicate pairs. Noob normalization was sec-
ond in terms of performance, with a total of 13,871 
probes, followed by SeSAMe 1 with 14,236 probes. 
Quantile and BMIQ produced the least favourable 
results with a total of 27,828 and 21,865 CpGs exceed-
ing |∆β| > 0.10 between replicate pairs, respectively.

All samples produced an expected bimodal beta-
value distribution, with most probes having beta values 
close to either 0 or 1 (See Additional file 1: Fig. S5 for 
density plots). However, BMIQ diverges slightly from 

the expected shape, as it does not produce a second 
larger peak. For the data normalized with BMIQ, the 
two peaks are approximately the same height on the 
graph.

Figure 2 shows a Boxplot of correlation between the 
replicate samples for each method, ordered by median. 
All datasets exhibited high correlations (> 0.997). How-
ever, the highest correlations were observed for SeS-
AMe 2, followed by Noob + BMIQ 1, SeSAMe 1, and 
Noob 1. The lowest correlations were observed for 
Quantile normalization, followed by the raw data.

Due to the superior performance of SeSAMe 2 after 
pOOBAH probe filtering, available in the SeSAMe pipe-
line, we conducted a second set of analyses, applying the 
pOOBAH filtering to the raw data and other normaliza-
tion methods (e.g. BMIQ 2, SWAN 2, Noob 2). SeSAMe 
2 continued to be the best performing method when con-
sidering the proportion of probes with |∆β|  > 0.05 and 
correlation between the replicate samples (See Additional 
file 1: Table S1, Figs. S6 and S7). However, when consid-
ering the number of probes with |∆β| > 0.10, SeSAMe 2 
was outperformed by Illumina 2 normalization (0.10% 
and 0.09%, respectively, Additional file  1: Table  S1). 
Overall, SeSAMe 2 remained the best performing nor-
malization method, though filtering with pOOBAH did 
substantially increase the performance of the raw data 
and other normalization methods.

Pearson’s correlation and intraclass correlation coefficient 
results
Pearson’s correlation and intraclass correlation coef-
ficient (ICC) results were generated using raw beta val-
ues as well as beta values normalized using the SeSAMe 
2 normalization method. SeSAMe 2 normalization was 

Table 1  Absolute beta-value (|∆β|) differences for all replicate samples

*Correction: includes background correction and dye-bias correction

Lower Whisker Q1 Q2 (Median) Q3 Upper Whisker |Δβ| > 0.05 (%) |Δβ| > 0.10 (%) Type

Raw 1 0.00000 0.00734 0.01627 0.02931 0.06226 6.50 0.30 – –

BMIQ1 0.00000 0.00578 0.01348 0.02627 0.05699 5.74 0.33 Quantile Within-array

SWAN 1 0.00000 0.00588 0.01286 0.02357 0.05009 4.27 0.30 Quantile Within-array

Illumina 1 0.00000 0.00554 0.01206 0.02167 0.04587 2.86 0.21 Correc‑
tion*

Within-array

Quantile 1 0.00000 0.00523 0.01164 0.02148 0.04587 3.63 0.43 Quantile Between-array

Noob 1 0.00000 0.00379 0.00911 0.01822 0.03987 2.47 0.21 Correc‑
tion*

Within-array

Funnorm 1 0.00000 0.00362 0.00890 0.01792 0.03936 2.67 0.30 Mixed Between-array

SeSAMe 1 0.00000 0.00342 0.00840 0.01763 0.03895 2.49 0.21 Correc‑
tion*

Within-array

Noob + BMIQ 1 0.00000 0.00333 0.00829 0.01771 0.03928 2.75 0.25 Mixed Within-array

SeSAMe 2 0.00000 0.00333 0.00815 0.01709 0.03773 1.97 0.10 Correc‑
tion*

Within-array
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used for these detailed analyses as it was deemed the 
most effective normalization method in this study based 
on the metrics discussed in the previous section. Corre-
lational methods were performed on the n = 32 samples 

(16 replicate pairs) for n = 666,485 probes remaining 
after quality control filtering.

The whole-array Pearson’s correlation of beta values 
for each of the 16 replicates pairs was high using both 

Fig. 2  Boxplot of correlation between the replicate samples for each method, ordered by median

Table 2  Pearson’s correlation for each pair of replicate samples across all probes for raw and normalized data

Data type Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Raw beta values 0.9975 0.9978 0.9979 0.9979 0.9980 0.9982

SeSAMe 2 normalized beta 
values

0.9984 0.9987 0.9988 0.9988 0.9989 0.9990
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raw and normalized data (Avg. R2 > 0.9975; See Table 2). 
Pearson’s correlations were also estimated for individ-
ual probes. When considering individual probes, the 
correlation was much lower, with a mean of 0.5165 and 
median of 0.5840 for raw data and a mean of 0.5979 and 
a median of 0.6853 for normalized data (See Table  3). 
We explored in detail the distribution of Pearson’s 
correlation values for raw and SeSAMe 2 beta values 
across mean beta categories (Hexbin, equidistant cat-
egories, and percentiles) and across standard deviation 
of beta categories (Hexbin, equidistant categories, and 
percentiles). These are shown in Additional file 1: Figs. 
S8–S13. Pearson’s correlation values are substantially 
lower when mean beta values are very low or very high, 
or when the standard deviations are low (e.g. there is 
very low variation in beta values across the samples). 
It is important to note that most probes have very low 
standard deviations. As an example, Fig. 3 shows a box 

plot of Pearson’s correlation by equidistant SD catego-
ries of beta values normalized by SeSAMe 2. The major-
ity of the probes (389,668 or 58.5%) are included in the 
first category (SD < 0.0223) and show low Pearson’s cor-
relation values (mean < 0.5), whereas only 1.5% of the 
probes (10,105) are included in the top 14 categories 
(e.g. SD > 0.13), which show high Pearson’s correlation 
values. Table 3 highlights that there is an improvement 
in Pearson’s correlation values when using SeSAMe 
2 normalized beta values with respect to the raw beta 
values.  Applying nonparametric correlation methods 
(Spearman’s rank correlation) produced similar results 
to those observed using Pearson’s correlation.

To assess the reliability of individual probes, ICC analy-
sis was performed. Probes with an ICC > 0.50 are consid-
ered to have acceptable reliability, while probes with an 
ICC value < 0.50 were deemed as unreliable [14]. We first 
used raw methylation data from the 16 pairs of replicates 

Table 3  Pearson’s correlation observed for individual probes for raw and normalized data

Data type Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Raw beta values − 0.8051 0.2473 0.5840 0.5165 0.8408 0.9999

SeSAMe 2 normalized beta 
values

− 0.8477 0.3769 0.6853 0.5979 0.8807 1.0000

Fig. 3  Box plot showing SD versus Pearson’s correlation based on SeSAMe 2 normalized beta values, using equidistant SD categories in the X axis
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to calculate the ICC for each CpG site on the EPIC 
array and then calculated the ICC for the normalized 
data. Using the raw data, 301,103 of the 666,485 probes 
(45.18%) have an ICC > 0.50, 151,647 (22.75%) have an 
ICC > 0.75, and 53,262 (7.99%) have an ICC > 0.90. After 
SeSAMe 2 normalization, 408,917 (61.35%) probes have 
an ICC > 0.50, 256,710 (38.52%) have an ICC > 0.75, and 
117,470 (17.63%) have an ICC > 0.90. Therefore, normal-
izing the data using SeSAMe 2 substantially increased 
the number of probes with an ICC > 0.50. Table  4 pro-
vides summary details about the distribution of ICC val-
ues for raw and normalized data. The mean and median 
beta values after normalization are higher than the raw 
values (Table 5). Similarly to what was done for the cor-
relation analyses, we explored in detail the distribution of 
ICC values for raw and SeSAMe 2 values based on mean 
beta values and the standard deviation of beta values, 
and these results are summarized in graphical format in 
Additional file  1: Figs. S14–S19. In agreement with our 
Pearson’s correlation analysis, ICC values are substan-
tially lower when mean beta values that are low or high, 
or when standard deviations of beta values are low.

Discussion
In this study, we used 16 replicate pairs to systematically 
assess and compare the performance of raw (unnormal-
ized) data and various normalization techniques (i.e. 
BMIQ, Quantile, Funnorm, SWAN, Illumina, Noob, 
Noob + BMIQ, SeSAMe) using EPIC array methyla-
tion data. After normalization, we used three metrics 
to evaluate the reproducibility of the 16 technical repli-
cates: absolute beta-value difference (|∆β|), overlap of 
non-replicated CpGs between replicate pairs, and effect 
on beta-value distributions. We also used Pearson’s cor-
relation and intraclass correlation coefficient (ICC) to 
evaluate whole-array and probe-level reliability and 
reproducibility.

Normalization method performance
Our results indicate that quantile-based normalization 
methods (i.e. Quantile, BMIQ, and SWAN), especially 
BMIQ, had overall worse performance compared to the 
other normalization methods when considering abso-
lute beta-value difference and overlap of non-replicated 
CpGs between replicate pairs. In contrast, normalization 
methods that utilize Noob normalization such as SeS-
AMe, Noob, and Noob + BMIQ performed more favour-
ably in all three metrics evaluated. Overall, SeSAMe 2 
was the best performing normalization method of the 
methods evaluated. Much of SeSAMe  2’s superior per-
formance can be attributed to the improved QC carried 
out by pOOBAH, as can be seen by comparing SeSAMe 
1 and 2. Using pOOBAH as an additional QC method 
also improved the performance of the other normaliza-
tion methods, indicating that it is a beneficial QC step 
for EPIC array data. However, even without pOOBAH 
(SeSAMe 1), SeSAMe showed better results when com-
pared to most other methods, being tied in second with 
Noob + BMIQ 1, with Noob + BMIQ 1 producing better 
results for the median and Q1, and SeSAMe 1 producing 
better results for more extreme values. These results dif-
fer from some previous studies that found quantile-based 
methods, such as BMIQ, to outperform other normaliza-
tion methods using 450k array data [13, 24, 25], but are 
supported by more recent studies that find Noob-based 
normalization methods to have the best performance for 
Illumina arrays [21, 35, 36].

Quantile normalization and Funnorm were the only 
between-array normalization methods considered in this 
study. Between-array normalization reduces array-to-
array variation through adjusting measures on a global 
scale [37]. The issue with Quantile normalization likely 
has to do with how it normalizes data, in that it forces 
‘the empirical marginal distributions of the samples to 
be the same, which removes all variation in this statis-
tic’ [19], p. 2]. While still a between-array quantile-based 

Table 4  Intraclass correlation results for raw and normalized data

Data type Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Raw − 0.8903 0.1886 0.4461 0.4385 0.7264 0.9999

SeSAMe 2 normalized − 0.9248 0.3247 0.6327 0.5656 0.8553 0.10000

Table 5  Mean beta values of raw and normalized data

Data type Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Raw 0.006653 0.209338 0.727574 0.573223 0.852141 0.990649

SeSAMe 2 normalized 0.01109 0.24068 0.83598 0.63554 0.93684 0.99003
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method, Funnorm overcomes this issue by only removing 
variation explained by a set of covariates [19]. Therefore, 
Funnorm is able to remove covariates that are associated 
with technical variation, which may be independent of 
covariates associated with biological variation [19]; this 
is likely why it performed better than the other quantile-
based methods considered in this study.

Even though BMIQ and SWAN are quantile-based 
normalization methods, different distributions between 
samples should not be an issue for these methods as they 
use within-array normalization. Within-array normaliza-
tion methods involve background correction, dye-bias 
correction, and type I and II probe scaling [37]. SWAN 
matches type I and II beta distributions by separately 
applying Quantile normalization for different subsets of 
probes [17], while BMIQ attempts to fit the distribution 
of type II probes to that of type I probes, after apply-
ing a three-state (methylated-M, unmethylated-U, and 
hemimethylated-H) beta-mixture model to type I and II 
probes [16]. BMIQ was found to be the worst performing 
normalization method for all three metrics considered, 
especially when considering extreme values. SWAN also 
performed poorly when considering absolute beta-value 
difference (|∆β|) and overlap of non-replicated CpGs 
between replicate pairs, as it produced only marginally 
better results when compared to the raw data and BMIQ. 
Dedeurwaerder et al. [37] similarly found that when com-
paring 450k and BPS data, SWAN did not improve data 
quality. Additionally, Dedeurwaerder et al. [37] also simi-
larly found that while BMIQ produced a lower boxplot 
median value than the raw data for absolute difference, 
it also produced a higher boxplot whisker, indicating 
that while BMIQ can improve median values, it also per-
formed worse for extreme values (See Additional file  1: 
Fig. S2). BMIQ not only underperformed when consid-
ering absolute beta-value difference (|∆β|) and overlap 
of non-replicated CpGs between replicate pairs, but also 
diverged from the expected bimodal distribution (See 
Additional file  1: Fig. S5). Xu et  al. [36] similarly found 
BMIQ to diverge from expectation, as the distributions 
produced by BMIQ were distorted and discontinuous 
when evaluated using 450k and EPIC array data. While 
it is not entirely clear why SWAN and BMIQ performed 
poorly, the results  indicate that quantile-based normali-
zation methods (whether within-array or between-array) 
were the worst performing normalization methods for 
our sample.

Few studies have compared the performance of SeS-
AMe to other available normalization methods; however, 
recent studies have highlighted that SeSAMe compares 
favourably to other approaches. For example, Vanderlin-
den et al. found that SeSAMe outperformed the quantile-
based SWAN normalization when harmonizing data 

from the 450k and EPIC platforms [38]. Similarly, when 
considering 26 normalization pipelines, which included 
within-array and between-array normalization meth-
ods, Foox et al. found SeSAMe to be one of the best per-
forming normalization methods [39]. The normalization 
methods considered include no normalization (raw), 
SWAN, PBC, Regression on Correlated Probes (RCP), 
Quantile normalization, Funnorm, Enmix, dasen, SeS-
AMe, and Gaussian Mixture Quantile Normalization 
(GMQN) [39]. The researchers found Funnorm + RCP 
to exhibit the best performance when considering which 
method had more variance explained by cell line across 
the epigenome, with a median of 90.4% [39, p. 13]. SeS-
AMe also performed favourably with a median of 90% 
[39, Fig. 5a]. Therefore, while the results of this study are 
not directly comparable to that of Vanderlinden et  al. 
and Foox et al. [38, 39], SeSAMe normalization has been 
found to be a powerful normalization tool.

The overlap in non-replicated CpGs shown in Addi-
tional file  1: Fig. S4 shows CpGs that are being consist-
ently poorly replicated (|∆β|  > 0.10) in many sample 
pairs. Out of a universe of ~850,000 CpGs, the fact that 
a few have poor replication in multiple sample pairs indi-
cates that there is some underlying problem with their 
probes. For example, using Funnorm, 363 probes showed 
|∆β| values higher than 0.1 in 7 or more sample pairs. 
Even for the best performing approach, SeSAMe 2, there 
were 78 CpGs that had poor replication in 7 or more 
sample pairs, pointing to a consistent source of error 
for these probes. On the other hand, for the majority of 
CpGs that failed in only one sample pair, there is a higher 
possibility that these failures were due to random errors.

Pearson correlation and ICC
Replicate samples were used to assess the EPIC array rep-
licability using both Pearson’s correlations and ICC. As 
with previous research using Illumina arrays [13, 14, 18, 
29, 40], the EPIC array was found to be highly reproduc-
ible (r > 0.99) at the whole-array level for both raw and 
normalized data. However, previous studies have found 
that whole-array correlations are also high between dif-
ferent individuals [14], suggesting that whole-array Pear-
son’s correlation may be a poor metric for reproducibility 
studies. Additionally, while the EPIC array was found to 
be highly reproducible at the whole-array level, it was 
determined to be less reproducible at the probe level. 
Probes found to have lower correlations often exhibited 
low biological variability with mean methylation values 
being either very low or very high and having small SDs. 
Lower correlations in probes with low biological varia-
tions have similarly been found in studies comparing the 
450k and EPIC arrays [28, 41].
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The ICC results of this study are in line with previous 
studies [14, 27, 28, 31], as we found that when consider-
ing the raw data, the majority (> 50%) of CpG sites have 
low correlation. Similarly to the Pearson’s correlation 
results, CpGs exhibiting low ICC were primarily CpGs 
that exhibit low variation in methylation, as the major-
ity of probes exhibiting either high or low mean values 
and smaller SDs have ICC values < 0.50 (See Additional 
file  1: Figs. S14–S16). Probes that exhibit beta values 
close to 0 or 1 typically have relatively smaller SDs com-
pared to probes with intermediate beta values. In con-
trast, few probes with SDs > 0.1 have ICC values < 0.50 
(See Additional file  1: Figs. S17–S19). Therefore, probe 
reliability appears to largely be the result of biological 
variation rather than technical measurement variation 
[14]. CpGs with poor ICC reliability have also been found 
to have lower statistical power and may be more likely 
to create false-positive findings [42]. Removing probes 
with low ICC values can decrease false-positives and 
increase power; however, excluding CpGs with low reli-
ability could lead to the exclusion of important regulatory 
regions [14].

Normalizing the data with SeSAMe 2 was found to 
substantially improve ICC values, through increasing 
the proportion of probes with an ICC value > 0.50 from 
45.18% (raw data) to 61.35% (SeSAMe 2). Other pre-pro-
cessing and normalization methods, such as background 
correction and dye-bias correction pre-processing meth-
ods, have also been found to increase the number of 
probes with acceptable reliability [14]. However, even 
with the improvements afforded through data normali-
zation, this study demonstrates that ICC may not be the 
best correlational method for assessing probe reliability 
as CpGs with little biological variation are often consid-
ered unreliable based on the mean beta value and SD 
data. Additionally, calculating ICC also requires assaying 
replicate samples, which adds a greater cost with very lit-
tle return [14].

Limitations
The main limitation of this study is the relatively small 
sample size of n = 16 replicate pairs, as it has been pre-
viously suggested that 30 replicate samples will provide 
reasonably good agreement with ICC classification [14]. 
While the sample is small, the results of this study dem-
onstrate that Noob-based normalization methods may be 
more suitable for EPIC array normalization and support 
previous research in demonstrating that CpGs with little 
biological variation are often considered unreliable when 
using ICC or probe-level Pearson’s correlations. This 
study also shows that applying SeSAMe 2 resulted in a 

substantial increase in the number of probes with accept-
able reliability (ICC > 0.5).

Conclusion
In conclusion, SeSAMe 2 (SeSAMe with pOOBAH 
masking and additional QC round) was found to be the 
best performing normalization method based on the 
metrics evaluated. It is important to note that the num-
ber of probes used in the SeSAMe 2 pipeline is lower 
than the number of probes used for the other normali-
zation approaches (666,485 vs. 684,274 probes), due 
to the exclusion of approximately 18,000 probes after 
pOOBAH masking. We repeated the analyses for all 
the normalization methods excluding the probes iden-
tified by pOOBAH masking, and as expected, there is 
an improvement in the performance of all the methods. 
These results are provided in Additional file 1: Table S1. 
After removing these extra probes, SeSAMe 2 remains 
the top performing method, but other normalization 
approaches provide very similar results. For example, 
the median |∆β| observed with Noob + BMIQ 2  is the 
same as that observed with SeSAMe 2 (0.00815), and 
the proportion of probes with |∆β| values higher than 
0.05 and 0.1 is very similar for Noob 2 and SeSAMe 2. 
The improvements observed after pOOBAH masking 
indicate that this would be a useful step to add in QC 
protocols prior to probe normalization. In general, our 
study indicates that noob-based normalization meth-
ods such as SeSAMe, Noob, and Noob + BMIQ per-
formed well. In contrast, quantile-based normalization 
methods (Quantile, BMIQ, and SWAN) were found to 
exhibit lower performance compared to the noob-based 
methods.  In line with previous studies, the EPIC array 
was found to be highly reproducible at the whole-array 
level, but this is not the case at the probe level, with a 
relatively large number of probes  displaying  poor  reli-
ability (ICC < 0.5). Additionally, in agreement with pre-
vious observations, CpGs with low biological variability 
tend to have low ICC values. Importantly, normalizing 
the data with SeSAMe 2 substantially improved ICC 
estimates, with the proportion of probes with ICC val-
ues > 0.50 increasing from 45.18% (raw data) to 61.35% 
(SeSAMe2). These results  emphasize  the benefit of 
using normalization methods when analysing EPIC 
array data.
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