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A B S T R A C T   

Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing 
the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort 
size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a 
model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high- 
risk individuals. 
Methods: We conducted an observational longitudinal cohort study at individual sites throughout the U.S., 
enrolling adults who were members of an online health and research platform. Through direct and longitudinal 
connection with research participants, we applied machine learning techniques to compute individual risk scores 
from individually permissioned data about socioeconomic and behavioral data, in combination with predicted 
local prevalence data. The modeled risk scores were then used to target candidates for enrollment in a hypo
thetical COVID-19 detection study. The main outcome measure was the incidence rate of COVID-19 according to 
the risk model compared with incidence rates in actual vaccine trials. 
Results: When we used risk scores from 66,040 participants to recruit a balanced cohort of participants for a 
COVID-19 detection study, we obtained a 4- to 7-fold greater COVID-19 infection incidence rate compared with 
similar real-world study cohorts. 
Conclusion: This risk model offers the possibility of reducing costs, increasing the power of analyses, and 
shortening study periods by targeting for recruitment participants at higher risk.   

1. Introduction 

The costs of recruiting large numbers of participants for clinical trials 
can be high. The power of clinical trials also can depend on the number 
of “rare events” observed (such as COVID-19 infections), which often 
takes long periods to accrue. Efforts have therefore been attempted to 
reduce costs, increase the power of analyses, and shorten study periods 
by targeting participants at higher risk (those more exposed to infection) 
during recruitment [1]. Many prospective incidence trials already use 
basic demographics and health state-based approach to define pop
ulations at increased risk, which helps to figure out how vaccines work 
in the defined population (high-risk population), with the caveat of 

potentially making data less-generalizable. 
We present an enrichment approach based on connection with 

members of the Evidation health and research platform [2]. This reward 
platform encourages users to develop healthy habits—such as walking, 
meditating, and logging meals—and incentivizes them to participate in 
research by completing surveys and sharing data from 
commercial-grade wearable sensors [3,4]. For example, the application 
has been used since 2017 for voluntary monitoring of annual influenza 
cases [5]. We therefore had access to a large pool of potential study 
participants we could easily survey. 

Our modeling approach applied machine-learning techniques to 
compute individual risk scores from socioeconomic and behavioral data, 
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in combination with predicted local prevalence data. The modeled risk 
scores were then used to target candidates for enrollment. 

2. Material and methods 

2.1. Design 

We leveraged our longitudinal relationship with members of the 
Evidation platform and applied machine-learning modeling of COVID- 
19 risk to determine and recruit a high-risk study population. The 
study protocol was approved by the WCB Institutional Review Board 
(#20202887), and participants gave written consent to take part in the 
study. 

The machine-learning model quantified risk using participants’ lo
cations, occupations, and behavior, given that these features likely 
affected exposure level to SARS-CoV-2. The initial training phase for the 
model was 49 days, during which we followed >100,000 members to 
characterize those who contracted COVID-19. 

We measured enrichment in terms of the incidence of COVID-19 
infection using this enhanced selection process versus infection inci
dence in the control groups of 3 COVID-19 vaccine trials [6–8] and 
another cohort generated via the Evidation platform but not using a 
precision recruitment approach [9]. Because each study had different 
enrollment dates and demographics, we normalized each study’s inci
dence by matching dates and demographics of the comparator study to 
the US incidence. 

Specifically, for this study, we launched a Risk of Occupational 
Exposure to COVID-19 deep-labeling survey on June 15, 2020. This 
survey, which collected demographic, socioeconomic, and behavioral 
data on potential high-risk populations, had received 128,629 responses 
at the time of analysis. Short follow-up surveys were sent to respondents 
to this survey who indicated they had not had a diagnosis or symptoms 
of COVID-19 as of August 3, 2020, to determine whether any individuals 
had received a diagnosis (and date of diagnosis) within ~2 months since 
completing the initial survey. Of the 94,700 who were sent the follow-up 
survey, 66,040 (69.7%) responded, and 514 (0.8%) indicated they had 
received a COVID-19 diagnosis in the interim. 

2.2. Risk modeling 

We then created a machine-learning model using labeling responses 
from the initial survey, which performed better than chance at identi
fying who would receive a subsequent diagnosis. This model incorpo
rated predictions of COVID-19 local prevalence (using generalized 
additive models [GAMS]) as a variable, along with socioeconomic and 
behavioral data from the initial survey. Using random forests, the model 
was trained on respondents to the second survey, with the outcome 
variable being whether they had contracted COVID-19 during the 49- 
day follow-up period. See the Appendix for detailed descriptions of 
the modeling process. 

The trained model was then used to calculate a risk score for each 
respondent to the initial survey. Persons with the highest risk scores 
were primarily targeted for recruitment and were selected to generate a 
dataset with balanced demographic variables (eg, age, sex, and 
ethnicity). 

2.3. Comparison with previous studies 

To compare our findings with enrollment in the other studies, we 
first calculated the incidence rate as the number of confirmed COVID-19 
cases per 1000 person-years of follow-up for our cohort and each com
parison cohort. Only the person-days at risk of contracting COVID-19 
were considered, and we excluded all days occurring after vaccination 
or contracting COVID-19. With this method, breakthrough infections 
were not included, therefore providing a conservative estimate. 

To calculate the US-matched incidence for our cohort, we used 

individual-level data from the Centers for Disease Control and Preven
tion (CDC) describing all confirmed COVID-19 cases in the U.S. (These 
data likely underestimate the true number of cases.) We aggregated 
counts by date and by sex by age group. 

For each comparator study, we calculated the US incidence of 
COVID-19 during the study period for each demographic group, using 
2019 US Census data for the size of each demographic group in the U.S. 
[10] To calculate the final US-matched incidence, we measured the 
proportion of each demographic group in the comparator study, and 
then took the weighted average of the US incidences across demographic 
groups (weighted by proportions of these groups in the comparator 
study). By dividing each study incidence by the US-matched incidence, 
we ensured that our findings were not biased by differences in the study 
period or demographics. 

We calculated 95% confidence intervals for the incidence in each 
study and the ratios using the exact method (Poisson distribution). 

3. Results 

From candidates with the highest risk scores, we recruited a demo
graphically balanced cohort of 840 participants and followed them from 
November 5, 2020 to April 15th, 2021. The total follow-up time to re
ported infection or vaccination was 141.2 person-years, and 104 par
ticipants (12.3%) developed confirmed COVID-19 infection. 

Comparing our model with recruitment in other studies, we observed 
4- to 7-fold greater detection of COVID-19 cases after accounting for 
differences in study periods and numbers of COVID-19 cases in the U.S. 
at those times (Fig. 1). The normalized incidence rate for our study was 
4.93 (CI [3.68–6.46]) for women and 6.02 (CI [4.50–7.89]) for men. See 
Appendix Table 1 for the data listings for each study included in the 
analysis. This supplementary table also shows the raw numbers of in
fections in the control groups of the comparison trials (between 1% and 
2.2% of participants got infected in each of the comparison groups vs. 
12.3% when we use our precision recruitment approach). 

Fig. 2 shows the variables most important to the prediction of 
COVID-19 infection. The top features related to the number of poten
tially risky contacts (household size and residential situation), location 
(living in a city with numerous COVID-19 cases at recruitment) and 
working in a risky occupation (healthcare workers). See the Appendix 
for more details about these features. The features that were least 
important related to non-healthcare work settings (hospitality, public 
transit, agriculture, self-employed, etc.) 

4. Discussion 

We compared a precision recruitment approach to that of another 
internal study [9] and external vaccine trials [6–8] while taking into 
account that these trials happened at different times and with different 
sample demographics. We used calculations of matched US incidences 
(in time, age, and sex) for each trial to properly make those comparisons. 
The comparisons showed a substantial enrichment factor of 4–7 times 
the incidence of COVID-19 infections. This means that our precision 
recruitment approach could be applied to reduce the needed sample size 
of future trials by this factor, or shorten the trials’ duration by the same 
factor. Beyond the benefit of reducing the cost of trials, this precision 
recruitment approach could be of great utility in situations of emer
gency, such as during a pandemic. 

Although our risk model showed up to a 7-fold increase in recruit
ment possibility, we can improve it further through including additional 
variables that might be relevant, such as information about contacts 
with other people, especially with school-age children. We also could 
improve the training process and GAM models. 

The current analysis has several limitations. For some of the datasets 
[6–8], we had access only to publicly available data. For example, we 
had no access to data about each participant’s start and end dates in the 
trial. Therefore, when computing the matched US incidence for each 
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trial (matched in time, age, and sex), we used the overall study start and 
end dates of each trial. This does not consider variability in when each 
participant started and ended the trial. If a study had very gradual or 
slow enrollment, its incidence might have differed substantially from the 
US-matched incidence over its duration. 

Additionally, some studies tallied only events happening 14 days 
after the second vaccination dose/placebo. Given that we lacked 
individual-level data for when each participant received their second 
dose, we could not account for that variability. Instead, as shown in 
Appendix Table 1, we recalculated the US-matched incidences after 
removing the initial days corresponding to the length of its vaccination 
protocol plus 14 days (instead of using the full length of each study). 
This attempt to count from a later start date resulted in a higher US- 
matched incidence and therefore even lower comparative incidence 

ratios for the vaccine trials. Thus, our current estimate of enrichment 
compared with other studies is a lower bound on the actual enrichment. 
Our comparisons to US-matched incidences are imperfect (because of 
lack of individual-level data) but consistent across studies. 

Whether the findings obtained on the recruited population would be 
generalizable to the full population is not guaranteed when using a 
technique for precision recruitment as described. For a vaccine trial this 
should be true, given that our population was not biologically different 
in demographics or comorbidities. The difference with the full popula
tion relates only to greater exposure to COVID-19 (through location, 
occupation, or behavior) rather than different biological susceptibility 
to it. Therefore, we do not expect any conclusion made regarding vac
cine efficacy to be affected by our precision recruitment procedure, and 
results should be generalizable to other populations. 

Fig. 1. Covid-19 incidence rate in each cohort normalized by US incidence rate matched for time, age, and sex.  

Fig. 2. The 20 Most Important Groups of Predictors of Risk Ranked by Random Forest Feature Importance. Sub-predictors from the same group (e.g., Healthcare 
occupation) have been separated and rearranged for visual clarity. Positive coefficients that are statistically significant (risk increasing) are in blue, and negative ones 
are in orange. More detailed descriptions of each factor and variable are available in the Appendix. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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