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A B S T R A C T   

Highly transmissive and rapidly evolving Coronavirus disease-2019 (COVID-19), a viral disease caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), triggered a global pandemic, which is one of the most 
researched viruses in the academia. Effective drugs to treat people with COVID-19 have yet to be developed to 
reduce mortality and transmission. Studies on the SARS-CoV-2 virus identified that its main protease (Mpro) 
might be a potential therapeutic target for drug development, as this enzyme plays a key role in viral replication. 
In search of potential inhibitors of Mpro, we developed a phytochemical library consisting of 2431 phytochem-
icals from 104 Korean medicinal plants that exhibited medicinal and antioxidant properties. The library was 
screened by molecular docking, followed by revalidation by re-screening with a deep learning method. Recurrent 
Neural Networks (RNN) computing system was used to develop an inhibitory predictive model using SARS 
coronavirus Mpro dataset. It was deployed to screen the top 12 compounds based on their docked binding affinity 
that ranged from − 8.0 to − 8.9 kcal/mol. The top two lead compounds, Catechin gallate and Quercetin 3-O-malo-
nylglucoside, were selected depending on inhibitory potency against Mpro. Interactions with the target protein 
active sites, including His41, Met49, Cys145, Met165, and Thr190 were also examined. Molecular dynamics 
simulation was performed to analyze root mean square deviation (RMSD), root mean square fluctuation (RMSF), 
radius of gyration (RG), solvent accessible surface area (SASA), and number of hydrogen bonds. Results 
confirmed the inflexible nature of the docked complexes. Absorption, distribution, metabolism, excretion, and 
toxicity (ADMET), as well as bioactivity prediction confirmed the pharmaceutical activities of the lead com-
pound. Findings of this research might help scientists to optimize compatible drugs for the treatment of COVID- 
19 patients.   

1. Introduction 

The COVID-19 pandemic, the extremely contagious viral infection 
induced by severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), has been posing serious threats to the world in a multitude of 
ways. As of February 2023, there have been 677.74 million confirmed 
cases of COVID-19 along with 6.78 million deaths, reported by the 

World Health Organization (WHO). Although significant advancements 
in clinical research have improved our knowledge of SARS-CoV-2 and 
COVID-19 management, there is growing worried about how to prevent 
the dissemination of this virus and its mutations. SARS-CoV-2 is still 
causing havoc around the globe and the advent of mutant variations is 
primarily to blame for the second or third wave of breakouts of this viral 
illness that are currently affecting more than 230 countries [1]. 

Abbreviations: ADMET, Absorption, distribution, metabolism, excretion and toxicity; COVID-19, Coronavirus disease-2019; SARS-CoV-2, Severe acute respiratory 
syndrome coronavirus 2; Mpro, Main protease; RNN, Recurrent Neural Networks; RMSD, Root mean square deviation; RMSF, Root mean square fluctuation; RG, 
Radius of gyration; SASA, Solvent accessible surface area; MD, Molecular Dynamics. 
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SARS-CoV-2 is a new beta coronavirus that belongs to the identical 
subgenus (SARS-CoV, 2002) and the Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV, 2013), and their previous mortality rates were 
up to 10% and 35%, respectively [2]. Throughout this pandemic, many 
SARS-CoV-2 variants have been identified among which merely a few 
are recognized as variants of concern by the WHO due to their effect on 
the world’s public health such as Alpha (B.1.1.7) in the United Kingdom, 
Beta (B.1.351) in South Africa, Gamma (P.1) in Brazil, Delta (B.1.617.2) 
in India and Omicron (B.1.1.529) in South Africa [1]. 

SARS-CoV-2 is a single-stranded positive-sense RNA virus containing 
~30,000 nucleotides and 11 protein-coding genes, with 12 expressed 
proteins [3–5]. Among these few encoded proteins, is the Mpro, a 
cysteine protease that mediates the maturation cleavage of polyproteins 
at the time of viral replication [6,7]. The Mpro is a homodimer that 
consists of three domains (domain I, II, and III), however, is situated in 
the region adjacent to domains I and II and the protomers. They play a 
significant role in the formation of the substrate-binding site and bind to 
each other through their N-terminal residues 1 through 7, which are 
positioned between domains II and III [8–12]. The Mpro offers a prom-
ising target for the development of broad-spectrum anti-coronaviral 
therapeutic agents due to its highly conserved three-dimensional 
structure [13]. 

All coronaviruses share the Mpro protein [14], which is essential for 
the maturation of both the Mpro itself and other significant polyproteins 
[7]. Additionally, it plays a crucial role in how viruses enter host cells; 
when this enzyme is inhibited, the viral entrance and subsequent 
infection are halted [15]. Moreover, it also plays a crucial role in the 
proteolytic release of enzymes necessary for viral replication, such as 
nsp 13, which acted as both an RNA helicase and an NTPase [16,17]. 
These crucial roles of the viral protease enzyme, Mpro make them an 
intriguing therapeutic target for reducing illnesses associated with 
coronaviruses [5,16]. Mpro is highly conserved among various corona-
viruses and due to its relatively conserved nature, structurally tailored 
broad-spectrum medications substantially block the Mpro of coronavirus 
[18,19]. Similar to how SARS-CoV-2 Mpro has garnered considerable 
interest in creating medications to combat the existing COVID-19 
pandemic. 

Structure-based drug design strategies became widespread to expli-
cate antiviral activity through active constituents present in traditional 
medicinal plants. Several natural products have been identified as 
adjuvant therapy for COVID-19 treatment, direct antiviral therapy [20], 
as well as immune enhancer [21]. Studies both in silico and in vitro/in 
vivo showed that numerous types of inhibitors effectively bound to and 
inhibited SARS-CoV-2 Mpro [22]. Several studies demonstrated that 
some potential inhibitors such as carmofour, ebselen, cinanserin, 
famotidine, nelfinavir, lopinavir, and ritonavir bind with SARS-CoV-2 
Mpro and inhibit viral replication, thereby reducing viral activity 
through the inhibition of Mpro [23–26]. These inhibitors are unlikely to 
have any adverse side effects or toxicity because humans do not have 
any proteases with a similar cleavage specificity [27–29]. Using mo-
lecular dynamics simulations, the binding characteristics of the Delta 
and Omicron (BA.1) variants were investigated at the interface of the 
spike protein receptor binding domain and human 
angiotensin-converting enzyme-2 ectodomain and compared the mo-
lecular modeling systems with others [30]. 

In addition, a number of commonly used medications, such as val-
rubicin (antitumor), colistin (antibiotic), bepotastine (prescribed for 
rhinitis), icatibant (used to treat hereditary angioedema), perphenazine 
(antipsychotic), and caspofungin (antifungal), also bind to the Mpro even 
though they are more tolerant to mutation than lopinavir/ritonavir, 
suggesting potential drug candidates [26]. In another investigation, the 
FDA-approved antiviral medications tipranavir, lopinavir-ritonavir, and 
raltegravir were found to bind to the SARS-CoV-2 Mpro active site with 
robust, persistent, and versatile affinity [31]. Therefore, the replication 
process of the virus can be inhibited by searching for a potential in-
hibitor against SARS-CoV-2 Mpro. 

Drug development activities are achieved efficiently in the bur-
geoning field of computational modeling. For successful binding to the 
SARS-CoV-2 Mpro active site, researchers have examined new and well- 
known antiviral substances such as vaniprevir, sovaprevir, boceprevir, 
glecaprevir, simeprevir, danoprevir, paritaprevir, and grazoprevir those 
firmly adhere to SARS-CoV-2 Mpro [32]. Medicinal plants are renowned 
as complementary approaches in which antiviral natural products have 
been established as safe and effective drugs [33]. Furthermore, among 
other things, the best medicine can be predicted with the help of 
computational drug design tools. Even drug development depends on 
safety measures regarding toxicity in the human body through a series of 
clinical trials, however, computer-based toxicity detection is also facil-
itated as it can be done before development. Therefore, a number of 
studies focused on the in-silico design of effective medications targeting 
SARS-CoV-2 Mpro is continuously rising. However, given the potential 
drawbacks of passing clinical studies, the therapeutic efficacy of these 
desired medications is debatable. In this study, computer-aided drug 
design is used for its more time and cost-efficient way of developing 
novel target drug candidates for inhibiting SARS-CoV-2 Mpro activity, in 
turn, the severity and mortality due to SARS-CoV-2 will decrease. 

2. Materials and methods 

2.1. Retrieval and protein preparation 

The three-dimensional crystal structure of SARS-CoV-2 Mpro with N3 
inhibitor (PDB ID: 6LU7) was retrieved in pdb format from the Protein 
Data Bank. Then the protein structure was prepared by removing all 
heteroatoms and water molecules using PyMol and Discovery Studio 
client. The clean protein structure was prepared by optimizing impor-
tant factors like missing hydrogen bonds, side-chain geometry, and 
improper bond order were energy minimized using the GROMOS 43B1 
force field [34] in Swiss-PDB Viewer. 

2.2. Preparation of ligand 

Initially, 104 Korean medicinal plants and their 2431 phytochemi-
cals, identified by GC-MS, were listed (Supplementary Table 01) through 
a rigorous literature review. Then the compounds were downloaded in 
3D SDF format from the PubChem Database. Energy minimization of the 
ligand was utilized using the mmff94 force field and the steepest descent 
optimization algorithm steps 2000 in PyRx software before performing 
molecular docking analysis. 

2.3. Molecular docking study 

Docking is a technique used to predict the binding interaction of a 
drug with its target molecule. The AutoDock Vina virtual screening tool 
was used to perform molecular docking analysis to determine the spe-
cific residues in the target protein that interact with the particular li-
gands [35]. For docking analysis, AutoDock vina was used to convert 
pdb into a pdbqt format to input protein and ligands. Re-docking is the 
process of removing the ligand molecule from the receptor model. 
Therefore, to verify the docking studies, 6LU7 was re-docked with its 
crystallographic inhibitor N3 and compared the differences between the 
re-docking pose and conformation of the ligand in the crystal structure. 
This protein structure has several cavity sites and inhibitor N3 bound to 
at site 1 (X: 11.90, Y: 20.33, Z: 58.94) to the main protease. Conse-
quently, site 1 was selected as an inhibition site. In this study, docking 
was used to understand the binding of ligands to the active sites of the 
Mpro protein. To dock the compounds against 6LU7, the center of the 
grid box was kept at X: 26.294, Y: 12.6009, Z: 58.9473, and dimensions 
were kept at X: 51.3565, Y: 66.9335, and Z: 59.6050 Å. The binding 
affinity of the ligand was by kcal/mol as a unit for negative binding score 
[36]. The compounds’ docking results were calculated and ranked based 
on their highest negative values, representing the highest binding 
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affinities [35,37]. The interactions of drug molecules with the Mpro 

active site residues were confirmed by examining the docking and 
re-docking results at each docking position. 

2.4. Re-screening using deep learning 

The compounds with above − 8.0 kcal/mol binding affinity were 
selected for re-evaluation with deep learning method using Recurrent 
Neural Networks (RNN) to predict models using the CHEMBL3927 
dataset consisting of inhibitors for Mpro of SARS-CoV-1. The Deep-
Screeing server was used for this process and the server shows the 
average and median area under the ROC curve value of 0.86, and 0.89 
under several constructed deep-learning models indicating good per-
formance in screening [38]. PubChem fingerprint was used by PaDEL to 
generate 881 molecular fingerprints [39]. The hyperparameters for this 
developed model were manually set like learning rate (0.0001), number 
of neurons (2000,700,200), and hidden layer (3). The activation func-
tion and sigmoid function were used in hidden and output layers, 
respectively. The predicted pIC50 score was calculated using this 
equation.  

pIC50 = − log10IC50 (M) = 9 − log10IC50 (nM)                                          

This model was employed to re-screen the top docked 12 compounds 
and presented in Table 1. 

2.5. ADME/T and bioactivity analysis 

The ADME/T were predicted using SwissADME, pKCSM, and 
ProTox-II server using SMILES (simplified molecular-input line-entry 
system) specification as an input syntax of the compounds. Pharmaco-
kinetic and pharmacodynamic properties related to the metabolism, 
absorption, distribution, excretion, and toxicity of the compounds were 
evaluated. Molinspiration server was used to evaluate the biological 
activities of the compounds. Here, bioactivity score >0 is regarded as a 
biologically active compound, − 5.0 to <0 as a moderately active com-
pound, and <-5.0 as a biologically inactive compound. 

2.6. Molecular dynamics simulation study 

Molecular Dynamics (MD) simulation helps to determine and vali-
date the structural flexibility and entropic effects of protein-ligand 
complexes in an artificial environment. Prior to performing the pro-
duction simulations, energy minimization and equilibration simulations 
were conducted to remove bad contacts between the solute and solvent 
water molecules [40]. The solute and lipid chains were subjected to a 
harmonic restraint in the first step of energy minimization, and the 
second step was to allow all atoms to move freely [41]. The YASARA 
dynamics software was used in a molecular dynamics simulation to 
validate the predictions from the docking study [42]. In this simulation 
study, the AMBER14 force field [43] was utilized, which is widely used 
in macromolecular systems. The Mpro protein was used as a control 
system to compare the structural integrity against the complexes. The 
particle mesh Ewald method [44] was used to calculate long-range 
electrostatic interactions, and 8 Å cutoff radius was used to analyze 
short-range van der Waals and Coulomb interactions [45]. The total 
environmental condition of the system was set to a temperature of 298 
K, pH 7.4, and 0.9% NaCl. The steepest descent algorithm was used to 
minimize the system [35]. A Monte Carlo barostat and a Langevin 
thermostat were used to maintain the pressure and temperature, 
respectively [46]. The MD simulation trajectories were saved after every 
100 ps using a time step of 1.25 fs [47]. To ensure the simulation 
convergence, multiple parallel trajectories were conducted for each 
complex [40]. The MD simulation study was conducted for 100 ns to 
analyze the root mean square deviation (RMSD), the root mean square 
fluctuation (RMSF), the radius of gyration (RG), the solvent accessible 

surface area (SASA), and the number of hydrogen bonds [45,48–50]. 
The MD plots were visualized by Matplotlib. 

3. Results and discussion 

Drug discovery against viruses facilitated the successful identifica-
tion of potential inhibitors by rational screening and understanding the 
bio-physio-chemical basis of inhibitor binding mechanism through 
molecular dynamics simulations as well as a series of conformational 
and toxicity analyses [51]. Molecular docking has been widely used to 
predict the bioactive compounds from plants to develop drugs against 
target proteins that cause infection by viruses. Mpro is the important 
therapeutic target of a virus as it cleaves the polyprotein of the virus that 
is crucial in viral transcription and replication that maintains the viral 
life cycle [23,52,53]. Therefore, this study aimed at the molecular 
docking and MD simulation approaches using Korean medicinal plants 
to predict their inhibitory role against virus infection. The target protein 
of this study has well-defined active sites that help in designing novel 
drugs against coronaviruses [54]. The binding propensity of the com-
pounds against Mpro was calculated and ranked based on the AutoDock 
Vina docking score. Lesser binding affinity was considered to be a good 
docking score for screening the compound library. The lowest affinity 
from several binding poses of each compound was selected because it 
indicates the lowest energy release for bond formation [55]. 

At first, the native inhibitor N3 of COVID-19 Mpro has been docked in 
order to legitimatize the virtual molecular docking accuracy and then re- 
docked. The re-docking of inhibitor N3 exhibited a binding affinity of 
− 8.1 kcal/mol against the inhibition site of the target protein (Table 1). 
Further, validated the re-docking results of their conformational su-
perimposition of ligand binding modes in the target protein (Fig. 1). The 
RMSD value between the re-docked and co-crystal native ligand: pose of 
inhibitor N3 was 0.037 Å which was within 2 Å indicating effective 
docking protocol. This conformational superimposition of ligands RMSD 
value represented good reproduction of the correct pose mostly with 
identical inhibition sites and residues. The inhibitors of the molecules in 
the active pocket of Mpro of the protein and their interaction type are 
shown in Fig. 2. 

After docking of the phytochemicals of Korean medicinal plants, 
their lower binding affinity than inhibitor N3 was analyzed. Based on 
the lowest affinity, the top 12 compounds, i.e. Catechin gallate, Cyn-
aroside, Cosmosiin, Isoquercitrin, Rutin, Hyperoside, Isochlorogenic 
acid b, Quercetin 3-O-malonylglucoside, Cacticin, Narcissoside, Guai-
javerin, Luteolin-7-O-Rutinoside were selected which showed negative 
binding affinity (kcal/mol) of − 8.5, − 8.2, 8.0, − 8.6, − 8.9, − 8.6, − 8.2, 
− 8.2, − 8.4, − 8.7, − 8.5, − 8.5, respectively (Table 1). 

Other molecular properties and 2D structure of the predicted com-
pounds are presented in Table 1. Further, catechin gallate and quercetin 
3-O-malonylglucoside had been indented as top potential candidates 
those had binding affinities of − 8.5 and − 8.2, kcal/mol (Fig. 3). 
Moreover, their other physio-chemical properties, solubility, drug- 
likeness, etc. have been demonstrated in Table 2, and their non- 
bonded interactions within the active and catalytic sites of the Mpro 

have been illustrated in Fig. 4. Re-docking performed the N3 inhibitor 
against 6LU7, which was used as a positive reference molecule. The top 
two lead compounds exhibited notable docking conformations with a 
binding affinity of more than − 8.1 kcal/mol (binding affinity of N3) in 
the active site of a target protein. The protein-ligand interaction profile 
and binding affinity between the top two compounds and the inhibitor 
N3 in the binding site of Mpro, and the comparative docking score are 
presented in Table 1. Several natural compounds like theaflavin, quer-
cetin, withanone, dihydrowithaferin, and caffeic acid phenethyl ester 
have been reported as potential inhibitors of SARS-CoV-2 [51,56,57]. 

The Deep learning method uses various artificial neural network 
frameworks on the dataset to predict molecular properties and bio-
activities from large libraries unitizing different chemical, topological, 
and biological data patterns of compounds [58–60]. It was performed to 
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Table 1 
Binding affinity, Predicted IC50 score and non-bond interactions between SARS-CoV-2 main protease and the top twelve compounds.  

Compound name and CID 2D 
Structure 

Predicted pIC50 

score 
Binding affinity (kcal/ 
mol) 

Residue in 
contact 

Interaction type Bond distance in 
Å 

Catechin gallate 6419835 fx1 4.7227 − 8.5 THR190 Hydrogen Bond 2.19304 
ARG188 Hydrogen Bond 2.97179 
HIS163 Hydrogen Bond 1.68962 
SER144 Hydrogen Bond 2.21275 
PRO168 Carbon Hydrogen Bond 2.67908 
CYS145 Pi-Sulfur 5.40505 
MET165 Pi-Sulfur 5.40764 
HIS41 Pi-Pi Stacked 4.73238 
MET49 Pi-Alkyl 5.26499 

Quercetin 3-O-malonylglucoside 
5282159 

fx2 4.7172 − 8.2 ASN238 Hydrogen Bond 1.88031 
ASP197 Hydrogen Bond 2.75917 
LYS137 Hydrogen Bond 2.49689 
THR199 Hydrogen Bond 2.72559 
TYR239 Hydrogen Bond 2.15711 
LEU272 Carbon Hydrogen Bond 2.6859 
TYR237 Pi-Pi T-shaped 5.05381 

Rutin 
5280805 

fx3 4.6303 − 8.9 GLY143 Hydrogen Bond 2.25632 
GLU166 Hydrogen Bond 2.31189 
PHE140 Hydrogen Bond 2.90128 
ARG188 Hydrogen Bond 2.12475 
THR26 Carbon Hydrogen Bond 1.84333 
GLN189 Carbon Hydrogen Bond 2.90367 
ASN142 Carbon Hydrogen Bond 2.74658 
CYS145 Pi-Sulfur 4.9642 
MET165 Pi-Sulfur 5.16804 

Isoquercitin 10813969 fx4 4.6179 − 8.6 ARG188 Hydrogen Bond 2.40792 
THR190 Hydrogen Bond 2.12519 
HIS163 Hydrogen Bond 2.05993 
GLN192 Hydrogen Bond 2.42437 
GLU166 Carbon Hydrogen Bond 2.22159 
PRO168 Carbon Hydrogen Bond 2.88806 
CYS145 Pi-Sulfur 5.81078 
MET165 Pi-Sulfur 5.57255 
HIS41 Pi-Pi Stacked 4.9543 
MET49 Pi-Alkyl 4.94603 

Hyperoside 5281643 fx5 4.6179 − 8.6 SER144 Hydrogen Bond 2.84073 
LEU141 Hydrogen Bond 2.56989 
ARG188 Carbon Hydrogen Bond 2.83337 
CYS145 Pi-Sulfur 5.06909 
HIS41 Pi-Pi T-shaped 4.59608 
MET49 Pi-Alkyl 5.04361 

Quercetin-3-D-Xyloside 5320863 fx6 4.6179 − 8.5 LYS137 Hydrogen Bond 2.73634 
ASN238 Hydrogen Bond 2.30343 
GLU290 Hydrogen Bond 2.36161 
THR199 Carbon Hydrogen Bond 2.24907 
ASP289 Pi-Anion 3.65208 
LEU286 Pi-Alkyl 4.87541 

Cacticin 5318644 fx7 4.6171 − 8.4 THR190 Hydrogen Bond 2.73319 
ARG188 Hydrogen Bond 2.42079 
MET165 Hydrogen Bond 2.30981 
GLN189 Carbon Hydrogen Bond 2.62132 
GLU166 Carbon Hydrogen Bond 2.4619 
THR190 Pi-Donor Hydrogen 

Bond 
2.7937 

MET49 Alkyl 4.15532 
HIS41 Pi-Alkyl 3.72376 

Narcissoside 5481663 fx8 4.595 − 8.7 GLY143 Hydrogen Bond 2.25307 
GLU166 Hydrogen Bond 2.35394 
LEU141 Hydrogen Bond 2.24284 
THR190 Hydrogen Bond 2.27931 
THR26 Hydrogen Bond 2.31897 
HIS41 Hydrogen Bond 2.82795 
GLN189 Carbon Hydrogen Bond 2.76494 
PHE140 Carbon Hydrogen Bond 2.5103 
THR26 Carbon Hydrogen Bond 3.09029 
CYS145 Pi-Sulfur 4.84568 
MET165 Pi-Sulfur 5.1467 

3,4-Dicaffeoylquinic acid5281780 fx9 4.5823 − 8.2 LEU271 Hydrogen Bond 2.30224 
ALA285 Hydrogen Bond 2.78731 
LEU272 Hydrogen Bond 2.31922 
ASN238 Hydrogen Bond 2.75446 
THR199 Hydrogen Bond 2.11357 
ASP197 Hydrogen Bond 2.91729 

(continued on next page) 
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screen selected compounds based on inhibitory activities against the 
target protein. Compounds with inhibitory properties against Mpro of 
SARS-CoV-1 were used for building many regression models based on 
IC50. Evaluation matrices, i.e., coefficient of determination (R2), mean 
square error (MSE), root mean square error (RMSE), and mean absolute 
error (MAE) were measured to evaluate the performance and quality of 
the selected model. These parameters represent the fitness of the 
regression model and the errors between predicted and actual data [61, 
62]. The values of R2, MSE, RMSE, and MAE were 0.81, 0.26, 0.51, and 
0.41, respectively (Fig. 5). High R2 value showed that the model had 
higher fitness and a good performance against the test data. Small MSE, 
RMSE, and MAE values indicated the higher accuracy of the model [63]. 
Selected compounds were screened in the regression model against the 
biologically active inhibitors for Mpro of SARS-CoV-1. Both catechin 
gallate and quercetin 3-O-malonylglucoside showed pIC50 values of 
4.723 and 4.717, respectively, demonstrating that these two compounds 
were biologically active and able to inhibit the protein. 

It is reported that Mpro of SARS-CoV-2 has three domains consisting 
of residues 8–101, 102–184, and 201–303 [51,64]. Among these resi-
dues, Cys145-His41 acts as a catalytic dyad between domains I and II, 
and is responsible for protease activity and substrate binding [65–68]. In 
domain I, residue Phe140, His172, Asn142, His163, Glu166, and Leu141 
are involved in substrate binding. Residue Asp187, Met165, Tyr54, 
Met49, and His41 in domain II and residue Gln192, Met165, Gln189, 
Phe185, and Leu167 in domain III are also important for substrate 
binding [69,70]. In the activity of the protein, the large number of 
hydrogen bonds between ligands and residues signifies a strong binding 
affinity [49]. Post-dock analysis showed Catechin gallate had a better 
binding affinity with the protein because of having more electrostatic 

Table 1 (continued ) 

Compound name and CID 2D 
Structure 

Predicted pIC50 

score 
Binding affinity (kcal/ 
mol) 

Residue in 
contact 

Interaction type Bond distance in 
Å 

ARG131 Hydrogen Bond 2.35626 
LYS137 Hydrogen Bond 2.12948 
MET276 Pi-Alkyl 5.48501 
LEU287 Pi-Alkyl 4.78701 

luteolin-7-O-rutinoside 14032966 fx10 4.4184 − 8.5 THR199 Hydrogen Bond 2.18848 
ASN133 Hydrogen Bond 2.8903 
ASP197 Hydrogen Bond 2.38578 
TYR237 Carbon Hydrogen Bond 2.50399 
ASP197 Carbon Hydrogen Bond 2.45529 
LEU272 Pi-Alkyl 5.11035 
LEU287 Pi-Alkyl 5.38559 

Cynaroside 5280637 fx11 4.4176 − 8.2 MET165 Hydrogen Bond 2.7413 
ARG188 Hydrogen Bond 2.68482 
GLU166 Hydrogen Bond 2.39233 
HIS163 Hydrogen Bond 3.08162 
THR26 Hydrogen Bond 2.57113 
SER144 Carbon Hydrogen Bond 2.4719 
CYS145 Pi-Sulfur 4.70184 

Cosmosiin 5280704 fx12 4.3704 − 8.0 THR199 Hydrogen Bond 2.42785 
LEU287 Hydrogen Bond 2.14488 
THR199 Hydrogen Bond 2.65619 
LEU286 Carbon Hydrogen Bond 3.09014 
TYR237 Pi-Pi T-shaped 4.72839 

Inhibitor N3 146025593 fx13 4.690 − 8.1 GLN189 Carbon Hydrogen Bond 2.48559 
GLU166 Hydrogen Bond 1.93628 
GLY143 Hydrogen Bond 1.86317 
HIS172 Carbon Hydrogen Bond 2.39426 
HIS41 Pi-Alkyl Bond 4.3148 
MET165 Carbon Hydrogen Bond 2.72823 
MET49 Alkyl 4.66427 
ALA191 Pi-Alkyl 4.53889 
PRO168 Pi-Alkyl 4.84869 
LEU167 Alkyl 5.46094 
THR190 Hydrogen Bond 1.79854 
HIS164 Hydrogen Bond 2.95502 
PHE140 Hydrogen Bond 2.4722 
ASN142 Carbon Hydrogen Bond 2.8316 

CID; PubChem CID, pIC50 score in nM. 

Fig. 1. Three-dimensional view of the best re-docking pose and the confor-
mational superposition of ligands (inhibitor N3) and the RMSD value of 
0.037 Å. 
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force than the Quercetin 3-O-malonylglucoside. Catechin gallate had no 
interaction with domain III of the protein. It formed four conventional 
hydrogen bonds with residue Thr190, Arg188, His163, and Ser144 
residue creating strong affinity on the domain I and II. Two 
non-covenant pi-sulfur bonds were formed with Cys145 and Met165 
residue. Pi-Pi Stacked bond with residue His41 interacting with both 

aromatic rings and pi-alkyl bond with residue Met49 was also observed, 
that created a pi-electron cloud over the alkyl group. Carbon-hydrogen 
bonds with Pro168 residue were also formed, which gave this compound 
higher interaction affinity with the protein (Fig. 4). The residues Gln189 
and Leu455 have already been found to be potent drug binding sites [51, 
71]. Catechin gallate complex interactions also match with another 

Fig. 2. Molecular docking interaction and two-dimensional (2D) binding mode of selected ligands in SARS-CoV-2 main protease active site (PDB ID: 6LU7).  

Fig. 3. 2D chemical structure of (A) Catechin gallate and (B) Quercetin 3-O-malonylglucoside. The structures were drawn using the 2D sketcher (Beta) software.  
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research by Mousavi, 2021 [72]. Thus, Catechin gallate formed chemical 
bonds with Cys145-His41 catalytic dyad residues and interacted with 
Met165 and His163, which play an important role in substrate binding. 

Polyphenol flavonoids show activity against various human viruses 
like herpes simplex, hepatitis B, HIV, hepatitis C, influenza, dengue, 
chikungunya, and zika. Studies were conducted on Camellia sinensis (tea) 
which demonstrated that catechins and gallate derivatives including 
epicatechin 3-O-caffeoate, etc-pyrrolidinone C, etc-pyrrolidinone D, 

epigallocatechin gallate, epicatechin gallate, and gallocatechin-3-gallate 
have inhibition properties against Mpro in intracellular and extracellular 
inhibition assays. Catechin gallate also had stable complex formation 
with the viral protein due to hydrogen bonds and non-covalent in-
teractions [64,73–75]. Various studies showed that Catechin gallate has 
better binding energy compared to Michael acceptor inhibitors known 
as N3, which have a half-maximal inhibitory concentration (IC50) value 
of 125 μM against SARS-CoV-2 Mpro. Its derivatives, like gallo catechin 
gallate with two carboxy group replacements, also have the potential to 
decrease infection of SARS-CoV-2 omicron mutant [76]. 

Similarly, Quercetin 3-O-malonylglucoside formed five conventional 
hydrogen bonds with residue Asn238, Asp197, Lys137, Thr199, and 
Tyr239. Leu272 residue formed a carbon-hydrogen bond and Tyr237 
formed a pi-pi t-shaped bond with the compound. The majority of 
chemical interactions were found with domain III of Mpro and no bond 
was formed with the first domain that consists of residue 8–101. Lys137 
was the only residue that formed a hydrogen bond with the compound. 
Quercetin 3-O-malonylglucoside bind at Asp197 within a loop among 
the domains. This analysis suggests that both compounds have strong 
and stable binding with Mpro because of the multiple numbers of bonds 
that were formed during docking and Catechin gallate formed bonds 
with catalytic and binding residues of the target protein. 

Molecular dynamics (MD) simulation is vital for post-dock analysis 
to investigate time-dependent stability and atom movements of biolog-
ical compounds [77]. MD simulation was performed for 100 ns to un-
derstand the structural behavior, binding mechanism, and structural 
flexibility of Mpro [77,78], Mpro-Catechin gallate complex, and Mpro--
Quercetin 3-O-malonylglucoside complex. The comparison between 
initial and final structural behavior of the complexes has been demon-
strated in Fig. 6. The parameters computed and analyzed after 100 ns 

Table 2 
Pharmacological profiles of the top two potential candidates derived from the 
SwissADME and pKCSM webservers.  

Properties Catechin 
gallate 

Quercetin 3-O- 
malonylglucoside 

Physico-chemical 
Properties 

MW (g/mol) 442.37 g/ 
mol 

550.42 g/mol 

Heavy atoms 32 39 
Aro. Atoms 18 16 
Rotatable 
bonds 

4 8 

H-bond 
acceptors 

10 15 

H-bond donors 7 8 
TPSA (Å2) 177.14 253.88 

Lipophilicity Log Po/w 

(Cons) 
1.25 − 0.67 

Water Solubility Log S (ESOL) Soluble Soluble 
Pharmacokinetics GI absorption Low Low 

BBB permeant No No 
P-GP substrate No Yes 

Drug likeness Lipinski Yes No 
Medi. Chemistry Synth. 

accessibility 
4.16 5.63  

Fig. 4. Binding modes for the selected compounds. The figures illustrate non-bonded interactions of the docked complexes for the top two compounds within the 
active and catalytic sites of the main protease. (A) Quercetin 3-O-malonylglucoside, and (B) Catechin gallate. 
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dynamics trajectory were root-mean-square deviation (RMSD), root 
mean square fluctuation (RMSF), radius of gyration (RG), solvent 
accessible surface area (SASA) (Fig. 7) as well as hydrogen bonding 
(Fig. 8), those were measured as because such stabilities are essential to 
obtain good binding affinities [79]. RMSDs of Cα atoms of these com-
pounds were performed and it was observed that Mpro had a minor 
fluctuation from 45 ns to 67 ns but afterward it remained at an equi-
librium state. As for Mpro-Catechin gallate complex, 8 ns–35 ns showed a 
high fluctuation, after that it also reached a stable position. 

Mpro-Quercetin 3-O-malonylglucoside complex showed stability at first 
but after 45 ns it had several fluctuations. Nevertheless 92 ns afterward 
it again showed stability. These two complexes showed stability 
regarding the reference protein at the end. 

To better understand the structural compactness, SASA was exam-
ined [78]. Mpro-Catechin gallate complex showed two higher trajectories 
at the beginning of the simulation compared to the Mpro. However, both 
showed relatively similar trajectories near the end demonstrating that 
these complexes had slightly lower compactness. In contrast, 

Fig. 5. Regression model accuracy plots showing various statistical parameters of the deep learning model. Upper left plot showed R2 value of 0.81 at epoch 30. 
Upper right plot showed MSE value of 0.26 at epoch 30. Lower left plot denoted RMSE value of 0.51 at epoch 30. Lower right plot showed MAE value of 0.41 at 
epoch 30. 

Fig. 6. Comparing between initial and final structures of the complexes acquired from MD simulations.  
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Fig. 7. Analysis of RMSD, RMSF, RG, and SASA of unligated Mpro and Mpro- Catechin gallate/Quercetin 3-O-malonylglucoside complex. The MD simulations for each 
system were performed for 100 ns. These MD trajectories were analyzed with the aid of RMSD, RMSF, RG and SASA. RMSD analysis for the alpha carbon atoms, 
RMSF for the flexibility analysis of amino acids residues, RG for the degree of rigidity and compactness analysis, and SASA for the protein volume with expan-
sion analysis. 

Fig. 8. Determination of Hydrogen bond analysis of unligated Mpro and Mpro- Catechin gallate/Quercetin 3-O-malonylglucoside complex. The MD simulation for the 
system was performed for 100 ns. 
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Mpro-Quercetin 3-O-malonylglucoside complex showed higher trajec-
tories after 7 ns for 10 ns (Fig. 7). Despite of this the latter complex 
showed high RG values between 72 ns and 85 ns, both of them showed 
comparatively alike plot indicating these complexes somewhat had 
loosed protein structure packaging [80] that supports SASA result 
analysis. The reference protein Mpro and the other two complexes 
showed higher fluctuation in RMSF analysis over a similar range of 
residues, e.g. 45–56, 132–143, 222–230, and 272–279, which strongly 
suggest homogeneous protein residue flexibility [81]. The hydrogen 
bonds between intermolecular binding demonstrated that the Mpro only 
and Mpro-Catechin gallate had similar hydrogen bond numbers between 
intra-molecules but Mpro-Quercetin 3-O-malonylglucoside complex 
showed a higher number of hydrogen bindings than these two molecules 
donating its strong stability (Fig. 8). Analysis from these various results 
indicates that despite having minor conformational changes due to MD 
simulation, these two complexes have similar stability like Mpro refer-
ence protein. The superimposition of the structures between pre- and 
post-molecular dynamics simulation of the structures of Catechin gallate 
and Quercetin 3-O-malonylglucoside also was performed to determine 
changes in the binding cavity (Fig. 9). After the post-dock analysis 
showed their structural change in every 25 ns, surface view of Mpro--
Catechin gallate and Mpro-Quercetin 3-O-malonylglucoside complexes 
in MD simulation. The snapshot was taken from 25, 50, 75, and 100 ns, 
respectively, shown in Figs. 10 and 11. 

Biologically active compounds act on proteins, subsequently causing 
physiological effects directly. The potential biological activities of the 
compounds were assessed by investigating G protein-coupled receptor 
(GPCR) ligand activity, ion channel inhibitor, enzyme inhibition, pro-
tease inhibition, kinase inhibition, and nuclear receptor ligand activity 
(Table 3). Catechin gallate exhibited positive biological activity against 
all of these biological mechanisms, whereas Quercetin 3-O-malonylglu-
coside showed moderate activity in ion channel, kinase and protease 
inhibition. Quercetin 3-O-malonylglucoside showed a better result as an 
enzyme inhibitor, but Catechin gallate outperformed all other biological 
receptors. 

Safety issues, including toxicities and adverse drug effects, are al-
ways an essential prerequisite that should be evaluated during drug 
development. Even though the clinical trial is obligatory, computational 
predictive models built for various toxicities also facilitated the progress 
of drug design [82]. Computational methods to investigate toxicities and 
adverse drug effects have shown significant advantages since they are 

accurate and can be done before a compound is synthesized [83]. 
Toxicity assessment and pharmacokinetic characteristics are required to 
assess the effectiveness and level of indemnification of the lead com-
pounds [84]. These two lead compounds were further analyzed with the 
pharmacological activity that is an essential indicator for disposition 
within the human body with ADME/T technology whose intensive 
application has been reviewed recently [82]. Furthermore, Catechin 
gallate and Quercetin 3-O-malonylglucoside were evaluated by exam-
ining Central Nervous System (CNS) permeability, hepatotoxicity, 
p-glycoprotein inhibition, and Cytochrome P450 (CYP) inhibition, 
among several other aspects. CNS permeability refers to the capacity of a 
drug to penetrate the semipermeable blood-brain barrier, which is 
meant to protect the CNS from potentially harmful compounds. 
Permeability of CNS higher than − 4 is thought to reflect the ability to 
pass across the blood-brain barrier. The molecular weights of Quercetin 
3-O-malonylglucoside and Catechin gallate were 550.42 and 442.37 
g/mol, respectively. None showed inhibitory properties against cyto-
chromes p450 (CYPs) thus, these compounds would be metabolized 
without having increased side effect risks or possible toxicity [85]. 
Catechin gallate is in agreement with Lipinski and Ghoses’ [86] rule of 
drug-likeness, however Quercetin 3-O-malonylglucoside fails in their 
filter. Consequently, Catechin gallate showed better results in physi-
ochemical properties, water solubility, lipophilicity, pharmacokinetics, 
and toxicity parameters concerning drug-likeness compared to Quer-
cetin 3-O-malonylglucoside. 

Moreover, the majority of the potential drug candidates fail clinical 
trials due to the toxicity they produce which makes it an important filter 
for the drug design process [87]. Various toxicity properties e.g., hep-
atotoxicity, carcinogenicity, immunotoxicity, mutagenicity, cytotox-
icity, oral rat acute toxicity, LD50 value, and toxicity class of the selected 
two compounds have been assessed (Table 4). These machine learning 
methods have been applied to construct classifiers and regression 
models to predict LD50 or their toxic categories [88,89]. Both of the 
compounds were inactive in organ toxicity endpoints. Predicted LD50 of 
Quercetin 3-O-malonylglucoside was 5000 mg kg− 1, and for Catechin 
gallate, it was 1000 mg kg− 1 making them nearly non-toxic to biological 
systems. Catechin gallate exhibited comparatively better favorable 
pharmacokinetics, biological activities, and toxicity properties than 
Quercetin 3-O-malonylglucoside, which indicates it has a minimal 
likelihood to fail during clinical trials. 

This study provides feature learning and artificial neural network- 

Fig. 9. The superimposed between pre- and post-molecular dynamics simulation structures of (A) Catechin gallate and (B) Quercetin 3-O-malonylglucoside. The pink 
color denotes the pre-molecular dynamics structure, and the sky color denotes the post-molecular dynamics structure. 
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based deep structured learning using artificial intelligence that supports 
the previous studies on SARS-CoV-2 Mpro and Catechin gallate. 
Cheminformatics-based bioactivity prediction that employed a 

quantitative structure–activity relationship model on main human en-
zymes also holds up these findings and data. In our investigation and 
analysis, we predicted a potential inhibitor, Catechin gallate, against 

Fig. 10. The surface view of Catechin gallate and Mpro complex in MD simulation. The snapshot was taken from 25, 50, 75, and 100 ns, respectively.  

Fig. 11. The surface view of Quercetin 3-O-malonylglucoside and Mpro complex in MD simulation. The snapshot was taken from 25, 50, 75, and 100 ns, respectively.  
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Mpro from a large phytochemical library through molecular docking 
screening and molecular dynamics simulation. We investigated their 
pharmaceutical profile as a possible drug candidate against SARS-CoV-2. 
Our findings might help to understand the potential drug design based 
on their inhibitory activity of a target protein. 

4. Conclusion 

This study revealed that collected phytochemicals from Korean 
traditional medicinal plants bind with Mpro with different poses. Cate-
chin gallate and quercetin 3-O-malonylglucoside were selected through 
molecular docking and deep learning method based on binding affinity 
and inhibitory potency. They were further subjected to post-dock anal-
ysis that showed these compounds were stable forming various elec-
trostatic forces like H-bond, pi-bond, and C–H bond, while catechin 
gallate formed important bonds with catalytic residues. MD simulation 
method also validated the stability, compactness, flexibility, binding 
energy, and residue fluctuations of the selected compounds. These were 
further investigated with ADME/T pharmacokinetic properties and 
bioactivity properties, denoting that these bioactive dispositions of the 
compounds inside the body as a chemical would be safe without causing 
toxicity or carcinogenicity. These analyses demonstrated that Catechin 
gallate might be a potential drug candidate against SARS-CoV-2. Our 
identification also might help to advancement of knowledge of Korean 
traditional medicinal plants. 
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