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ABSTRACT
Chimeric antigen receptor (CAR)-T cells have 
revolutionized the treatment of multiple types of 
hematological malignancies, but have shown limited 
efficacy in patients with glioblastoma (GBM) or other solid 
tumors. This may be largely due to the immunosuppressive 
tumor microenvironment (TME) that compromises CAR-T 
cells’ delivery and antitumor activity. We previously 
showed that blocking vascular endothelial growth factor 
(VEGF) signaling can normalize tumor vessels in murine 
and human tumors, including GBM, breast, liver, and rectal 
carcinomas. Moreover, we demonstrated that vascular 
normalization can improve the delivery of CD8+ T cells 
and the efficacy of immunotherapy in breast cancer 
models in mice. In fact, the US FDA (Food and drug 
administration) has approved seven different combinations 
of anti-VEGF drugs and immune checkpoint blockers for 
liver, kidney, lung and endometrial cancers in the past 
3 years. Here, we tested the hypothesis that anti-VEGF 
therapy can improve the delivery and efficacy of CAR-T 
cells in immunocompetent mice bearing orthotopic GBM 
tumors. We engineered two syngeneic mouse GBM cell 
lines (CT2A and GSC005) to express EGFRvIII—one of the 
most common neoantigens in human GBM—and CAR T 
cells to recognize EGFRvIII. We found that treatment with 
the anti-mouse VEGF antibody (B20) improved CAR-T 
cell infiltration and distribution throughout the GBM TME, 
delayed tumor growth, and prolonged survival of GBM-
bearing mice compared with EGFRvIII-CAR-T cell therapy 
alone. Our findings provide compelling data and a rationale 
for clinical evaluation of anti-VEGF agents with CAR T cells 
for GBM patients.

BACKGROUND
Chimeric antigen receptor (CAR)-T cell 
therapy, in which T cells derived from 
patients are genetically engineered to express 
synthetic molecules designed to redirect T 
cells to specific tumor (neo)antigen(s), has 
revolutionized the treatment of hematolog-
ical malignancies, but has no or limited effect 
in solid malignancies1 2. Several designs of 
CAR-T cells have been tested in clinical trials 
for glioblastoma (GBM)3 4 and, in at least one 
case, mediated the regression of late-stage, 

multifocal, bulky disease.3 However, these 
responses have not been durable. For a 
durable response, CAR-T cells must: (1) 
infiltrate into and homogeneously distribute 
throughout the tumor microenvironment 
(TME) in adequate quantities, (2) enact 
potent and localized anti-tumor function and 
(3) persist and multiply in TME.5

The ideal target epitope for CAR-T cell 
therapy should be expressed exclusively on 
tumor cells while being absent in normal 
cells. One attractive therapeutic target for 
GBM is epidermal growth factor receptor 
variant III (EGFRvIII), although Her2 or 
IL-13Rα2 targeted CAR-T cells have also been 
evaluated in GBM. EGFRvIII is formed by the 
in-frame deletion of exons 2–7. EGFRvIII is 
present in about 30%–50% of human GBM,6 
but is absent from all normal tissues. Autol-
ogous EGFRvIII-CAR-T cell therapy trials in 
GBM patients showed that intravenous infu-
sion of EGFRvIII-CAR-T cells is safe, without 
evidence of significant toxicity, including cyto-
kine release syndrome.4 6 However, preclin-
ical and clinical studies have suggested that 
intravenously administered EGFRvIII-CAR-T 
cells are only capable of migrating to either 
the invasive edges of GBM or only in limited 
areas of the TME,4 which prevents CAR T cells 
from reaching all tumor cells. Thus, strategies 
that can improve CAR-T cell infiltration and 
overcome resistance mechanisms posed by 
the abnormal TME are urgently needed.

We previously showed that blocking vascular 
endothelial growth factor (VEGF) signaling 
can normalize tumor vessels in murine and 
human tumors, including GBM, breast, liver 
and rectal carcinomas, and improve the 
efficacy of various anticancer therapies.7 8 
Moreover, blocking VEGF-signaling has been 
shown to increase trafficking of adoptively 
transferred T (ATC) cells into the tumor 
and improved ATC-based immunotherapy.9 
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Here, we hypothesized that normalizing GBM TME with 
an anti-VEGF agent will not only increase the infiltration 
of CAR-T cells in the GBM TME, but also improve the 
CAR-T function, resulting in increased efficacy of CAR-T 
cells. In this study, we targeted VEGF using an anti-VEGF 
antibody (B20) in two preclinical models of GBM that 
recapitulate different features in human GBM: CT2A 
(limited neoantigen load) and GSC005 (stem-cell like).10 
Our results show that B20 increases both delivery and effi-
cacy of EGFRvIII-CAR-T cells in these GBM models.

METHODS AND MATERIALS
Reagents
We obtained B20 (a monoclonal antibody against murine 
VEGF) from Genentech, and purchased the following 
reagents: RPMI1640 Medium, Dulbecco’s Modified 
Eagle Medium (DMEM), Fetal Bovine Serum (FBS), 
Non-Essential Amino Acids (NEAA), Sodium pyruvate, 
Insulin-Transferrin-Selenium, 2-mercaptoethanol, poly-
ethylenimine (PEI), Retronectin (Takara Bio), Cell-
Tracker Red CMTPX Dye (ThermoFisher), Myc-Tag 
Alexa Fluor 647 (Cell Signaling, clone: 9B11). Murine 
EGFRvIII-CAR-expressing construct was a gift from Dr. 
Darrell Irvine’s lab at MIT.11 It contains antigen-specific 
scFv (clone 139 scFv for EGFRvIII CAR), mouse CD8a 
hinge and transmembrane domain, CD28 costimulatory 
domain, CD3z intracellular domain, and a Myc tag for 
CAR detection by flow cytometry (online supplemental 
figure 1A).

Mice
C57BL/6 mice were obtained from the Cox-7 animal 
facility operated by the Edwin L. Steele Laborato-
ries, Department of Radiation Oncology at the MGH. 
All animal experiments were performed in the Cox-7 
defined flora animal facility, accredited by the Association 
for Assessment and Accreditation of Laboratory Animal 
Care International. Both female and male mice were 
used. All animal studies are fully approved by the Institu-
tional Animal Care and Use Committee of MGH prior to 
the initiation of the Project. MGH adheres to the Public 
Health Service Policy on Humane Care of Laboratory 
Animals. The OPRR Animal Welfare Assurance number is 
A3596-01, 9/17/97. The animal protocol we used in this 
study is 2004N000050.

Isolation of murine primary T cells and generation of EGFRvIII-
CAR-T cells
Murine T cells were isolated from mouse spleens using 
a T cell isolation kit (STEMCELL Technologies), and 
cultured in T cell culture medium (RPMI+10% FBS + 
1 x NEAA+1 x Sodium pyruvate+1 x Insulin-Transferrin-
Selenium + 1 x 2-mercaptoethanol).11 To activate T cells, a 
T-75 flask was precoated with 10 mL of PBS with anti-CD3 
(0.5 µg/mL) and anti-CD28 (5 µg/mL) at 4°C overnight. 
T cells were then cultured at 37°C for 48 hours without 
disturbance. For retrovirus production, 293 T cells were 

cultured in DMEM supplemented with 10% FBS. One 
hour before transfection, each well was replenished with 
prewarmed medium. For transfection, 3 µg of plasmid 
(2.25 µg of CAR plasmid plus 0.75 µg of Eco packaging 
plasmid) was added to 50 µL of PBS. Then, 9 µg of PEI 
(1 µg/µL) was added into 50 µL PBS. Next, plasmids and 
PEI were mixed by vortexing for 10 s. After a 15 min incu-
bation at room temperature, the transfection mixture was 
gently added to 293 T cells. 24 hours later, old medium 
was removed and replenished with prewarmed medium 
without disturbing the cells. Virus-containing supernatant 
was collected another 48 hours later and passed through a 
0.45 µm filter to remove cell debris.

On the transduction day, activated T cells were collected, 
counted and resuspended at 2×106 cells/mL in T cell 
culture medium supplemented with 40 IU/mL of murine 
IL-2. Then, 1 mL of virus supernatant was first added into 
each well of the Retronectin-coated six-well plates, and 
1 mL of the above cell suspension was added and mixed 
well by gentle shaking. Spin infection was carried out at 
2000 ×g for 120 min at 32°C. Plates were then carefully 
transferred to an incubator and maintained overnight. 
24 hours later, old medium was removed and replenished 
with prewarmed T cell culture medium with 20 IU/mL 
of murine IL-2. Transduction efficiency was evaluated by 
surface staining of Myc tag using an anti-Myc antibody 
(Cell Signaling Technology) 72 hours after transduction. 
For the following experiments, CAR-T cells were collected 
and used 4 days after transduction.

Cell culture and generation of EGFRvIII-expressing GBM cells
The murine CT2A was obtained from Dr. Thomas N. 
Seyfried’s laboratory at Boston College12 and cultured 
in DMEM supplemented with 10% FBS. GSC005 cells 
expressing GFP were obtained from Dr. Samuel D. 
Rabkin’s laboratory at MGH and cultured as neuro-
spheres.13 The CT2A cell lines expressing GFP and 
secretable Gaussia luciferase (GLUC) were generated by 
transducing cells with a lentiviral vector coexpressing GFP 
and GLUC,14 provided by the MGH vector core, followed 
by sorting. EGFRvIII-expressing CT2A cells and GSC005 
cells were generated by lentiviral transduction of GFP-
GLUC-CT2A cells or GFP-GSC005 cells with a murine 
EGFRvIII construct, followed by sorting. All cell lines 
were grown in a humidified atmosphere of 5% CO2 and 
95% air at 37°C and repeatedly tested and were negative 
for mycoplasma using the Mycoalert Plus Mycoplasma 
Detection Kit (Lonza).

In vitro co-culture assays
EGFRvIII-CT2A tumor cells (or parent CT2A) were 
seeded in 96-well plate as 1×105 cells in 100 µL tumor 
cell culture medium. Then 1×105 of EGFRvIII-CAR-T 
cells (or naïve T cells) 100 µL T cell culture medium 
was added to the plate. Six hours and 24 hours later,11 
supernatant was collected, and cytokines were measured 
using ELISA.
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Tumor models
C57BL/6 mice were injected with tumor cells (1×105 
EGFRvIII-CT2A-GFP-GLUC or 5×104 EGFRvIII-
GSC005-GFP) orthotopically using a stereotactic device.10 All 
brain tumor cells were implanted in the forebrain. Tumor 
size was measured either by high frequency ultrasound or 
blood GLUC.10 15 We also found good correlation (R2=0.78) 
between Gluc value and tumor volume measured by ultra-
sound in EGFRvIII-GFP-Gluc-CT2A tumor bearing mice 
(online supplemental figure 2). Tumors were size-matched 
and randomized to treatment groups.

For survival studies, C57BL/6 mice bearing EGFRvIII-
CT2A-GFP-GLUC or EGFRvIII-GSC005-GFP-GLUC were 
treated with: (A) PBS, (B) EGFRvIII-CAR-T cells (2×106 cells 
per mouse, intravenous injection), (C) B20 (2.5 mg/kg of 
body weight, every 3 days for four doses), (D) isotype control 
IgG (2.5 mg/kg of body weight, every 3 days for four doses) + 
EGFRvIII-CAR-T cells or (E) B20 (2.5 mg of body weight/kg, 
every 3 days for four doses) + EGFRvIII-CAR-T cells. Tumor 
size was measured every 3 days until animals showed the 
first clinical sign of morbidity (including serious movement 
problems, hunch-back, and/or weight loss beyond 15%), at 
which time the mice were euthanized.

Cranial window and multiphoton intravital imaging
To implant the transparent cranial window, a 6 mm 
circle was drilled on the skull bilaterally using a high-
speed drill.16 The brain was cleaned, and the window 
was sealed with a 7 mm circular cover slip (glass or 
plastic for ultrasound), glued to the bone with histo-
compatible cyanoacrylate glue. For imaging experi-
ment, EGFRvIII-CAR-T cells were fluorescently labeled 
with CellTracker Red CMTPX Dye.17 Mice were imaged 
24 hours after the retro-orbital injection of CAR-T cells. 
The cranial window-bearing animals were anaesthetized 
and fixed with a bilateral plastic holder. Power for the 
multiphoton microscopy was estimated to be 2.5 mW. 
The emission band-pass filters used were 610±75 nm for 
fluorescently labeled CAR-T cells and 535±43 nm for 
GFP-GSC005. The imaging was performed and visual-
ized with high-resolution z stacks (2.5 µm per step, total 
step ~250 µm).

Flow cytometry
For the immunological studies, mice were sacrificed 
3 days after the fourth treatment. Tumors were harvested 
and single-cell suspension was conducted for flow cytom-
etry experiment. Single-cell suspensions were prepared 
from tumor tissues. Cells were washed and stained with 
different antibodies with suggested concentrations. 
Surface staining was performed in FACS buffer (2% BSA 
in PBS) on ice for 20 min. For cytokine expression anal-
ysis, cells were placed in RPMI containing 1× Brefeldin 
A and 10% FBS for 4.5 hours. After surface staining, 
cells were fixed in Fix/Perm buffer for 20 min, washed 
in permeabilization buffer, and stained for intracellular 
factors in permeabilization buffer for 20 min on ice. 

Flow cytometry was performed on BD LSRFortessa-X20, 
and data analysis was performed on FlowJo.

Statistical analysis
Statistics were performed using Prism V.9. Student’s t-test 
or one-way analysis of variance with Tukey’s post-hoc test 
was used as indicated in the figure legends. The Kaplan-
Meier method and log-rank test was used for survival 
studies as indicated in the figure legends. Student’s t-test 
was used for two arm studies as indicated in the figure 
legends. N represents the number of mice used in the 
experiment, with the number of individual experiments 
listed in the legend. Graphs show individual or in case of 
survival studies combined experiments/samples. Results 
are presented as mean with or without error bars showing 
the SE of the mean. Differences with p<0.05 were consid-
ered statistically significant.

RESULTS
Anti-VEGF treatment improves the efficacy of EGFRvIII-CAR-T 
cells in murine GBM tumor models
We first generated the murine EGFRvIII-CAR-T cells 
using RetroNectin-based transduction.11 We found the 
transduction efficiency to be higher than 75%, as eval-
uated by surface staining of c-Myc tag with an anti-Myc 
antibody 72 hours after transduction (online supple-
mental figure 1B). As murine GBM cells do not sponta-
neously express EGFRvIII, we stably expressed EGFRvIII 
in CT2A and GSC005 GBM cell lines to (online supple-
mental figure 1C). EGFRvIII expression in both cell lines 
was greater than 90%. Next, we co-incubated EGFRvIII-
CAR-T cells and EGFRvIII-GBM cells for 6 and 24 hours, 
and found elevated levels of IFN-γ in culture medium 
(online supplemental figure  1D), indicating the killing 
activity of EGFRvIII-CAR-T cells.

Next, we tested the killing ability of EGFRvIII-CAR-T 
cells in vivo, but only observed minor difference between 
CAR-T cells and vehicle control (figure 1C,E). To test if 
VEGF-blockade can potentiate the therapeutic response 
of EGFRvIII-CAR-T cells, we treated mice bearing size-
matched GSC005 and CT2A tumors (volume of 1.5 mm3) 
with (A) PBS, (B) EGFRvIII-CAR-T cells (2×106 cells per 
mouse, intravenous injection), (C) B20 (2.5 mg/kg, every 
3 days, four times), (D) isotype control IgG (2.5 mg/
kg, every 3 days, our times) + EGFRvIII-CAR-T cells or 
(E) B20 (2.5 mg/kg, every 3 days, four times+EGFRvIII-
CAR-T cells. While B20 or EGFRvIII-CAR-T cell mono-
therapy showed only minor improvement in the animal 
survival, the combination of B20 with EGFRvIII-CAR-T 
cells significantly improved the survival benefit compared 
with monotherapy with B20 or CAR-T cells (figure 1C,E).

Anti-VEGF treatment improves the infiltration of EGFRvIII-
CAR-T cells
To test whether the improved survival resulted from the 
increased number of EGFRvIII-CAR-T cells in the GBM 
TME, we first used intravital microscopy to observe the 
infiltration of CAR-T cells into GFP-GSC005 TME with 
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or without B20 treatment (figure  2A). EGFRvIII-CAR-T 
cells were fluorescently labeled with CellTracker Red 
CMTPX Dye.17 Twenty-four hours after CAR-T cell injec-
tion, we found that the number of infiltrating CAR-T cells 
significantly increased after B20 treatment compared 
with control (PBS+EGFRvIII-CAR-T cells) (figure  2A, 
online supplemental movies SM1 and SM2). In addition 
to the intratumoral distribution and number of CAR-T 
cells, we also measured the distribution of CAR-T cells 
in brains using immunostaining. We collected tumors 
from GFP-GSC005 bearing mice after treatment with 
(1) PBS+EGFRvIII-CAR-T cells and (2) B20+EGFRvIII-
CAR-T cells. Treatment with PBS did not show CAR-T cell 
infiltration, whereas treatment with B20 did (figure 2B). 
Lastly, we performed flow cytometry to quantify the 
CAR-T cell numbers in tumor (figure 2C). We found that 
B20 increased CAR-T accumulation from 3.4% to 14.9%. 
Collectively, these data suggest that anti-VEGF therapy 
improves the infiltration of EGFRvIII-CAR-T cells in 
GSC005 TME.

Anti-VEGF treatment enhances antitumor function of CAR-T 
cells and host T cells in GBM
To examine the effects of anti-VEGF therapy on the 
function of CAR-T cells and other immune cells in the 
GBM TME, we performed flow cytometry of GSC005 

tumors (figure 3A). Both the total CAR-T cells as well as 
IL-2+ and IFN-γ + CAR T cells increased after anti-VEGF 
therapy compared with control or CAR-T therapy alone 
(figure 3B). Moreover, Granzyme B+TNF-α+ CD8 T cells 
increased significantly during combined B20 treatment, 
as did the overall number of CD4+ and CD8+ in the TME 
(figure  3C). We also checked the myeloid population 
in the GBM TME (online supplemental figure 3A). We 
observed no changes in the percentage of CD45high/
CD11b+/F4/80+/GR1- macrophages or Ly6Clow mono-
cytes in tumors after B20 treatment (online supplemental 
figure 3B). However, we did observe a slight increase of 
neutrophils in tumors after B20 treatment.18 We did not 
observe any changes in CD45+TCR-CD8a+dendritic cell 
population after B20 treatment (online supplemental 
figure 3B). Taken together, the flow cytometry data suggest 
that anti-VEGF therapy can not only improve CAR-T cell 
function, but also reprogram the GBM immune compart-
ment to a more immunostimulatory milieu.

DISCUSSION AND CONCLUSION
GBM is one of the most challenging tumors to treat.19 
Despite advances in the standard of care with surgery 
and chemoradiation, antiangiogenic therapy, and 

Figure 1  Anti-VEGF treatment improves the efficacy of EGFRvIII-CAR-T cells in murine GBM tumor models. (A) Schematic 
representation of experimental setup to evaluate the effect of PBS, CAR-T, B20, IgG+CAR T and B20+CAR T on the survival of 
GSC005 and C2TA GBM-bearing mice. (B) and (C) Tumor growth kinetics and median survival for CT2A tumors (PBS (n=22, 
15.5 days), CAR-T (n=14, 20.5 days), B20 (n=8, 24.5 days), B20+CAR T (n=19, 32 days)). (D) and (E) Tumor growth kinetics and 
median survival for GSC005 tumors (PBS (n=12, 13.5 days), CAR-T (n=17, 18.5 days), B20 (n=10, 24 days), IgG+CAR T (n=13, 18 
days), B20+CAR T (n=21, 37 days)). Error bars show median±SEM. Statistical analysis was performed using Student’s t-test or 
one-way ANOVA test. *p<0.05, ****p<0.0001. ANOVA, analysis of variance; CAR, chimeric antigen receptor; GBM, glioblastoma; 
VEGF, vascular endothelial growth factor. PBS, phophate buffered saline.
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Figure 2  Anti-VEGF treatment improves the infiltration of EGFRvIII-CAR-T cells. (A) Intratumoral distribution of EGFRvIII-
CAR-T cells inside of GFP-GSC005 GBM tumors imaged by multiphoton microscopy. Images were taken 24 hours after the 
injection of CAR-T cells (fluorescently labeled as red). Scale bars=50 µm. (B) Measurement of CAR-T cell (pink) number in GFP-
GSC005 tumors (green) treated with PBS or B20 (2.5 mg/kg). scale bar=50 µm. (C) Percentage of EGFRvIII-CAR-T cells inside of 
GSC005 GBM tumors measuring by flow cytometry. Error bars show ±SEM. Statistical analysis was performed using Student’s 
t-test. *p<0.05, **p<0.01. CAR, chimeric antigen receptor; GBM, glioblastoma. PBS, phosphate buffered saline.

Figure 3  Anti-VEGF treatment enhances function of CAR-T cells and effector T cells in GBM. (A) GSC005 tumors were treated 
as shown in the schematic. (B) Percentage of IL2+and IFN-γ+ CAR T cells inside the GSC005 GBM tumors. (C) Percentage of 
CD4+T cells, CD8+T cells, and the cytotoxic Granzyme B+TNF-α+ CD8+ T cells in the GSC005 tumors. Error bars show ±SEM. 
Statistical analysis was performed using Student’s t-test. *p<0.05, **p<0.01, ***p<0.001. CAR, chimeric antigen receptor; VEGF, 
vascular endothelial growth factor.
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tumor-treating fields, the median survival for patients with 
GBM is less than 2 years. More effective therapeutic strat-
egies for GBM are urgently needed. CAR-T cell therapy 
represents one such approach and has shown some effi-
cacy in GBM; however, robust responses have not been 
achieved.3 GBM blood vessels are abnormal and leaky, 
characterized by heterogeneous permeability and poor 
perfusion.20 Poor perfusion impairs the delivery of endog-
enous CD8+T cells and CAR-T cells,8 20 and the resulting 
hypoxia and low pH increases immunosuppression.8 20 
Thus, the abnormal TME confers resistance to CAR-T 
cell therapy in GBM by limiting their infiltration and 
efficacy. Previous studies from our laboratory and others 
have shown that anti-VEGF therapies can normalize the 
tumor vasculature and improve the outcome of various 
anti-cancer agents (chemotherapies, radiationtherapies, 
nanotherapies, molecularly targeted therapies and immu-
notherapies).7 20 21 Therefore, we investigated if anti-
VEGF therapy could increase CAR-T cell infiltration and 
improve the efficacy of CAR-T cells in GBM models.

Our study has several advantages over other CAR-T 
studies previously performed using human GBM cell 
lines in immunodeficient hosts. First, we used two murine 
GBM models that sufficiently recapitulate different 
features found in human GBMs. The CT2A GBM model 
has a low mutational burden (specifically without IDH1-
R132H mutation) and exhibits immunological features 
similar to human GBM, including reduced anti-PD-L1 
antibody sensitivity and hypofunctional tumor infiltrating 
lymphocytes.22 The GSC005 model, which is derived from 
a genetically engineered mouse model and recapitulates 
the stem-like features of human GBM, has a low muta-
tional burden.23 Second, with the full immune compart-
ment present in C57BL/6 mice, we not only evaluated 
endogenous immune activity after anti-VEGF+CAR T 
therapy, but also used B20 to target VEGF in both murine 
cancer and stromal cells, which may better represent the 
treatment setting in clinic.

Prior studies have employed CAR-T cells that target 
VEGF receptors 1, 2 and 3 (VEGFR1, VEGFR2 and 
VEGFR3) on the endothelial cells. However, a phase I/
II clinical trial was terminated as no responses were 
observed using VEGFR2-CAR-T therapy.24 A recent study 
by Lanitis et al demonstrated that the upregulation of 
VEGF-A in cancer cells competed for VEGFR2 binding 
with VEGFR2-targeting CAR-T cells, thus diminishing the 
effect of this CAR-T therapy.25 Combining anti-VEGF/R2 
antibodies with VEGFR2-CAR-T therapy may solve this 
problem. Indeed, coadministration of anti-VEGF-A anti-
body in vivo promoted CAR-T cell persistence and tumor 
control in B16 melanoma. Lanitis et al attributed this 
effect to restored CAR-T cell vascular adhesion. In line 
with this study, we found that anti-VEGF therapy improved 
antitumor efficacy of EGFRvIII-directed CAR-T cells, 
which does not rely on VEGFR2 on the endothelial cells 
for adhesion. Additionally, Bocca et al showed improved 
infiltration and efficacy of GD2-CAR T cells in a human 
neuroblastoma xenograft model in immunodeficient 

mice using bevacizumab.26 Since bevacizumab does not 
neutralize VEGF produced by murine cells, the role of 
host-derived VEGF in infiltration and efficacy of CAR-T 
cells in their study is not known. By using syngeneic 
GBM models, our study provides evidence for improved 
delivery and antitumor efficacy of CAR T cells by anti-
VEGF therapy in a setting closer to the clinic.

In summary, our study provides a strategy to overcome 
major challenges in CAR-T cell therapy in GBM by: (1) 
increasing the CAR-T cell infiltration, intratumoral distri-
bution, and activation in murine GBM models and (2) 
reprograming TME by increasing the number and activa-
tion of endogenous effector T cells, resulting in improved 
antitumor efficacy of CAR-T therapy in two GBM mouse 
models. Given that anti-VEGF therapies have been 
approved for a number of solid tumors, including GBM,21 
our study provides mechanistic insights and compelling 
preclinical data in support of testing the combination of 
vascular normalizing agents and CAR-T therapies in GBM 
patients. Furthermore, this approach may also improve 
CAR-T therapy of other solid tumors that share similar 
TME features as well as for other cell-based therapies 
using autologous or allogenic immune cells (eg, NK cells, 
macrophages).27
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