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Abstract

Monitoring the genetic structure of pathogen populations may be an economical and sensitive 

approach to quantify the impact of control on transmission dynamics, highlighting the need for 

a better understanding of changes in population genetic parameters as transmission declines. 

Here we describe the first population genetic analysis of the major human malaria parasites, 

Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) following nationwide distribution of 

long-lasting insecticide treated nets (LLIN) in Papua New Guinea (PNG). Parasite isolates from 
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pre- (2005-6) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite 

parasite prevalence declining substantially (East Sepik Province: Pf=54.9-8.5%, Pv=35.7-5.6%, 

Madang Province: Pf=38.0-9.0%, Pv: 31.8-19.7%), genetically diverse and intermixing parasite 

populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East 

Sepik: Rs = 7.1-6.4, He = 0.77-0.71; Madang: Rs= 8.2-6.1, He = 0.79-0.71). Unexpectedly, 

population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more 

frequent human movement between provinces may have contributed to higher gene flow. Pv 
prevalence initially declined but increased again in one province, yet diversity remained high 

throughout the study period (East Sepik: Rs=11.4-9.3, He=0.83-0.80; Madang: Rs=12.2-14.5, 

He=0.85-0.88). Although genetic differentiation values increased between provinces over time, 

no significant population structure was observed at any time point. For both species, a 

decline in multiple infections and increasing clonal transmission and significant multilocus 

linkage disequilibrium (mLD) post-LLIN was a positive indicator of impact on the parasite 

population using microsatellite markers. These parameters may be useful adjuncts to traditional 

epidemiological tools in the early stages of transmission reduction.
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INTRODUCTION

Characterising pathogen transmission dynamics using population genomics is essential 

to guide containment efforts and to plan strategies for disease elimination (Grad & 

Lipsitch, 2014; Hedtke et al., 2019; Wlodarska, Johnston, Gardy, & Tang, 2015). Pathogen 

populations comprise genetically distinct individuals that are related to varying degrees 

due to the accumulation of genetic variation as they transmit from host to host. Genomic 

diversity within populations can thereby indicate the extent of transmission intensity, 

whilst that between populations determines their connectivity (gene flow) and is influenced 

by local selection and inbreeding. Measuring pairwise relationships between infections 

further identifies how infections are spreading from host to host within a population 

and allows epidemiological characteristics of transmission to be defined (e.g. endemic 

versus epidemic). Understanding how these population genetic parameters change under 

the pressure of control interventions is central to using genomic epidemiology as an effective 

tool to monitor pathogen transmission dynamics.

When utilising population genetics to measure transmission dynamics it is important 

to consider how genomic diversity is generated. Human malaria parasites acquire de 
novo mutations whilst replicating asexually and reassortment occurs through sexual 

recombination within the mosquito vector. However, the generation of novel recombinants 

occurs only if the mosquito has taken up multiple, genetically distinct clones in the blood 

meal, otherwise self-fertilization occurs, and progeny are clonal. Outcrossing is therefore 

dependent on the presence of multiple genetically distinct infections in the human host 

and increases with endemicity (Babiker et al., 1994; Paul et al., 1995). The population 
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structure of the most virulent malaria parasite, Plasmodium falciparum is associated with 

transmission intensity (Anderson et al., 2000). At moderate to high transmission where 

multiclonal infections are frequently found, parasite populations are characterised by high 

diversity and a lack of population structure with low levels of linkage disequilibrium (LD) 

(Anderson et al., 2000; Gatei et al., 2010; Orjuela-Sanchez et al., 2013; Salgueiro, Vicente, 

Figueiredo, & Pinto, 2016; Schultz et al., 2010). At low transmission where multiclonal 

infections are less common, clonal transmission and inbreeding amongst closely related 

individuals is more common, resulting in lower overall diversity and high levels of LD, 

whilst population structure is more evident due to both lower gene flow between areas 

and within population transmission dynamics (Anderson et al., 2000; Branch et al., 2011; 

Chenet, Schneider, Villegas, & Escalante, 2012; Noviyanti et al., 2015). For P. vivax, also a 

significant human pathogen, relapsing infections and other unique features that enhance its 

transmission (Olliaro et al., 2016), result in a higher prevalence of multiclonal infections. 

Therefore, P. vivax populations are often characterised by high genetic diversity, even at low 

transmission (Ferreira et al., 2007; Fola et al., 2017; Gunawardena, Ferreira, Kapilananda, 

Wirth, & Karunaweera, 2014; Noviyanti et al., 2015; Waltmann et al., 2018). In the South 

West Pacific region, a modest decline in diversity and increasing population structure occurs 

with the eastward decline in transmission (Fola et al., 2017; Koepfli et al., 2013; Waltmann 

et al., 2018). LD and pockets of clonal P. vivax transmission have been observed in several 

studies, suggesting increasingly focal transmission as malaria rates decline (Abdullah et 

al., 2013; Batista, Barbosa, Da Silva Bastos, Viana, & Ferreira, 2015; Chenet et al., 2012; 

Delgado-Ratto et al., 2016; Ferreira et al., 2007; Imwong et al., 2007; Iwagami et al., 

2012; Noviyanti et al., 2015; Orjuela-Sanchez et al., 2013). Comparative analyses show P. 
vivax has a higher effective transmission intensity (Hofmann et al., 2017; Lin et al., 2010; 

Robinson et al., 2015) and higher diversity than P. falciparum due to a longer association 

with humans and fewer population bottlenecks (Chenet et al., 2012; Gilabert et al., 2018; 

Hupalo et al., 2016; Jennison et al., 2015; Liu et al., 2014; Loy et al., 2017; Neafsey et 

al., 2012; Noviyanti et al., 2015; Orjuela-Sanchez et al., 2013; Pava et al., 2017). P. vivax 
is more resilient to control efforts and thus may be less likely to show changes in parasite 

population structure than P. falciparum (Barry, Waltmann, Koepfli, Barnadas, & Mueller, 

2015; Cornejo & Escalante, 2006; Feachem et al., 2010; Liu et al., 2014; Neafsey et al., 

2012; Oliveira-Ferreira et al., 2010; Waltmann et al., 2015). No studies have yet investigated 

the impact of intensified control on the population genetics of sympatric P. vivax and P. 
falciparum populations.

The worldwide scale up of malaria control since the early 2000s, has reduced transmission 

dramatically around the world. Indeed, between 2010 and 2016, disease incidence declined 

by 18% and mortality by 32% (WHO, 2017, 2019). The incidence of clinical cases 

and infection prevalence remain the mainstay of malaria surveillance however population 

genetic surveillance has emerged as a promising and high-resolution approach for malaria 

monitoring (Arnott, Barry, & Reeder, 2012; Barry et al., 2015; Dalmat, Naughton, Kwan-

Gett, Slyker, & Stuckey, 2019; Koepfli & Mueller, 2017; malEra Consultative Group on 

Monitoring & Surveillance, 2011). Specifically, these approaches identify local transmission 

dynamics (e.g. endemic, epidemic, imported infections), connectivity between parasite 

populations in different endemic areas (Anderson et al., 2000; Fola et al., 2017; Noviyanti 
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et al., 2015; Vardo-Zalik et al., 2013; Waltmann et al., 2018) and “sources and sinks”, 

which together could help to design targeted control interventions (Auburn & Barry, 2017; 

Barry et al., 2015; Koepfli & Mueller, 2017). Population genetic surveys could also identify 

local drivers contributing to sustained transmission such as particular human social and 

economic interactions (Barry et al., 2015; Delgado-Ratto et al., 2016; Koepfli & Mueller, 

2017). While parasite population genetics and genomics is becoming more popular and 

accessible, the impact on control programs has been limited, and to date few studies have 

systematically assessed the long-term impact of malaria control using these approaches (Bei 

et al., 2018; Chenet, Taylor, Blair, Zuluaga, & Escalante, 2015; R. F. Daniels et al., 2015; 

Gatei et al., 2010; Gunawardena et al., 2014; Nkhoma et al., 2013; Vardo-Zalik et al., 2013). 

Moreover, it is not clear how long transmission needs to be disrupted, or to which extent 

prevalence should be reduced, before changes in parasite population structure can be seen. 

A better understanding of the impact of malaria control interventions on P. falciparum and 

P. vivax population structure is urgently required to capitalise on the potential of genomic 

surveillance for malaria control and elimination.

Population genetic surveys using panels of well-validated neutral microsatellite markers 

(Anderson et al., 2000; Imwong et al., 2007; Karunaweera, Ferreira, Hartl, & Wirth, 

2006) were conducted on the north coast of Papua New Guinea before the intensification 

of malaria control (2005/2006). P. vivax showed higher genetic diversity and a lack 

of population structure yet there was significant population structure of P. falciparum 
populations (Jennison et al., 2015; Koepfli et al., 2013; Schultz et al., 2010; Waltmann 

et al., 2018). Significant inbreeding (mLD) was not observed for sub-populations of either 

species, confirming high levels of outcrossing and endemic transmission (Jennison et al., 

2015). Since that time, PNG has implemented an intensified control program including the 

free nationwide distribution of Long Lasting Insecticide Treated Nets (LLIN). This resulted 

in a significant decline in infections across the country including the north coast provinces 

previously covered in our population genetic surveys (Arnott et al., 2013; Barry et al., 2013; 

Hetzel et al., 2016; Kattenberg et al., 2020; Koepfli et al., 2017; Koepfli et al., 2015). 

The impact on parasite population structure and transmission dynamics after the rollout 

of LLINs, however, remains unresolved. We sought to characterise the impact of reduced 

prevalence on the population structure of sympatric P. falciparum and P. vivax populations. 

Microsatellite haplotypes were generated from P. falciparum and P. vivax samples collected 

in multiple cross sectional surveys from 2010-14 after two rounds of mass LLIN distribution 

and compared to published data from isolates collected before the intensified malaria control 

program (Jennison et al., 2015; Schultz et al., 2010). The results show the impact of 

declining prevalence on PNG parasite populations and identify the critical parameters for 

monitoring these changes using microsatellite markers.

MATERIALS AND METHODS

Study sites and design

The studies were conducted in two Provinces on the highly endemic north coast region 

of Papua New Guinea (PNG) (Figure 1). In the WHO Western Pacific Region (WPR), 

the malaria mortality rate declined by 58% over the period 2010–2015, however infection 
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prevalence in Papua New Guinea (PNG) remains the highest in this region (and outside the 

African continent), contributing 81% of malaria cases and 86% of malaria deaths in 2017 

in the region (WHO, 2017, 2018) primarily due to P. falciparum and P. vivax infections 

(Kattenberg et al., 2020; Koepfli et al., 2017; WHO, 2018). In 2003, a new national malaria 

control campaign was launched to achieve high levels of LLIN ownership and usage in PNG 

(Hetzel et al., 2014; Hetzel et al., 2012). Coverage with LLIN was low in most parts of the 

country before nationwide free distribution took place (2004-8 and 2009-2012) (Betuela et 

al., 2012; Genton et al., 1994; Hii et al., 2001). This resulted in a significant increase in 

ownership of bed nets across the country by 2010 (any type 80%; LLINs 65%) (Hetzel et 

al., 2014; Hetzel et al., 2012) and the average malaria incidence rate in sentinel sites dropped 

from 13/1,000 population to 2/1,000 (range 0.6-3.3/1000 post-LLIN) (Hetzel et al., 2016).

On the hyperendemic north coast, P. falciparum PCR prevalence dropped from 38% to 12% 

and P. vivax prevalence decreased from 28% to 13% (Kattenberg et al., 2020; Koepfli et 

al., 2017) (Figure 1). Prevalence reductions were more substantial for P. falciparum than 

for P. vivax, as has been seen in many co-endemic areas (Feachem et al., 2010). In East 

Sepik Province, malaria decreased from a very high burden (73% of surveyed individuals 

infected in 2005 as measured by molecular detection (LDR-FMA (Mueller et al., 2009)) to 

heterogeneous transmission (prevalence in villages ranging from 1% to 61%, median 6%, 

as measured by qPCR (Kattenberg et al., 2020)) after two rounds of LLIN distribution. 

An initial round of LLIN distribution was conducted between 2004 and 2009, followed by 

additional distributions in 2011/2012 and subsequently in 2014/15. In Madang province, 

however, malaria prevalence decreased from 63% to 28% by qPCR after the first round of 

LLIN distributions (Koepfli et al., 2017; Koepfli et al., 2015; Schultz et al., 2010). After the 

second LLIN distribution (2010-2014), P. falciparum continued to drop, however an increase 

in P. vivax prevalence was observed (from 13% to 20% by qPCR (Koepfli et al., 2017)). In 

Madang province, malaria prevalence was less heterogenous in the sampled villages than in 

East Sepik Province (Kattenberg et al., 2020; Koepfli et al., 2017; Koepfli et al., 2015).

Whole blood samples were collected from participants in cross-sectional studies conducted 

between 2005 and 2014 along the North Coast of PNG (Figure 1) (Arnott et al., 2013; 

Kattenberg et al., 2020; Koepfli et al., 2017; Koepfli et al., 2015; Mueller et al., 2009; 

Schultz et al., 2010). In Madang Province (MAD), the same three catchment areas were 

studied in 2006 (Schultz et al., 2010; Senn et al., 2012), 2010 (Koepfli et al., 2015) and 

2014 (Koepfli et al., 2017). The study area included a selection of villages along a coastal 

stretch of 70km (Mugil and Malala regions), surrounded by coconut and cocoa plantations 

and subsistence gardens, and one area approximately 50 km inland (Utu). Here, the climate 

is tropical with a rainy season from December to April. In East Sepik Province (ESP), 

participants in the Wosera Catchment (ESP1) including fourteen villages were sampled in 

2005 during the dry-season (August-September) (Jennison et al., 2015; Senn et al., 2012). 

A broader survey (ESP2) was conducted in April-May 2005 including five catchment areas 

that were re-visited in 2012-13 (Kattenberg et al., 2020; Mueller et al., 2009). The study 

areas in ESP consist of an area of over 160 km2 with low hills and riverine plains with a wet, 

tropical climate (Genton et al., 1995). The natural vegetation is lowland hill forest that has 

mostly been replaced by re-growth following cultivation and wide grasslands on the plains 

near the Sepik River.
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In all surveys, demographic and clinical information was collected, blood slides examined 

by expert microscopists and a blood sample collected in EDTA tubes for extraction of DNA. 

In the 2005 ESP studies, Plasmodium species were detected by Light Detection Reaction- 

Fluorescent Microspere Assay (LDR-FMA) (McNamara et al., 2006; Mueller et al., 2009), 

whereas in all other studies quantitative PCR (qPCR) detection by TaqMan™ assay was used 

(Rosanas-Urgell et al., 2010). To determine multiplicity of infection (MOI), P. falciparum 
positive samples were genotyped for Pfmsp2 and P. vivax positive samples were genotyped 

with Pvmsp1f3 and MS16 (ESP1 and MAD 2006) or Pvmsp1f3 and MS2 (MAD 2010 

& 2014 and ESP2 2005 & ESP 2012-13) ), as previously described (Arnott et al., 2013; 

Kattenberg et al., 2020; Koepfli et al., 2017; Koepfli et al., 2015; Mueller et al., 2009; 

Schultz et al., 2010). The sample selection and genotyping procedures of the ESP1 2005 

(Wosera) and MAD 2006 were as previously described (Arnott et al., 2013; Jennison et al., 

2015; Schultz et al., 2010). For the other studies, samples with MOI of 1 were selected for 

further genotyping with the neutral microsatellite panels as described below. For the studies 

conducted after the large scale LLIN distribution (>2006) all monoclonal isolates (MOI=1) 

were included, but for the 2005 ESP2 population, a selection of samples was made for the 

analysis with the microsatellite panel (Table S1).

Ethical approval

Written informed consent was obtained from all study participants or their parents or 

legal guardians. The study was approved by the PNG IMR Institutional Review Board 

(IRB#11/16) and the PNG Medical Research Advisory Committee (MRAC 11/21), National 

Institutes of Health, Division of Microbiology and Infectious Diseases (DMID Protocol 

#10-0035) and Walter and Eliza Hall Institute Human Research Ethics Committee (HREC 

#12/10).

Genotyping procedures

For both species, a panel of 9-10 neutral microsatellite markers were amplified in the 

selected samples (Table S1) using a multiplex primary PCR followed by individual nested 

PCRs as previously described (Anderson et al., 2000; Jennison et al., 2015; Koepfli et al., 

2013; Schultz et al., 2010). For P. falciparum, samples were genotyped at nine previously 

validated and commonly used, putatively neutral, microsatellite loci including TA1, TAA60, 
Polya, ARA2, Pfg377, TAA87, PfPK2, TAA81 and 2490 (Anderson et al., 2000; Schultz et 

al., 2010). For P. vivax, 10 putatively neutral microsatellites were genotyped as previously 

described: MS1, MS2, MS5, MS6, MS7, MS9, MS10, MS12, MS15, and MS20 (Jennison 

et al., 2015; Koepfli et al., 2013). All PCR products were sent to a commercial facility for 

fragment analysis on an ABI3730xl platform (Applied Biosystems) using the size standard 

LIZ500. Primers used were the same for all datasets (Jennison et al., 2015; Schultz et al., 

2010).

Analysis

The electropherograms were analysed with Genemapper V4.0 (Applied Biosystems) with 

the same peak calling strategy as described previously (Jennison et al., 2015; Schultz et 

al., 2010). To avoid artefacts, precautions were taken to ensure allele calling was consistent 

(Jennison et al., 2015), and carefully reconstructing dominant haplotypes as per previously 
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described methods (Anderson, Su, Bockarie, Lagog, & Day, 1999; Jennison et al., 2015; 

Schultz et al., 2010). Briefly, this involved setting the minimum fluorescence to 500 Random 

Fluorescence Units (RFU) for all colours except the size standard. Stutter window was set to 

3.5 for 3bp repeats and 4.5 for 4bp repeats. The stutter ratio was set to 0.4 for all markers. 

The stutter detection was only applied to shorter alleles, with longer alleles within the stutter 

window subject to the standard 30% cut-off threshold. Samples with low fluorescence were 

manually reanalysed with a minimum fluorescence of 100 RFU. For the Madang 2005 and 

Wosera 2006 P. falciparum data, previously published cleaned and rounded microsatellite 

allele repeat numbers for P. falciparum single clone infections (Schultz et al., 2010) were 

converted back to allele sizes using the known number of nucleotides/repeat, whereas for 

P. vivax the raw data (allele calls) was available (Jennison et al., 2015). These data were 

combined with the newly generated MS data from the other studies before binning the 

alleles using the TANDEM software (Matschiner & Salzburger, 2009). Allele frequencies 

of the entire dataset (incl. previously genotyped datasets) were investigated and outlying 

alleles (most likely caused by PCR artefacts) were removed. Samples with missing data at 

six (60%) or more MS loci were excluded from further analysis. We attempted to calibrate 

the P. falciparum data from pre-LLIN Madang 2006 and Wosera (ESP1 2005) by converting 

rounded repeat numbers back to allele sizes, binning together with the newly generated data 

and removing outliers. However, there was strong population structure when compared to 

the new dataset, indicating experimental differences despite the use of the same protocols. 

Thus, we excluded direct comparisons between old and new datasets for P. falciparum.

To conduct the population genetic analyses, allele frequencies and input files for the various 

population genetics programs were created using CONVERT version 1.31 (Glaubitz) and 

PGD Spider version 2.1.0.1 (Lischer & Excoffier, 2012). Genetic diversity was measured 

by calculating the number of alleles (A), Nei’s gene diversity (expected heterozygosity 

(He) (Nei, 1987)) and allelic richness (Rs) (Hurlbert, 1971) that corrects for sample size, 

using FSTAT version 2.9.3.2 (Goudet, 1995). Pairwise genetic differentiation was measured 

by calculating pairwise Jost’s D (Jost, 2008) and Weir and Cockerhams FST (Weir & 

Cockerham, 1984) values and 95% confidence intervals were estimated with 1000 bootstraps 

using the diveRsity package in R (Keenan, McGinnity, Cross, Crozier, & Prodöhl, 2013). 

In contrast to some earlier studies (Schultz et al., 2010), where haploid genotypes were 

coded as diploid genotypes, but homozygote at each locus, the data in this study was 

analysed using haploid datasets (as in Jennison et al. (Jennison et al., 2015)). As a measure 

of inbreeding in each population, multilocus linkage disequilibrium (mLD) was calculated 

using LIAN version 3.7, applying a Monte Carlo test with 100,000 re-sampling steps 

(Haubold & Hudson, 2000). In the LIAN analysis only samples with complete haplotypes 

were included. For both species the dominant and single haplotypes were compared within 

catchments to identify any significant linkage disequilibrium (mLD) using LIAN (Haubold 

& Hudson, 2000) and FST using FSTAT version 2.9.3.2 (Goudet, 1995).

Bottleneck (Piry, Luikart, & Cornuet) was used to test for an excess of heterozygosity 

brought about by the loss of rare alleles following a population bottleneck. A two-phase 

mutational (TPM) model of 70% stepwise and 30% non-stepwise mutations and run 

1000 iterations was used. In addition, the allele frequency distribution for all loci was 

examined for a ‘mode shift’ in the distribution (Luikart, Allendorf, Cornuet, & Sherwin, 
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1998). To investigate parasite population genetic structure, the Bayesian clustering software, 

STRUCTURE version 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) was used to investigate 

whether haplotypes for each species clustered according to geographical origin and/or within 

time periods. The analysis was run 20 times for K = 1 to 15 for 100,000 Monte Carlo 

Markov Chain (MCMC) iterations after a burn-in period of 10,000 using the admixture 

model and correlated allele frequencies. The second order rate of change of LnP[D], ΔK 

was calculated according to the method of Evanno et al. (Evanno, Regnaut, & Goudet, 

2005) to determine the most likely K (most likely number of populations). CLUMPP 

version 1.1.2 (Jakobsson & Rosenberg, 2007) was used to facilitate the interpretation of 

population genetic results using files generated with STRUCTURE HARVESTER Web 

v0.6.94 (Earl & vonHoldt, 2011) and Distruct 1.1 (Rosenberg, 2004) was used to visualize 

the structure plots with the data generated with CLUMPP. Statistical analysis of molecular 

epidemiological and population genetic parameters was done using non-parametric methods 

as indicated in the results-section using STATA v12.1 (StataCorp, USA). QGIS 2.18.24 

(OpenSource Geospatial Foundation) was used to map the villages and households and maps 

were constructed with spatial layers from DIVA-GIS ("Diva GIS country level data,").

RESULTS

Multiplicity of Infection

Multiplicity of infection (MOI), determined by genotyping highly polymorphic markers and 

counting the numbers of alleles in each infection, is a proxy measure of the intensity of 

transmission. MOI in all areas was lower in all areas post-LLIN distribution decreasing from 

1.8 to 1.3 (p=0.0463 Mann Whitney U test) and 2.0 to 1.4 (p=0.0495 Mann Whitney U 

test), respectively for P. falciparum and P. vivax. This corresponds with a lower proportion 

of multiclonal infections, except for P. falciparum in ESP in 2012-13 (Figure 1 and Table 

S1). Despite an increase in PCR prevalence of P. vivax in Madang Province in 2014, few 

multiclonal infections were detected (Figure 1 and Table S1).

Microsatellite haplotypes

We then genotyped parasite isolates at microsatellite loci to generate multilocus haplotypes 

for population genetic analyses. Multilocus haplotypes with at least five loci successfully 

genotyped (out of 9 for P. falciparum and 10 for P. vivax) were constructed for 860 P. 
falciparum samples (300 previously published) and 755 P. vivax samples (202 previously 

published) (Jennison et al., 2015; Schultz et al., 2010) (Table S1). Despite having genotyped 

the samples that were identified as MOI=1 by pfmsp2, pvmsp1f3 and pvMS2/MS16 
genotyping, 31% of P. falciparum samples and 49% of P. vivax samples had more than 

one allele for at least one microsatellite locus, suggesting multiple clone infection and the 

increased resolution of the microsatellite panel. From these we created dominant haplotypes 

(Schultz et al., 2010). No significant changes in multilocus Linkage Disequilibrium (mLD) 

were found when comparing single vs. all haplotypes combined within each study (Table 

S2). Low genetic differentiation was found between single and dominant haplotypes for P. 
falciparum in MAD2014 (FST=0.063, p = 0.58), however, this can be explained by small 

sample size (n=9 dominant haplotypes). For P. vivax, low differentiation between single and 

dominant haplotypes in ESP 2012 (FST = 0.041, p = 0.33), was explained by a cluster of 
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closely related haplotypes, all reconstructed from dominant alleles), which are described in 

more detail below. The fact that these related haplotypes were independently constructed 

from dominant haplotypes provides additional confidence in the allele-calling strategy. All 

other comparisons (within each province for at each time point) showed negligible genetic 

differentiation between single and dominant haplotypes. Therefore, the haplotypes were 

combined for further analysis.

Reduction in P. falciparum but not P. vivax genetic diversity post-LLIN

Based on the microsatellite haplotypes (n=860), the genetic diversity of P. falciparum 
populations was modestly but significantly lower post-LLIN compared to the earlier time 

points for pre-LLIN populations (ESP1 and 2 2005 and MAD 2006). Mean heterozygosity 

for P. falciparum over all areas combined decreased significantly from 0.76±0.1 to 0.71±0.1 

(Mann-Whitney U test p =0.036; Table S1) and allelic richness from 7.7±2.2 to 6.5±2.1 

(Mann-Whitney U test p=0.014; Figure 2). These parameters also showed a small but 

insignificant decline for the provinces analysed individually (Figure 2, p>0.05). For P. 
vivax, overall genetic diversity remained high (post-LLIN Rs=12.5; He=0.85, Table S1), 

but slightly different results were seen in each province (Figure 2, Table S1). In Madang 

Province after the distribution of LLINs, He values slightly increased from 0.85±0.07 in 

2006 to 0.88±0.04 in 2014 (p=0.3, Table S1), with high allelic richness (pre-LLIN Rs 
12.2±4.0 vs post-LLIN 14.0±3.4; p=0.2). Whereas in East Sepik Province, P. vivax genetic 

diversity decreased but not significantly with He values of 0.83±0.09 to He 0.80±0.08 

(2-sample t-test, p=0.48) and Rs values of 11.1±3.5 vs post-LLIN Rs 9.8±3.5 (2-sample 

t-test, p=0.33) (Table S1, Figure 2). No significant correlation was found between prevalence 

(by PCR) and heterozygosity, allelic richness, mean MOI, or proportion of multiple clone 

infections, for either species (data not shown).

Significant multilocus linkage disequilibrium (mLD) for both P. falciparum and P. vivax 
post-LLIN

For P. falciparum, matching haplotypes (allowing missing loci) were seen in all post-LLIN 

datasets and the pre-LLIN ESP2 2005 dataset. However, for P. vivax, matching haplotypes 

(allowing missing loci) were rarely seen and only in post-LLIN data sets. Among the 

332 complete P. falciparum multilocus haplotypes (9-loci successfully genotyped) from 

all study sites, 16 repeated haplotypes were found, with 11 haplotypes represented two 

times, three represented three times, and two represented four times. Clonal haplotypes were 

always found within the same year and province, and in all cases except one in the same 

catchment area, but not always in the same village (7/16 haplotypes found in neighbouring 

villages). In ESP2 2005, one clonal haplotype was found in two villages (Yenigo and Sengo, 

Figure 1) from different catchment areas, roughly 40km apart. Among the 303 complete 

P. vivax multilocus haplotypes (10-loci), two haplotypes were repeated, with one haplotype 

represented two times (in two different villages in ESP 2012), and one represented four 

times (three in one village, one in a neighbouring village in MAD 2010).

To investigate whether inbreeding was present in these populations (Smith, Smith, 

O’Rourke, & Spratt, 1993), non-random associations among the microsatellite loci (mLD) 

were calculated for all complete and unique haplotypes. Whilst mLD was absent from 
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most pre-LLIN populations, significant mLD was observed in P. falciparum and P. vivax 
infections post-LLIN (Table 1). In ESP 2012-13, mLD was high with unique infections 

indicating the circulation of closely related haplotypes in the population, suggesting 

near clonal transmission (low recombination between diverse clones and high levels of 

inbreeding) or the presence of high proportions of meiotic siblings among isolates (Bright 

et al., 2014; Smith et al., 1993), as observed in the village of Sunuhu (Table S3). Low, 

but significant mLD was found for P. falciparum in Madang in 2006 (Table 1), however 

this population was structured (Schultz et al., 2010), resulting in a phenomenon called the 

Wahlund effect, confirmed by the fact that linkage equilibrium was restored when mLD was 

analysed separately for subpopulations (Jennison et al., 2015; Wahlund, 1928) (Table S4). In 

post-LLIN Madang, the observed mLD for P. falciparum is not the result of subpopulation 

structure, as significant mLD remained in the subpopulations (Table S4). In the Mugil area 

in 2014, significant mLD for P. falciparum remains due to the circulation of a few very 

closely related haplotypes in the Megiar village (Table S4, Dataset 1).

Population Bottleneck for P. falciparum but not P. vivax post-LLIN

Bottleneck analysis was performed using a two-phase mutational model (TPM) and testing 

for heterozygosity excess with a 2-tailed Wilcoxon sign rank test (see Materials and 

Methods). Significant heterozygosity excess was observed for P. falciparum in ESPII 2005 

(but not in ESPI 2005), MAD 2006 and 2010 populations (p=0.020, p=0.049 and p= 0.010, 

respectively). However, for P. vivax significant heterozygosity excess was only observed 

in a single pre-LLIN population, Wosera 2005 (p=0.042, these samples were collected in 

the relatively dry season) and not in any of the other P. vivax populations. Despite finding 

significant heterozygosity excess, a mode-shifted distribution of allele frequencies (as is 

frequently observed in bottlenecked populations) was not observed in any of the time points 

and provinces.

Contrasting and dynamic patterns of population structure for both P. falciparum and P. 
vivax

As previously described, for P. falciparum, low to moderate genetic differentiation was seen 

between the Wosera 2005 (ESP1) and Madang 2006 studies (Jennison et al., 2015; Schultz 

et al., 2010) (Figure 3, S1). Comparisons were not done between Pf 2005/6 and other Pf 
populations as it was not possible to calibrate data through combining allele calls before 

binning (see Materials and Methods). Post-LLIN, there remains low to moderate genetic 

differentiation between ESP (2012-2013) and Madang (2014) (Figure 3, S1). However, there 

was little genetic differentiation of East Sepik P. falciparum populations pre-LLIN (ESP2 

2005) compared to post-LLIN (2012-13), nor between Madang 2010 and 2014 populations 

(Figure 3, S1). For P. vivax, a different pattern can be seen, with low genetic differentiation 

between provinces pre-LLIN, which increases in the post LLIN-studies (Figure 3, S1). 

Similar to P. falciparum, within province genetic differentiation between the different time 

points does not increase post-LLIN.

Population genetic structure was further investigated by Bayesian cluster analysis using 

STRUCTURE (Pritchard et al., 2000). Haplotypes or populations with ancestry in more than 

one cluster are considered admixed and indicates that substantial gene flow occurs between 
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defined geographic areas. Our analysis identified three P. falciparum and three P. vivax 
clusters (Figure 4, S2). The clustering patterns show that the P. falciparum populations in 

later years are more mixed than the populations of 2005/2006, where populations clustered 

according to geographical locations including amongst the three catchment areas within 

Madang Province (Figure 4, S2) (Schultz et al., 2010). On the contrary, P. vivax populations 

were very diverse and displayed little population structure in all time points, despite the 

increase in differentiation between ESP and MAD post-LLIN populations (Figures 4 and 5).

For P. vivax, as we observed significant mLD post-LLIN in ESP, local phylogenetic analysis 

was conducted. This supports focal transmission as shown by the clustering of haplotypes 

from the same village: Sunuhu (Figure 5). The STRUCTURE analysis also shows some 

evidence of this inbred cluster (Figure 4B). Interestingly, this village had the highest 

prevalence in the region in the 2012-13 survey (36% infected with P. vivax by qPCR 

compared to 0.5-9% in other villages (Kattenberg et al., 2020). In Sunuhu, clonal and 

closely related haplotypes (≤2 unmatched alleles) were observed in 48% (11/23) of the 

haplotypes from that village (see supplementary file 1). The 11 closely related haplotypes 

were observed throughout the village, were not clustered in neighbouring households, and 

were not associated with participant characteristics (p>0.05), such as age and sex (Table S3).

DISCUSSION

Parasite genetic diversity has been proposed as a key indicator of malaria transmission 

dynamics to track control and elimination progress (Dalmat et al., 2019). This demands an 

evaluation of whether genotyping provides insights about changes in transmission following 

intensified malaria control efforts. Here we have monitored the population genetics of P. 
falciparum and P. vivax over an eight-year period of LLIN-induced transmission decline 

in PNG, an area of high year round transmission. Despite large reductions in parasite 

prevalence and multiple infections from very high to low/moderate levels (Kattenberg et 

al., 2020; Koepfli et al., 2017; Koepfli et al., 2015), we show that population genetic 

changes were minimal with populations remaining diverse and unstructured. P. falciparum 
diversity decreased somewhat, though remained high relative to other malaria endemic areas 

outside Africa (Anderson et al., 2000; Branch et al., 2011; Chenet et al., 2012; Chenet 

et al., 2015; dalla Martha, Tada, Ferreira, da Silva, & Wunderlich, 2007; Noviyanti et 

al., 2015; Orjuela-Sanchez et al., 2009; Orjuela-Sanchez et al., 2013; Pava et al., 2017; 

Susomboon et al., 2008), whereas P. vivax diversity was unchanged throughout the study 

period. Surprisingly, P. falciparum populations that were structured pre-LLIN (2005, 2006) 

(Jennison et al., 2015; Schultz et al., 2010), were unstructured post-LLIN (2010, 2014), 

although a reduction in multiple infections and an increase in multilocus LD due to 

clonal haplotypes were detected. For P. vivax, there was also no evidence of population 

structure after LLIN, however increasing pairwise genetic differentiation within and between 

provinces was observed and clonal transmission and inbreeding had emerged in at least 

one village. These results demonstrate that declining transmission does not result in an 

immediate decrease in overall population diversity nor an increase in population structure. 

Sustained low transmission may be needed to observe these changes using these small 

panels of microsatellite markers. However, changes in multiple infection prevalence and 

multilocus LD indicate increasing heterogeneity in transmission within populations. These 
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results have implications with respect to monitoring changing transmission for any pathogen 

using population genetic approaches.

Nkhoma and colleagues previously reported a limited impact on P. falciparum diversity 

following a decrease from moderate to low transmission on the Thai-Myanmar border over 

10 years. However, as we have observed in PNG, there was an increase in multilocus LD 

which and decreasing proportions of multiclonal infections (Nkhoma et al., 2013). Daniels et 
al. have also reported decreasing multiclonal infections, increasing proportions of repeated 

genotypes and multilocus LD, and long-term persistence of particular clones in Senegal 

(Daniels et al., 2013). These studies utilised 96 and 24 biallelic SNP markers respectively, 

compared to our study using a small number of microsatellite markers. Similar panels of 

SNPs may reveal additional insights in the PNG context. As for P. vivax, Gunawardena 

and colleagues also reported sustained high P. vivax microsatellite diversity and multiclonal 

infections during a five-year period as the country progressed towards malaria elimination 

(Gunawardena et al., 2014). Population genetic signals of declining transmission might 

take longer to emerge for P. vivax due to new blood-stage infections from the hypnozoite 

reservoir and could explain why we only observed mLD in one village of East Sepik.

In PNG, the limited decline in P. falciparum diversity and loss of parasite population 

structure after LLIN distribution indicates that there may be increased gene flow between 

the sampled parasite populations, which was unexpected. Population structure prior to 

intensified control was thought to be the result of limited historical human migration 

due to the rugged terrain and lack of direct transport connections (Mueller, Bockarie, 

Alpers, & Smith, 2003; Riley, 1983) or population bottlenecks due to past control efforts 

or emergence of drug resistance (Anderson et al., 2000; Jennison et al., 2015; Schultz 

et al., 2010; Tessema et al., 2015). Changes in first-line treatment policies, for example 

the introduction of sulphadoxine/pyrimethamine (SP) in the early 2000’s and artemether-

lumefantrine in 2008, might have played a role in shaping parasite population structure (Mu 

et al., 2005). Chloroquine (CQ) and/or SP resistance (near fixation of resistant pfmdr1 and 

pfdhps resistant alleles were observed in the same areas (Barnadas et al., 2015; Koleala 

et al., 2015; Mita et al., 2018)) and may have contributed to the observed bottleneck 

and mLD in pre-LLIN P. falciparum populations, with consequent reductions in effective 

population size, while outcrossing due to high transmission preserved within-population 

genetic diversity as the resistance mutation spread (Mita et al., 2018). From 2000 to 2011 

the PNG population increased by over two million people (National Census Report, 2011), 

and local observations suggest that large numbers of migrants from East Sepik have moved 

into Madang in the last decade seeking employment opportunities. As a result, post-LLIN, 

greater connectivity between human populations may have broken down P. falciparum 
population structure and maintained high gene flow between P. vivax populations (Fola et 

al., 2018).

For the post-LLIN East Sepik P. vivax population where prevalence dropped to below 5%, 

significant mLD was observed resulting from very closely related parasite strains circulating 

in a residual pocket of relatively high transmission within a single village. This suggests 

considerable inbreeding of parasites in that village, in a background of high genetic diversity 

resulting in a lack of evidence of a bottleneck at the population level. This paradoxical 
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signature of significant mLD with high diversity and a considerable proportion of multiple 

clone infections of P. vivax appears to be a hallmark of lower transmission areas (Barry et 

al., 2015; Batista et al., 2015; Chenet et al., 2012; Delgado-Ratto et al., 2016; Delgado-Ratto 

et al., 2014; Ferreira et al., 2007; Hong et al., 2016; Noviyanti et al., 2015; Orjuela-Sanchez 

et al., 2013). Similar to P. falciparum populations though, there was a correlation between 

mLD and prevalence of infection for P. vivax. This shows that reductions in multiclonal 

infections and mLD is an earlier indicator of reduced transmission than genetic diversity and 

population structure (for both species).

Multilocus LD in post-LLIN P. vivax populations was explained by both focal clonal 

transmission and inbreeding, as similarly observed in other studies in Peru, Vietnam, and 

Papua Indonesia (Delgado-Ratto et al., 2014; Hong et al., 2016; Noviyanti et al., 2015). 

The explanation for this observation will most likely lie in unique P. vivax characteristics 

related to hypnozoites, relapses and transmission dynamics (Abdullah et al., 2013; Bright 

et al., 2014; Chen, Auliff, Rieckmann, Gatton, & Cheng, 2007; Delgado-Ratto et al., 

2014; Ferreira et al., 2007; Fola et al., 2018; Iwagami et al., 2012; White, 2011). At 

high transmission (e.g. pre-LLIN) with high prevalence and high multiplicity of infection, 

these clusters of similar haplotypes might also occur, but could be obscured due to 

sampling limitations and the large number of different haplogroups circulating at the 

same time. As transmission declines, infections have fewer clones and the diversity of 

the hypnozoite reservoir decreases, resulting in fewer circulating haplogroups, lower levels 

of recombination between distinct genomes and more frequent clonal transmission and 

inbreeding, resulting in increased mLD as in this and other studies (Barry et al., 2015; 

Batista et al., 2015; Chenet et al., 2012; Delgado-Ratto et al., 2016; Delgado-Ratto et al., 

2014; Ferreira et al., 2007; Hong et al., 2016; Noviyanti et al., 2015; Orjuela-Sanchez 

et al., 2013). These signatures are more likely to be seen in a population with more 

sustained low transmission such as was the case for the East Sepik Province. In this region, 

malaria transmission is heterogeneous between villages. Besides the national malaria control 

program, other initiatives were also distributing LLINs in East Sepik Province prior to 

the nationwide distribution (Hetzel et al., 2014; Hetzel et al., 2012; Hetzel et al., 2016) 

suggesting that longer term sustained control efforts have been effective.

Considerable variance in the impact of the LLIN program was observed in the two 

provinces. In Madang, whilst P. falciparum rates steadily declined over the entire study 

period, there was a resurgence of submicroscopic P. vivax infections in 2014 (Koepfli et al., 

2017). Although multiplicity of infection remained low, the lack of mLD and population 

structure suggests that this is not due to an outbreak, but more likely the residual P. vivax 
population was able to gain a foothold once again despite the intensive control efforts. In 

addition, an increase in the prevalence of pvdhfr triple and quadruple mutants, related with 

SP resistance, were observed in Madang province in 2010 (Barnadas et al., 2015), and a 

high proportion of resistant parasites could be a possible explanation for the higher infection 

prevalence by 2014. Different studies have shown that selective pressure of drugs such as 

CQ and/or SP have had an impact on shaping worldwide P. vivax populations in recent 

history (Hupalo et al., 2016; Pearson et al., 2016). However, a population bottleneck as seen 

in P. falciparum populations (Mita et al., 2018) did not occur in P. vivax populations of PNG. 
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Malaria control had a greater impact on P. vivax prevalence in East Sepik and population 

structure was observed in one village post-LLIN.

This study has some limitations related to sampling and the genotyping approach used. 

The samples were collected in serial cross-sectional surveys over a period of malaria 

control initiated at different times in the two provinces. Fewer years of sustained control 

pressure compared to East Sepik might explain why, despite substantial prevalence decline 

in Madang Province by 2010, we did not observe any signature of changing population 

structure. Whilst, in East Sepik 2012, a cluster of closely related parasites was observed 

in one village suggesting more focal transmission than previous years. The microsatellite 

panels were selected as these have been the gold standard genotyping tool for large-scale 

malaria population genetic studies for many years (Anderson et al., 1999; Imwong et al., 

2006; Karunaweera et al., 2006). However, they are limited in number (less than one per 

chromosome), rapidly evolving and prone to error. Although these markers are extremely 

useful for measuring parasite population structure on local and global scales (Auburn & 

Barry, 2017; Barry et al., 2015; Koepfli & Mueller, 2017; Sutton, 2013), they are not 

ideal for cross-study comparisons due to the difficultly in calibrating alleles from different 

data sources. The lack of raw data from the previously published P. falciparum study 

(Schultz et al., 2010), prevented the direct comparison of haplotypes and thus the analysis 

of population structure between the earlier P. falciparum time points for the East Sepik 

II (Wosera) and Madang populations. Furthermore, dominant haplotypes derived from 

multiple clone infections can be reconstructed incorrectly, thus inflating diversity values 

(Messerli, Hofmann, Beck, & Felger, 2017). However, only haplotype-based analyses such 

as multilocus LD and phylogenetic analysis were vulnerable to these possible artefacts, 

and would result in an overestimate of diversity and underestimate of LD. All other 

analyses were conducted using mean values across markers or allele frequencies and 

thus limit the impact of such errors. Moreover, the dataset included a large proportion of 

single infection haplotypes in all populations, and the detected clones included dominant 

haplotypes suggesting that allele calling was reliable. Finally, the highly polymorphic and 

rapidly evolving nature of microsatellite markers (Ellegren, 2004) may limit the resolution 

of the population genetic parameters such as population level diversity and population 

structure in high transmission areas (Branch et al., 2011). This may both lead to false 

assignment of unrelated parasites (e.g. from different provinces) as related and reduce the 

detection of truly related parasites (identical by descent), both of which would result in a 

lack of population structure. Other more stable markers, such as SNPs (Baniecki et al., 2015; 

R. Daniels et al., 2008) or whole genome sequencing (Hupalo et al., 2016; Miotto et al., 

2013; Mu et al., 2005; Pearson et al., 2016; Volkman et al., 2007) may be more sensitive and 

specific to detect changes in parasite population structure.

According to the data presented, in two high transmission provinces of PNG, recent 

reductions in malaria transmission result in limited changes in parasite population diversity 

and structure as determined by microsatellite markers. The high parasite diversity and 

lack of population structure are consistent with both species maintaining a large and 

evolutionarily fit population immediately after prevalence decline suggesting the gains 

made are fragile. However, fewer multiclonal infections, and the emergence of significant 

mLD for both species indicates there is focally interrupted transmission and suggests that 
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these parameters may be useful markers for measuring control impact and early changes 

in parasite population structure with intervention. The results were in contrast to our 

expectations of decreasing diversity and increasing population structure (Jennison et al., 

2015) and show that long term sustained control efforts may need to be maintained to 

observe significant change in population structure, at least as measured by the microsatellite 

panels used in this study. The PNG national malaria control program has made an impact 

on the malaria burden through the substantial reductions in infections circulating in the 

community (Hetzel et al., 2016; Kattenberg et al., 2020; Koepfli et al., 2017), however it 

appears that this has not been sustained long enough for the underlying parasite population 

to fragment. Finally, this study demonstrates how parasite population genetics can inform 

whether malaria intervention has reduced and fragmented the parasite population or if 

significantly more control effort will be required to do so.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Map of the study areas and infection prevalence from 2005-2016.
(A) Map of East Sepik and Madang study area villages and locations on the north coast 

of Papua New Guinea (inset) The graphs show the pre-LLIN (2005/6) and post-LLIN 

(2010-2014) molecular prevalence for (B) East Sepik and (C) Madang for both P. falciparum 
(light grey) and P. vivax (dark grey) and proportion of multiclonal infections (black line) 

(Arnott et al., 2013; Barry et al., 2013; Kattenberg et al., 2020; Koepfli et al., 2017; Koepfli 

et al., 2015; Mueller et al., 2009; Senn et al., 2012).
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Figure 2. Changing diversity of P. falciparum and P. vivax populations over an intensifying period 
of malaria control (2005-2014).
Allelic Richness (Rs) in P. falciparum (A) (n= 860) and P. vivax (B) (n=755) populations 

pre- (≤2006) and post-LLIN (≥2010) mass-distributions. Error bars indicate standard 

deviations.
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Figure 3. Genetic differentiation estimates among P. falciparum and P. vivax populations pre- and 
post-LLIN mass-distributions.
Pairwise Jost’s D values for (A) P. falciparum and (B) P. vivax. Pairwise Jost’s D values and 

95% confidence intervals were estimated with 1000 bootstraps using the diveRsity package 

in R. Pairwise FST values (Weir and Cockerham) are shown in figure S1.
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Figure 4. Bayesian cluster analysis of P. falciparum (A) and P. vivax (B) of pre- (2005/6) and 
post-LLIN studies (2010-2014).
Individual samples are sorted by province and year (solid lines), catchment area (dashed 

line) and cluster membership (colour). Madang catchments are organised as Malala, Mugil, 

Utu and ESP2 and 2012-13 as Brukham, Burui, Ilahita, Ulupu, and Wombisa (no infections 

in 2012). As identified in the genetic differentiation analysis (Jost’s D, Figure 3), there 

was moderate differentiation for P. falciparum between the ESP1 (Wosera area) 2005 and 

Madang 2006 versus the other studies (only one province included pre-LLIN), which is 

believed to be for a large part caused by experimental- and data analysis differences. 

Therefore, these P. falciparum studies were grouped separately for the population structure 

analysis, in order to avoid artificial changes in ancestry over time.
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Figure 5. Unrooted neighbour-joining tree of P. vivax isolates in East Sepik province in 2012-13.
Relatedness among haplotypes was defined by calculating the pairwise distance and 

neighbour-joining tree using the APE package in R and the tree was visualized using 

Phylocanvas through microreact.org (Argimon et al., 2016; "Microreact,"). Colours and 

shapes indicate the village where the isolates were collected. Very closely related isolates are 

observed in the village of Sunuhu (dark grey circles).
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Table 1.
Estimates of multi-locus linkage disequilibrium (mLD) for Plasmodium populations pre- 
and post-LLIN mass-distribution.

IA
S is the standardized index of association; n = number of complete haplotypes. Single clone infection mLD 

is shown in Table S2.

All
haplotypes

Unique
haplotypes

P. falciparum n I A S p-value n I A S p-value

all pre-LLIN studies 199 0.0051 0.036 196 0.0048 0.046

all post-LLIN studies 136 0.0075 0.020 116 −0.003 0.787

East Sepik I 2005 15 −0.0038 0.566 15 −0.0038 0.566

East Sepik II 2005 103 0.0004 0.446 100 −0.0003 0.517

East Sepik 2012-13 21 0.0454 0.002 19 0.0202 0.088

Madang 2006 81 0.0108 0.011 81 0.0108 0.011

Madang 2010 82 0.0113 0.021 72 −0.0046 0.802

Madang 2014 33 0.0725 <0.00001 25 0.0198 0.059

All studies 335 0.0044 0.021 312 0.0027 0.103

P. vivax

all pre-LLIN studies 179 −0.0002 0.540 179 −0.0002 0.539

all post-LLIN studies 125 0.0126 <0.00001 120 0.007 0.001

East Sepik I 2005 48 0.0066 0.099 48 0.0066 0.099

East Sepik II 2005 37 0.0064 0.149 37 0.0064 0.149

East Sepik 2012-13 20 0.2154 <0.00001 19 0.1981 <0.00001

Madang 2006 94 −0.0022 0.796 94 −0.0022 0.796

Madang 2010 80 0.0113 0.0005 77 0.0004 0.436

Madang 2014 24 0.0073 0.209 24 0.0073 0.209

All studies 303 0.0025 0.013 299 0.0017 0.057
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