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Abstract

Objective: To determine the ability of quantitative electroencephalography (QEEG) to improve 

the accuracy of predicting recovery of consciousness by post-cardiac arrest day 10.

Methods: Unconscious survivors of cardiac arrest undergoing daily clinical and EEG 

assessments through post-cardiac arrest day 10 were studied in a prospective observational cohort 

study. Power spectral density, local coherence, and permutation entropy were calculated from daily 

EEG clips following a painful stimulus. Recovery of consciousness was defined as following at 

least simple commands by day 10. We determined the impact of EEG metrics to predict recovery 

when analyzed with established predictors of recovery using partial least squares regression 

models. Explained variance analysis identified which features contributed most to the predictive 

model.
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Results: 367 EEG epochs from 98 subjects were analyzed in conjunction with clinical measures. 

Highest prediction accuracy was achieved when adding QEEG features from post-arrest days 

4–6 to established predictors (area under the receiver operating curve improved from 0.81 ± 

0.04 to 0.86 ± 0.05). Prediction accuracy decreased from 0.84 ± 0.04 to 0.79 ± 0.04 when 

adding QEEG features from post-arrest days 1–3. Patients with recovery of command-following 

by day 10 showed higher coherence across the frequency spectrum and higher centro-occipital 

delta-frequency spectral power by days 4–6, and globally-higher theta range permutation entropy 

by days 7–10.

Conclusions: Adding quantitative EEG metrics to established predictors of recovery allows 

modest improvement of prediction accuracy for recovery of consciousness, when obtained within 

a week of cardiac arrest. Further research is needed to determine the best strategy for integration of 

QEEG data into prognostic models in this patient population.
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Introduction

Predictions regarding recovery of consciousness following cardiac arrest (CA) carry 

considerable weight for withdrawal of life-sustaining therapy (WLST). Recent guidelines 

recommend a multimodal assessment including a combination of clinical history 

and examination, laboratory tests, and supporting neuroimaging and electrophysiologic 

assessments to guide prognostication.1–3 Electroencephalography (EEG) in particular can 

be used to provide information regarding the integrity of functional brain networks in after 

acute brain injury.4,5 In spite of this, accuracy of prognosis remains variable. Increasingly 

sophisticated applications of EEG are used to contribute to this multimodal approach. 

Quantitative EEG analysis (QEEG) may have the potential to comprehensively capture the 

neuronal network integrity that is fundamental for neurologic recovery but is not currently 

utilized routinely in clinical practice.4,6 Predicting recovery of consciousness may be of 

particular interest, as it is a prerequisite for functional recovery and has major impact on 

decisions regarding WLST.7,8

The primary objective of this study was to determine if adding QEEG data to a multimodal 

prognostic model (including clinical exam components, laboratory and electrophysiologic 

markers of brain injury) improves the ability to predict early recovery of consciousness 

(designated by recovery of command-following by post-CA day 10). Secondarily, we 

describe patterns of changing QEEG metrics that may help identify patients who will go 

on to recover command-following by day 10. We chose to study short-term recovery (by 

post-CA day 10) as decisions regarding WLST are often made in this timeframe.

Methods

Inclusion criteria

Patients admitted to the neurological, medical, or cardiac intensive care units (ICUs) at 

a tertiary-care medical center from April 2013 through March 2016 were screened for 
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enrollment in an observational cohort study. We enrolled all patients who suffered a 

cardiac arrest and were not following verbal commands by the time of enrollment. Our 

hospital policy dictates that all cardiac arrest patients that do not follow commands in the 

immediate post-resuscitation period are considered as candidates for TTM and are subject 

to a standardized approach obtaining neuroprognostication studies, if appropriate as outlined 

in prior publications.9–11 These neuroprognostic studies include daily neuronspecific enolase 

measurements on post arrest days 1–5, EEG assessing epileptiform activity and reactivity, 

somatosensory evoked potentials, and brain MRI. We did not exclude patients with 

neurological disease from this study.

Informed consent was obtained from family or a legal representative. The study was 

approved by the local Institutional Review Board. Patients were managed according 

to a standardized hospital-wide post-cardiac arrest treatment protocol.9–11 This protocol 

indicates targeted temperature management (TTM) to 33 °C for 24 h unless medically 

contraindicated. While undergoing TTM patients may be sedated with fentanyl or propofol 

as needed to prevent shivering, routine monitoring of electrolytes, and regular bedside 

glucose testing for tight glycemic control. Our institutional protocol does not specify 

standardized criteria for WLST. Continuous EEG monitoring is used during the hypothermia 

period and post-cooling period if the patient remains unconscious to rule out non-convulsive 

seizures. Patients transferred from outside hospitals were also enrolled; only clinical and 

EEG data obtained at our institution was included and was analyzed with regards to the date 

of arrest, not the date of transfer. All patients who were post-CA and had EEG data available 

were included in this study. STROBE guidelines were used to ensure standardized reporting 

of this observational study.12

Clinical data and outcomes

Demographic and baseline risk factor data were collected. In addition, the daily behavioral 

assessments based on the attending neuro-intensivist exam were used to create a “command 

score” following previously published methodology: this is a 6-point scale (range 0–

5) in which elements of conscious behavior are quantified; 0—no response to any 

stimulus, 1—eye opening to verbal stimulus, 2—spontaneous eye opening, 3—tracking or 

attending to examiner, 4—following simple commands 5—following complex command.13 

Command scores were documented daily for the first 10 days post-CA, and served as a 

clinical assessment of consciousness. We documented daily pupillary and corneal reflexes, 

neuron-specific enolase (NSE) levels daily on post-CA days 1–5, and one assessment of 

somatosensory evoked potentials (SSEP) between post-CA days 4–10, if available. Cerebral 

Performance Category (CPC) was obtained at hospital discharge, with the understanding that 

the majority of prognostication studies assess CPC at a longer timeframe due to the risk of 

short-term morbidity and mortality affecting final outcomes.14,15

EEG data acquisition and preparation

EEG recordings, were conducted using a digital bedside video monitoring system with 21 

electrodes applied according to the international 10–20 system (XLTEK, Excel-Tech Corp., 

Natus Medical Incorporated, Oakville, Ontario, Canada; low-pass filter = 70 Hz, high-pass 

= 0.1 Hz, sampling rate = 256 Hz). 20-min EEG clips were obtained at the time of tactile 
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stimulation consisting of puncturing the patients’ fingertip with a small lancet to obtain 

a blood drop for the bedside glucose measurement, which were performed as part of our 

glycemic control protocol. These blood draws were retrospectively chosen as ideal times to 

analyze EEG recordings, as they provided a minimal but standardized stimulation method 

already being performed as part of routine clinical care for all patients, and were precisely 

time-stamped by the automated glucometer. EEG clips were obtained until post-CA day 10. 

For analyses purposes, in an effort to match circadian cycles, we selected the blood draw 

closest to 10AM during which patient had EEG data available. (Fig. S1) EEG clips were 

exported in European Data Format (EDF) for quantitative analysis.

Data preparation included careful visual screening for artifact, seizures, and high-frequency 

periodic discharges. EEG epochs that contained muscle artifact, seizures, or periodic 

discharges at frequencies >2.0 Hz were excluded from analysis. EEG clips following 

administration of high-dose sedative medications in the 3 h preceding the clip were excluded 

for potential confounding of QEEG properties. High-dose sedative medications were defined 

at or above the following thresholds: propofol 40 mcg/kg/min, midazolam 0.1 mg/kg/h, 

fentanyl 75 mcg/h (or other opioid equivalent), or dexmedetomidine 0.2 mcg/kg/h.

EEG measures

All EEG analyses were performed in MatLab (Mathworks, Natick, MA), using FieldTrip16 

and Chronux toolbox.17 Unless noted, EEG data analysis was performed according to 

previously-described methods.13 Artifact cleaning involved the identification of poor quality 

EEG channels based on statistical comparison with neighboring channels with distance-

weighted linear interpolation.18,19 Epochs were sub- The primary compa activity, and 

amplitude above threshold (110 μV) were excluded from each of these trials. Data analysis 

was performed on each individual electrode for each epoch and analyzed separately in 

five frequency bands Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–14 Hz), Beta (14–24 Hz), 

and Gamma (24–50 Hz). For each electrode the following three quantitative metrics were 

calculated:

i. Power spectral density (PSD) using multitaper method across all frequencies.21

ii. Local coherence, a metric quantifying the degree of signal synchronization 

between immediately adjacent electrodes, using weighted pairwise phase 

consistency (WPPC) method.19

iii. Permutation entropy, a metric quantifying the complexity/disorder of a time 

series signal which can be applied to EEG analysis.18,22

Statistical analysis

The primary comparison was between patients who would regain the ability to follow 

commands by post-CA day 10 (“recover”) and those who would not. To facilitate robust 

statistical comparisons, EEG clips were grouped into three time bins for analysis, acquired 

on post-CA days 1–3, 4–6, or 7–10. A maximum of one EEG clip per day per patient was 

used. The majority of patients had available EEG clips from days in each of the three time 

bins. Median values of each QEEG metric were used to generate topographic maps based on 

QEEG metrics from these three time periods comparing patients that would recover to those 
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that would not. Statistically significant differences were determined using the Wilcoxon 

rank-sum method applying a threshold of p < 0.01 after correction for multiple comparisons.

Partial least squares regression was used to identify clinical and QEEG features that 

predicted recovery of command following by post-CA day 10. Model building followed 

a two-step approach: (1) We first built a model using 12 clinical features previously 

identified as recovery predictors in patients with cardiac arrest: age, gender, witnessed 

arrest, in-hospital arrest, initiation of bystander cardiopulmonary resuscitation, initiation 

of therapeutic hypothermia, shockable initial rhythm, premorbid CPC, bilateral absence 

of pupillary reflexes and corneal reflexes through post-CA day 5, peak NSE level, and 

bilateral absence of N20 response on SSEP evaluation.23 We limited the clinical features 

of our model to those recommended as part of a multimodal prognostication strategy 

or widely-established to be predictive of outcome.24 Next we determined which QEEG 

measures remained significant when analyzed together with the clinical model developed 

above. This approach generated different versions of the model to predict 10-day recovery 

at three different time points (post-CA days 1–3, 4–6, or 7–10). For each time point 

only clinical and QEEG data available at that time was entered into the model. Any data 

collected after a patient recovered command-following was censored from the analysis. 315 

individual QEEG-based input features (21 electrodes × 3 QEEG metrics × 5 frequency 

bands) were utilized. The predictive model was generated using 50% of data for training 

and 50% for testing, with random assignment of data into each group and 1000-fold 

repetition of set allocation. Predictive accuracy was expressed as the area under the Receiver 

Operating Characteristics curve (AUC) averaged across all trials. Explained variance (R2) 

was calculated to determine which features of the model contributed the most to the 

predictive accuracy at each of the time periods.

Results

EEG recordings

We obtained a total of 494 EEG epochs from 102 subjects. Of these, 127 epochs were 

excluded from analysis due to the presence of seizures or high frequency periodic discharges 

(n = 28), high sedation levels (n = 98), or abundant muscle artifact (n = 9), leaving 

367 epochs from 98 subjects for final analysis. 144 epochs were acquired from post-CA 

days 1–3, 131 epochs from days 4–6, and 92 epochs from days 7–10. Of the 28 clips 

excluded for presence of seizures or high-frequency periodic discharges, 4 were from two 

patients who would go on to recover command-following by day 10. One of these two 

patients had generalized convulsive seizures and the other generalized periodic discharges 

and electrographic seizures.

Patient cohort

Of 102 subjects initially included, 4 were excluded as their only available EEG data was 

not acceptable per the above criteria. We included 98 unconscious patients with CA of 

whom 40 regained command-following by post-CA day 10 (Table 1). Mean age was 57 ± 

18 years, return of spontaneous circulation (ROSC) time 19 ± 19 min, and shockable initial 

rhythm present in 31%. 19 patients underwent WLST before post-CA day 10. 13 patients 
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who recovered command-following by post-CA day 10 subsequently died before hospital 

discharge, while 7 patients who did not recover command-following by day 10 did so prior 

to hospital discharge. Median CPC at hospital discharge (including expired patients) was 5 

(IQR 3, 5) (Table 2).

Predictive model

Predictive ability of the different versions of our model expressed as mean AUC, utilizing 

clinical and/or QEEG features, is presented in Fig. 1. When QEEG metrics were added 

to clinical data (Supplemental Tables 1–3), predictive ability improved significantly for 

data from post-CA days 4–6 and 7–10 (p < 10e−10). The best predictive ability was an 

average AUC of 0.86 0.05, obtained from the model using all clinical and QEEG data 

from post-CA days 4–6. When looking at data from post-CA days 1–3, predictive ability 

worsened significantly with the addition of QEEG metrics, from 0.84 ± 0.04 to 0.79 ± 0.05 

(p < 10e−10).

Explained variance analysis

Our predictive model was constructed with 12 clinical and 315 QEEG features. To better 

understand which features contributed most weight to the overall predictive accuracy, we 

calculated the explained variance (R2) of each feature in each of the three time bins. We 

found that individual clinical features carried the most weight in the analysis of data from 

post-CA days 1–3, but were significantly less influential compared to QEEG features in 

the later two time bins (Fig. 2). All QEEG features explained 11% of the model variance, 

clinical features explained 30%, and all features combined explained 35% of the model 

variance.

Topographic plots of quantitative metrics

Review of topographic maps for each metric revealed patterns of electrode clusters with 

significant differences (p < 0.01) between those from patients who would or would not 

recover consciousness by post-CA day 10. Patients with recovery by day 10 compared to 

those without had early in their post arrest course (at days 4–6) higher broad-spectrum 

coherence and higher centro-occipital slow frequency spectral power (Delta and Theta 

range) Later in the course (days 7–10) these patients demonstrated globally higher 

permutation entropy in theta frequency range (Fig. 3). All plots in which clusters of 

3 or more statistically-significant adjacent electrodes were identified are presented in 

Supplemental materials (Fig. S2).

Discussion

In this study, we found that the addition of QEEG data from post-CA days 4–6 improved 

prediction of early recovery of command-following 10 days after CA, compared to a 

model using previously-identified clinical predictors alone. The degree to which prognostic 

accuracy improved adding QEEG measures was modest; further work will be needed to 

identify the ideal metrics and strategy to yield the greatest improvement. Much of the focus 

has been on identifying predictors of long-term recovery. This is problematic as WLST 

is common and predictors of long-term outcomes are difficult to disentangle from the self-
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fulfilling prophecy of early WLST in clinical studies. As early recovery of consciousness 

after cessation of sedation may reduce the likelihood of WLST, we chose to focus on 

identifying clinical and electrophysiological predictors of short term recovery of command 

following. Additionally, short-term recovery of consciousness is valuable as it predicts long-

term functional recovery.7 Timeframes were chosen based on clinical practice, selecting 

times when goals of care discussions with families typically occur. While this timing is 

not uniform, often prognostication and goals-of-care discussions are initiated following 

rewarming (day 3) and within 7 days of CA.

Earlier efforts to integrate EEG data into post-CA prognostication have used relatively 

simple qualitative EEG features, such as generalized suppression, burst suppression, or 

specific patterns of generalized discharges.25,26 Visual assessment of EEG reactivity has 

specifically been studied, and one multicenter cohort study showing that this metric 

alone was not able to predict outcome, however when added to a multimodal predictive 

model, it did significantly increase predictive ability.27 Other simple QEEG metrics such 

as amplitude-adjusted EEG have also been studied to a limited extent.28 The approach 

used here of combining data from multiple QEEG metrics with other clinical data into 

a single predictive model is a potentially more sensitive application of QEEG in this 

patient population. One study using machine-learning-based analysis of QEEG data has 

successfully demonstrated improved prognostication for long term outcomes, however the 

optimal method for analyzing QEEG data and integrating it with established predictors is 

not yet known.29 Resting state EEG can detect neuronal activity, however there are large 

variations in level of arousal in patients in the ICU setting; we chose to use EEG epochs 

specifically from moments of known standardized physical stimulation (blood draws) to 

reduce this variability as much as possible.

Therapeutic hypothermia may impact QEEG measures. Both human and animal studies have 

shown that quantitative metrics including frequency band amplitude, approximate entropy, 

wavelet subband entropy, bispectral index, and burst suppression ratio are significantly 

impacted by hypothermia in the range of 32–34 °C.6 At least one study concluded that 

hypothermia does not impact the prognostic ability of a QEEG-based model, however this 

is controversial.30–32 In our study, the predictive ability of our model was moderately 

improved by the addition of QEEG data during all later time points, however was impaired 

by adding this data during the first 3 days. As hypothermia was the major clinical variable 

present during days 1–3 only, one interpretation is that hypothermia may negatively impact 

the prognostic value of QEEG in this setting. This is further supported by the analysis of 

explained variance of individual model features, showing a relatively lower influence of 

QEEG metrics compared to clinical features in the first 1–3 days. This observation supports 

the view that early prognostication before clinical re-warming may be premature due to 

multiple potential confounding factors.33

The impact of sedatives on prognostic tests, including QEEG metrics, is not well 

established. One study found that propofol infusion does not impact reliability of a 

multimodality prognostic model utilizing QEEG.31 Other studies have also suggested that 

sedation does not impact prognostic utility of QEEG, however it does alter QEEG values 

(specifically causing a higher suppression ratio, decrease in amplitude-adjusted EEG power, 
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but no impact on alpha-delta ratio).34 We reduced the impact of this confounder in our study 

by excluding all subjects who were receiving high doses of sedatives. While this approach 

could potentially introduce other exclusion bias, we felt this was a lesser concern than the 

possible direct impact of sedatives themselves in altering QEEG values.

Several QEEG patterns identified here are consistent with prior observations. Higher total 

spectral power in the first 6 days after arrest was seen in delta and theta frequencies only 

in those subjects who would go on to recover, consistent with prior observations describing 

reafferentation of thalamo-cortical and cortico-cortical networks during acute recovery of 

consciousness.4 Global increase in permutation entropy was seen in theta frequency only 

in the few days immediately preceding return of command-following in our data set. A 

similar finding has been reported in studies of chronic disorders of consciousness, in which 

higher values for theta-band permutation entropy are specifically associated with subjects 

in higher states of consciousness.35 Finally, we identified local coherence to be higher in a 

cluster of posterior region electrodes in post-CA days 4–6 in subjects who would recover, 

across multiple frequency bands. This result is somewhat different than prior observations 

in a propofol-induced loss of consciousness model, in which return of consciousness was 

associated with increased frontal coherence and decrease in posterior coherence in the alpha 

band.36 This may be explained by the fact that our data was from the period immediately 

preceding recovery of consciousness and differences in the disease model.

There are several weaknesses of this study. Results may be less generalizable to all post-CA 

populations, as our cohort was from a single center and included a high number of in-

hospital arrests with high degree of medical comorbidity, compared to most large studies of 

post-CA outcomes. Verbal command-following is only one manifestation of consciousness, 

and our clinical assessment scale would not detect some features of minimally-conscious 

states, such as visual tracking and object manipulation, or patients with cognitive-motor 

dissociation. Our results are impacted by survival and treatment biases due to WLST, which 

affects most studies of this nature. Median day of WLST in our study however was post-CA 

day 8 (IQR 5.5–14), leaving a relatively narrow timeframe for a small number of subjects 

who might have otherwise recovered command-following to do so, such that we feel this 

bias had a relatively small impact on our conclusions. Additionally, not all patients had all 

prognostic markers available, and we did not have long-term outcome data available for 

this cohort. Importantly, only qEEG measures obtained in the post arrest day 4–6 improved, 

whereas qEEG measures obtained prior to 4 days or after 6 days actually worsened the 

prediction accuracy of the model. This raises questions as to the consistency of this measure 

which will need to be demonstrated in follow-up studies replicating these findings. We want 

to submit however, that qEEG measures obtained within the first 3 days after arrest would 

have had the highest risk of being heavily affected by sedation and hypothermia, resulting 

in qEEG measures adding noise to the model. Beyond one week outcomes will more likely 

be confounded by WLST and qEEG measures would likely add little. As anticipated, qEEG 

measures obtained 4–6 days after the arrest are most informative adding modestly to the 

outcome prediction model. The strengths of this study include (a) blinding features of the 

prognostic model which would not be known to a clinician at that time, simulating real-

world application of this data, (b) stringent exclusion of epochs with potential confounders 
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such as sedation and seizure activity from analysis, (c) standardized stimulation method at 

the time of EEG collection, and (d) care guided by standardized institutional protocol.

Conclusions

Integration of quantitative EEG metrics into a prognostic model for post-CA patients 

modestly improves discriminatory ability to predict those who will recover command-

following by post-arrest day 10. In clinical practice, this approach may be more practical 

than integration of EEG data based on visual review of the raw EEG such as reactivity. 

We found that the predictive value from QEEG in our model was more significant than 

that from SSEP. As there is often a broader role for EEG for seizure detection in this 

population, QEEG may be a more cost-effective prognostic tool than SSEP or other 

supplementary prognostic measures in this population. Data from post-CA days 4–6 had 

the highest predictive ability in our model, and integration of QEEG data from days 1–3 

paradoxically decreased prognostic ability of our model. QEEG data appears to assist in 

neuro-prognostication, however the optimal strategy for integration into prognostic models 

has yet to be determined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Mean area under the Receiver Operating Characteristics curve (AUC) averaged across 1000 

trials of predictive model generation, for each of the three time periods under study. The 

most significant benefit of adding QEEG data to clinical data was seen on post-CA days 

4–6. In each of the later two time bins, QEEG data alone was as effective as clinical data 

alone in predicting recovery of command-following by day 10. * = significance of p < 

10e−10.
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Fig. 2 –. 
Explained variance (R2) for each model feature, presented for each time bin and ranked in 

order of highest R2 value. In post-CA days 1–3, clinical features showed a higher influence 

compared to QEEG features. In the later time periods this trend had reversed, with QEEG 

features playing a much larger relative role in the prognostic model. When combined, all 

QEEG features explained 10.9% of the model variance, while all clinical features combined 

explained 29.0%, and all features combined explained 34.9% of the model variance.
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Fig. 3 –. 
Red circles designate electrodes which showed a significant difference (p < 0.01) in mean 

QEEG values between patients who would or would not go on to recover command 

following by day 10. Patients with recovery by day 10 had higher broad-spectrum coherence 

and higher centro-occipital slow frequency spectral power (Delta and Theta range) early 

in their post-arrest course (at days 4–6). Later in the course (days 7–10) these patents 

demonstrated globally higher permutation entropy in theta frequency range.
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Table 1 –

Patient characteristics (n = 98).

Demographics and comorbidities

Age in years 58 ±18

Male sex 61 (60%)

Pre-arrest mRS 2 [0, 3]

Pre-arrest CPC 1 [1, 2]

 CPC Distribution: 1 (n = 70), 2 (n = 15), 3 (n = 12), 4 (n = 1), 5 (n = 0)

Past medical history

 Myocardial infarct 19 (19%)

 Heart failure 37 (36%)

 Arrhythmia 17(17%)

 Diabetes 30 (30%)

 Cerebrovascular disease 18 (18%)

Peripheral vascular disease 12 (12%)

Hypertension 57 (56%)

Dementia 11 (11%)

Arrest characteristics

In-hospital arrest 49 (48%)

Witnessed arrest 82 (80%)

Bystander CPR (if witnessed)

 None 26 (26%)

 By lay bystander 15 (15%)

 By medical personnel 57 (56%)

Shockable initial rhythm (VT or VF) 32 (31%)

Targeted temperature management 76 (75%)

Initial temperature in degrees C
36.4 [35.9, 36.9]

a

ROSC time (min)
12 [8, 21]

b

Normally-distributed variables reported as mean ± SD. Non-normally-distributed data reported as median [interquartile range].

Abbreviations: CPC, Cerebral Performance Category; mRS, Modified Rankin scale; ROSC, return of spontaneous circulation; VF, ventricular 
fibrillation; VT, ventricular tachycardia.

a
Data available for 81 subjects only.

b
Data available for 91 subjects only.
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Table 2 –

Outcomes and prognostic data.

Outcomes

DNR order placed 53 (52%)

 Post-arrest day of DNR order 5 [2, 8]

WLST performed (overall) 35 (34%)

WLST performed (by post-CA day 10) 19 (19%)

Median post-arrest day of WLST 8 [5, 14]

Following commands at post-CA day 10 40 (39.2%)

Length of ICU stay (days) 9 [6, 15]

CPC at hospital discharge 5 [3, 5]

 CPC Distribution: 1 (n = 11), 2 (n = 11), 3 (n = 11), 4 (n = 5), 5 (n = 60)

Prognostication characteristics

SSEPs performed 25 (26%)

Bilaterally absent N20 response 14 (56.0%)

SSEP performed (post-arrest day) 6 [5, 8]

NSE levels collected 77 (79%)

Peak NSE (ng/mL) 72.8 ± 10.0

 Peak NSE (CPC 1–2 at hospital discharge) 24.8 ± 3.4

 Peak NSE (CPC 3–5 at hospital discharge) 83.4 ± 11.8

 Peak NSE (post-arrest day) 3 [2, 4]

EEG reactivity identified by day 5 55 (56%)

Bilaterally absent pupils and corneal reflexes through day 5 11 (10.8%)

Normally-distributed variables reported as mean ± SD. Non-normally-distributed data reported as median [interquartile range].

Abbreviations: CPC, Cerebral Performance Category; DNR, do not resuscitate, GCS, Glasgow Coma Scale; NSE, neuron specific enolase; SSEPs, 
somatosensory evoked potentials; WLST, withdrawal of life sustaining therapy.
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