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Abstract

Background: Electroencephalography (EEG) findings following cardiovascular collapse in 

death are uncertain. We aimed to characterize EEG changes immediately preceding and following 

cardiac death.

Methods: We retrospectively analyzed EEGs of patients who died from cardiac arrest while 

undergoing standard EEG monitoring in an intensive care unit. Patients with brain death preceding 

cardiac death were excluded. Three events during fatal cardiovascular failure were investigated: 

(1) last recorded QRS complex on electrocardiogram (QRS0), (2) cessation of cerebral blood flow 

(CBF0) estimated as the time that blood pressure and heart rate dropped below set thresholds, and 

(3) electrocerebral silence on EEG (EEG0). We evaluated EEG spectral power, coherence, and 

permutation entropy at these time points.

Results: Among 19 patients who died while undergoing EEG monitoring, seven (37%) had a 

comfort-measures-only status and 18 (95%) had a do-not-resuscitate status in place at the time of 

death. EEG0 occurred at the time of QRS0 in five patients and after QRS0 in two patients (cohort 

median − 2.0, interquartile range − 8.0 to 0.0), whereas EEG0 was seen at the time of CBF0 in 

six patients and following CBF0 in 11 patients (cohort median 2.0 min, interquartile range − 1.5 

to 6.0). After CBF0, full-spectrum log power (p < 0.001) and coherence (p < 0.001) decreased on 

EEG, whereas delta (p = 0.007) and theta (p = 0.007) permutation entropy increased.

Conclusions: Rarely may patients have transient electrocerebral activity following the last 

recorded QRS (less than 5 min) and estimated cessation of cerebral blood flow. These results may 

have implications for discussions around cardiopulmonary resuscitation and organ donation.
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Introduction

Physicians report an exact time of death on death certificates, which models the prolonged 

process of fatal organ failure as a simple binary. However, organ failure in death is neither 

synchronized nor coordinated. Rather, organs cease to function at different rates [1, 2], and 

some cellular activity transiently increases [3, 4].

In animal studies of electroencephalographs (EEG) at the time of cardiac death, increased 

coherence in the gamma band frequency has been seen following the final heartbeat [5]. 

In patients, diffuse EEG attenuation after cardiac arrest [6] and cessation of arterial blood 

pressure [7] were seen, as well as an increased bispectral index for at least 18 min after the 

loss of blood pressure [8] and withdrawal of life-sustaining therapies (WLST) [9]. However, 

these studies did not deconstruct electrocerebral activity in ways that provide insight into the 

coordination of functions across the whole cortex during cardiac death.

Studies suggest that behavioral assessments alone may not reliably exclude the 

comprehension of verbal commands and conscious processing in patients with acute 

brain injury [10, 11]. More recently, brain activation to tone changes was observed in 
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patients in end-of-life hospices who were unresponsive [2]. Further, highly attenuated 

EEG (less than 10 μV) in cortical neurons does not necessarily preclude their excitability 

[12]. Certainty about cerebral function at the time of cardiac arrest, which excludes the 

possibility of consciousness, may have implications for the management of patients during 

cardiopulmonary resuscitation and potentially for organ donation after cardiac death.

The aim of this study was to determine a time line of events associated with fatal organ 

failure and to identify EEG signatures associated with those events. We hypothesized that 

we would observe EEG slowing and attenuation [6, 7, 13–15], as well as transient surges 

in EEG spectral power and coherence [5, 7–9, 16, 17], as common signatures of cerebral 

activity following cardiovascular collapse in death.

Methods

Study Cohort

We included all adult patients who were admitted to our neurological intensive care unit 

and who had continuous EEG monitoring recorded at the time of cardiac death between 

February 2009 and January 2019. Patients underwent EEG monitoring for the purposes of 

detecting seizures or ischemia. None of the patients were placed on EEG for the purposes 

of recording EEG during the dying process. We excluded patients with the diagnosis of 

brain death and those who had no EEG recorded during the estimated cessation of cerebral 

blood flow, as defined below. Demographics and admission diagnoses were collected from 

the medical record. Data recorded prior to cardiac death included medication administration 

(such as sedatives and vasopressors), anticonvulsant medications, mechanical ventilation 

status, WLST, and administration of advanced cardiovascular life support (ACLS) measures. 

The time from hospitalizing injury to death and the cause of death were noted. The study 

was approved by the local institutional review board (IRB-AAAL4106), and the use of 

informed consent was waived per section IV of the local institutional review board’s Health 

Insurance Portability and Accountability Act policy, citing 45 CFR 164.512(i)(1)(iii).

Surrogate Events for Fatal Organ Failure

We studied three events as surrogates for organ failure associated with cardiac death: (1) 

cessation of cerebral blood flow, (2) electrocerebral silence on EEG, and (3) last recorded 

QRS complex on electrocardiogram (ECG). Each event was independently assessed by 

two board-certified critical care physicians (W-TC and AA), and a third expert (JC) was 

consulted for disagreements. EEG was assessed by two critical care EEG experts (AA and 

JC). Assessors were blinded to the rest of the physiologic data.

Events were defined as follows:

1. Cessation of cerebral blood flow (CBF0) was assumed to occur following a 

permanent (1) heart rate of less than 20 beats per minute and (2) blood pressure 

below a set threshold as measured by the arterial line laced into the radial artery. 

Because blood pressure measures varied in availability between patients, this 

second criterion was met if at least one of the following subcriteria, as well as 

all others available, was observed: (2a) mean arterial pressure of less than 20 
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mm Hg, (2b) systolic blood pressure of less than 40 mm Hg, and (2c) diastolic 

blood pressure of less than 20 mm Hg. These thresholds were chosen because 

ventricular asystole [18] and EEG slowing [14] have been observed just below 

these blood pressure levels.

2. Electrocerebral silence (EEG0) was defined as the time when the EEG amplitude 

permanently dropped below 2 μV, following standards for the diagnosis of brain 

death [19]. Notably, this EEG measure as defined above does not fulfill EEG 

criteria to declare brain death [19].

3. Last QRS complex (QRS0) was defined as the time of the final QRS complex 

with a clear R peak, as recorded on ECG, based on studies of QRS morphology 

as an indicator of cardiac dysfunction [20].

EEG and Physiologic Data Acquisition

Electroencephalograph and ECG recordings were obtained using a digital bedside video 

monitoring system (XLTEK; Excel-Tech Corp, Natus Medical Incorporated; Oakville, 

Ontario, Canada; low-pass filter = 70 Hz, high-pass filter = 1 Hz, sampling rate = 200, 

256, and 512 Hz) with 21 EEG electrodes placed according to the International 10–20 

system. EEG data were evaluated using a 5-μV/mm sensitivity and 60-Hz notch filter. Blood 

pressure and heart rate data were acquired using a Phillips or GE bedside physiologic 

monitoring system with Bed-masterEX software (Excel Medical Electronics; Jupiter, FL, 

USA; sampling rate = 0.2 Hz). EEG, ECG, and other physiologic measurements were 

recorded as part of routine clinical care. Bedside monitoring systems were synchronized to 

an Internet clock.

Data Preprocessing

Signal preprocessing was done with Matlab (Matlab 2019a; The MathWorks, Inc; Natick, 

MA). Raw EEG data were preprocessed using the FieldTrip [21] and Chronux [22] 

toolboxes. Noisy EEG channels were identified upon visual inspection by EEG experts (AA 

and JC) and excluded from analyses. A Hjorth surface Laplacian filter was applied, which, 

from each channel, subtracts the spatially averaged signal of its closest neighbors. This 

approach dampens EEG signals common to spatially proximate electrodes (i.e., signals often 

seen in movement or muscle artifact) while amplifying signals localized to each channel. 

We calculated three quantitative EEG features: spectral power, coherence, and permutation 

entropy in 30-s epochs. Only frequencies between 1 and 50 Hz were used. Data were 

analyzed in five different frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), 

beta (14–26 Hz), and gamma (26–50 Hz). Data from 5 min before to 5 min after each event 

were used. Each 10-min EEG recording was discretized into 20 epochs for analysis.

Spectral Power

Spectral power is a measure of the energy carried by a signal and defined as the squared 

EEG amplitude in a discrete frequency range. Power for each epoch was calculated using 

multitaper decomposition, as implemented in the mtspectrumc function of the Chronux 

toolbox. Analyses were performed after applying a natural logarithm.
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Coherence

Coherence is a measure of phase synchrony between signals. Coherence was calculated 

for all combinations of channel pairs using weighted pairwise phase consistency as 

implemented in the ft_connectivityanalysis function of the FieldTrip toolbox.

Permutation Entropy

Permutation entropy is a measure of complexity in a time series based on the probability of 

ordinal sequences of different permutations in the time series [23]. Permutation entropy of 

permutation order n = 4 was calculated over a time lag vector τ = (2,4,8).

Statistical Tests

Event-related changes to EEG features were calculated for each frequency band as well 

as the full frequency spectrum. We conducted repeated measures of analysis of variance, 

comparing features across all epochs. Not all data were normally distributed and spherical, 

so pairs of epochs were compared using Wilcoxon signed-rank tests and corrected for 

multiple comparisons using the Benjamini–Hochberg false discovery rate method. Each pair 

contained epochs occurring 5 min apart, with one epoch before and one epoch after an event. 

With 10 epoch pairs and 19 patients, this resulted in 190 total comparisons.

Results

Study Cohort

We identified 19 patients who had continuous EEG recorded at the time of cardiovascular 

collapse in cardiac death. The median age at death was 57 years (interquartile range [IQR] 

45–82), and the most common admission diagnoses were status epilepticus and cardiac 

arrest (Table 1). At the time of death, 14 patients had a status of comfort measures only 

or WLST with do not resuscitate, and 18 had a do-not-resuscitate status in place. Three 

patients received ACLS, including chest compressions and epinephrine, and two of these 

patients were placed on a do-not-resuscitate status after ACLS was performed. In the 24 

h preceding death, 16 patients received anticonvulsants and/or sedatives and 10 received 

vasopressors. QRS0 was not available in two patients because of ECG artifacts following 

chest compressions and poorly connected ECG leads.

Time Line of Events

The time line of CBF0, EEG0, and QRS0 varied between the 19 patients tremendously (Fig. 

1). EEG0 occurred prior to QRS0 in ten patients, at the time of QRS0 in five, and following 

QRS0 in two. The range of EEG0 in relation to QRS0 was from − 80.0 to 2.0 min (median − 

2.0, IQR − 8.0 to 0.0). EEG0 occurred prior to CBF0 in six patients, at the time of CBF0 in 

two, and following CBF0 in 11. The range of EEG0 in relation to CBF0 was from − 33.0 to 

34.0 min (median 2.0, IQR − 1.5 to 6.0).

Significant EEG Feature Changes

After CBF0, full-spectrum log power and full-spectrum coherence decreased (Fig. 2, 

Supplemental Fig. 1), largely driven by low frequencies. Concurrently, theta and delta 
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permutation entropy increased. After EEG0, full-spectrum log power, delta coherence, and 

beta permutation entropy decreased, whereas delta and theta permutation entropy increased. 

Following QRS0, delta coherence decreased (Table 2). A case study of a patient with 

returning EEG activity following CBF0 and a brief period of isoelectric EEG is given by Fig. 

3 and Supplemental Fig. 2. Statistical dispersion of EEG features at CBF0 is given by Table 

3.

Discussion

In this case series, we observed that the timing of electrocerebral silence following 

cardiovascular collapse in death was highly variable in relation to the permanent cessation of 

the electrical and pump function of the heart. Across all patients, decreases in full-spectrum 

coherence and log power, with increases in low-frequency permutation entropy, were seen at 

the time of estimated cessation of cerebral blood flow. To our knowledge, this study is the 

first to look at the order and timing of these three pathophysiologic events. None of these 

observations allow any conclusion on the possibility of awareness following cardiac death 

but, instead, support the notion of a more complex and poorly synchronized process of dying 

[24].

In humans, voltage suppression [6, 7] and isoelectric EEG within 30 s of asystole [13, 

19, 25, 26] have been reported. In rare occasions, prolonged EEG activity minutes after 

cessation of blood flow has been observed [8, 9]. Rhythmic [6, 13], bursting [7], and 

background [6] neural activity in the delta band frequency range have been reported 

following cardiac arrest. Sustained background neural activity [6] and increased amplitude 

[15] in the theta band have been found, as well. A recent large-scale study found a transient 

return of cardiac activity (arterial pressure of 5 mm Hg or more with a QRS complex) in 

14% of patients after cessation of cardiac activity during WLST [27].

In our case series, we saw persistent EEG activity in some patients minutes after CBF0 and 

QRS0. Our results support the notion that, in rare cases, electrical brain activity can briefly 

continue in the absence of cardiac function supporting cerebral perfusion. The excitability 

and potential preservation of cortical neurons several minutes after cardiac arrest, suggested 

by our case study (see Fig. 3), contributes to evidence that electrocerebral silence during the 

dying process is not always permanent [12, 28–30].

After interpreting our EEG features, we assume that power is a function of aggregate 

neuronal electrical activity, that coherence may be proportional to functional connectivity, 

and that permutation entropy is theoretically proportional to the amount of information 

communicated by a signal. A prior study reported increased power and coherence in the 

lower gamma band (25–55 Hz) after circulatory death in rats [5]. Translating these findings 

to humans is challenging because normal and abnormal frequency spectra may differ [31–

33]; however, in contrast to the animal work, we found decreases in full-spectrum EEG 

log power and coherence following the estimated circulatory cessation. In accordance with 

attenuation seen in previous human studies within seconds of cardiac arrest [6, 7, 15], we 

found lower full-spectrum log power after CBF0.
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Concurrent increases in permutation entropy and decreases in coherence in lower 

frequencies after CBF0 may represent a swift loss of both global and local synchronous 

neuronal activity following the loss of blood flow. This observed increase in signal 

complexity may also reflect abnormal information exchanges between neurons, implying 

that arrhythmic, local neural signaling is another possible signature of a blood-flow-deprived 

brain [6, 7, 15]. Given that permutation entropy is associated with changes in consciousness 

[34–36], these results suggest that perceptual changes, subsequent to abnormal perfusion of 

the brain, may be at least mediated by disintegrated long-distance cortical processing and 

elevations in locally complex processing.

Status epilepticus may predispose patients to transient electrocerebral activity in the 

absence of oxygenation and blood flow necessary to sustain life. In patients with status 

epilepticus, noise-driven perturbations are sufficient to trigger oscillations in pathologically 

hyperexcitable cortical neurons [37–39]. The effects of seizure-induced disruption of the 

blood–brain barrier [40–44] and pharmacological agents on hyperexcitable neurons may 

influence mechanisms that underlie the recurrence of EEG activity following electrocerebral 

silence during cardiac death. Intramuscular epinephrine administered to patient 17 during 

pulseless electrical activity and shortly before the recurrence of EEG activity, which may 

have mimicked an endogenous stress response, induced cerebral activity [45–47]. The 

underlying mechanisms of a brief return of EEG activity following a brief period of 

isoelectric EEG are uncertain and require further study.

Our case series contributes to a small corpus of literature that has evaluated the time 

course of electrocerebral function following cardiac arrest [5, 7–9, 13, 16, 17, 48]. Relevant 

to organ donation after cardiac death, a return of EEG activity after cardiopulmonary 

resuscitation was observed in pigs who underwent no more than 4.5 min of ventricular-

fibrillation-induced cardiac arrest [48]. The authors suggest a 10-min “no-touch” period 

before organ retrieval to ensure brain death in all human donors. Our data support that a 

5-min wait time may be sufficient, as EEG0 after the last QRS occurred for no more than 2 

min in two patients. Further evidence is required to better determine the minimum time that 

needs to pass prior to proceeding with organ donation after cardiac death, as the quality of 

donor organs deteriorates rapidly following cardiac death.

Of 19 patients who died a cardiac death, 11 had EEG activity following permanent cessation 

of the electrical or pump function of the heart. The persistence of cortical activity and 

the reversibility of electrocerebral silence in patients who are critically ill after physician-

determined death has implications for continued discussions surrounding cardiopulmonary 

resuscitation [6, 28, 49, 50], EEG criteria for brain death [19, 51–54], and organ donation 

after cardiac death [7, 26, 27, 53, 55]. The use of EEG to support outcome prediction 

during resuscitation [6, 48] and to determine the nociceptive capacity of the brain under 

life-threatening conditions, such as cardiovascular failure [56–60], may be of interest for 

future research.

Our study has multiple limitations. First, although times for both QRS0 and EEG0 were 

assessed from the same EEG monitor clock, a clock from another bedside monitor was 

used to assess blood pressure criteria for CBF0, which limits the precision of timing 
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between events. Second, the study is a retrospective case series with a small number of 

patients collected over many years. This prevents us from making generalizable inferences. 

Third, although we took artifacts into consideration during the quantitative EEG analysis, 

the intensive care unit is an artifact-rich environment, thus making artifact-free analysis 

challenging. Fourth, we did not analyze cortical spreading depolarization because patients 

only underwent surface EEG [28, 61]. Fifth, the EEG in this series was obtained using 

standard clinical EEG criteria and not those recommended for brain death determination, 

which is pertinent to our assessment of electrocerebral silence. Finally, our cohort comprised 

a group of patients with different etiologies and preexisting neurological diagnoses. Our 

observations of post-QRS0 EEG activity in patients receiving epinephrine and patients 

with status epilepticus immediately preceding cardiac arrest may be insufficient to make 

generalizable inferences about all patients. Although challenging, a larger prospectively 

collected multicenter cohort study may better elucidate electrocerebral patterns during the 

process of cardiac death.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Timeline of three pathophysiologic events. Relationship of electrocerebral silence on EEG 

(EEG0) and last QRS complex on ECG (QRS0) in relation to cessation of cerebral blood 

flow (CBF0). The y axis represents the 19 patients in the study and the x axis represents 

time in minutes. Patients are ordered by magnitude of change in global power 5 min 

before vs. 5 min after CBF0. For patient 12, temp_EEG0 represents time of temporary 

electrocerebral silence before the return of cerebral activity (EEG1; see Fig. 3 for details). 

QRS0 was not available in two patients (no. 2 and no. 17) because of ECG artifacts 

following chest compressions and poorly connected ECG leads. ECG electrocardiogram, 

EEG electroencephalograph, EEG1 return of cerebral activity
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Fig. 2. 
Change in full-spectrum EEG features after CBF0. Boxplot showing change in epoch-

averaged and channel-averaged full-spectrum EEG features 5 min before vs. 5 min after 

CBF0 for all patients. Cohort-wide changes in log power and coherence are statistically 

significant (p < 0.028). CBF0 cessation of cerebral blood flow, EEG electroencephalograph
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Fig. 3. 
Raw EEG data and power spectral density in a patient with electrocerebral activity on 

EEG after CBF0 and a brief period of isoelectric EEG. Sixty-five-year-old woman who was 

hospitalized for refractory status epilepticus in the setting of anoxic brain injury. On hospital 

day 10, the course was complicated by cardiac arrest with PEA. After chest compressions 

were performed for 20 min, the patient underwent withdrawal of life-sustaining therapies 

at the request of the family. Power spectral density of her EEG is displayed (a), calculated 

from channels Fz, Cz, and Pz because these are less frequently affected by muscle and 
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ECG artifact. Colored lines at the bottom indicate nonconvulsive status epilepticus (NCSE), 

CBF0, EEG0, PEA, start of chest compressions (CC), end of chest compressions (CC_end), 

and return of cerebral activity ( EEG1). EEG (bipolar montage, sensitivity of 5 μV/mm, 

60-Hz notch filter) at the time (temp_EEG0) demonstrated no clear electrocerebral activity 

(b). Following the activity after CBF0 and a brief period of isoelectric EEG, electrocerebral 

activity returned ( EEG1) (c) (see Supplemental Fig. 2 for raw EEG data at the remaining 

events). The power spectral density plot revealed decreased power 36 min before CBF0. 

Artifacts are seen throughout in the 20-Hz range, and prominent artifacts due to chest 

compressions are seen between 18 and 38 min following CBF0. At CBF0, median log power 

was − 4.10 (IQR − 12.08 to − 2.69, range − 16.61 to 2.96), median coherence was 0.23 (IQR 

0.01–0.94, range − 0.50 to 0.99), and median permutation entropy was 3.31 (IQR 2.60–3.87, 

range 1.85–4.45). CBF0 cessation of cerebral blood flow, ECG electrocardiogram, EEG 

electroencephalograph, EEG0 electrocerebral silence on EEG, IQR interquartile range, PEA 

pulseless electrical activity
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Table 1

Patient cohort (n = 19)

Age, median (IQR) (year) 57.2 (45.5–82.0)

Sex, n (%)

 Female 7 (37)

Admission etiology, n (%)

 Status epilepticus 4 (21)

 Cardiac arrest 3 (16)

 Stroke 2 (11)

 SDH 2 (11)

 ICH 2 (11)

 Other 5 (26)

Days from hospitalizing injury to death, median (IQR) 4 (2.5–7.5)

Mechanically ventilated, n (%) 6 (32)

WLST and/or CMO, n (%) 14 (74)

DNR
a
, n (%)

18 (95)

ACLS
a
, n (%)

3 (16)

Received sedatives/anticonvulsants
b
, n (%)

16 (84)

Received vasopressors
b
, n (%)

10 (53)

Demographic breakdown of the cohort by age, sex, and admission etiology: WLST, CMO, mechanical ventilation status prior to WLST, and receipt 
of ACLS. Other: seizure (n = 1), brain tumor (n = 1), cardiomyopathy (n = 1), traumatic brain injury (n = 1), arteriovenous fistula (n = 1), and 
abdominal compartment syndrome (n = 1)

ACLS advanced cardiac life support, CMO comfort measures only, DNR do not resuscitate, ICH intracerebral hemorrhage, IQR interquartile range, 
SDH subdural hemorrhage, WLST withdrawal of life-sustaining therapies

a
Two patients were placed on DNR status after ACLS was performed

b
Received in the 24 h before death
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Table 3

Dispersion of EEG features around CBF0

EEG feature (units) Median IQR Range

Log power (log[V2/Hz]) −3.42 −4.11 to 2.40 −16.83 to 7.83

Coherence 0.09 −0.05 to 0.48 −0.97 to 0.99

Permutation entropy 3.03 2.27 to 3.76 1.22 to 4.47

Median, IQR, and range of cohort’s EEG features around CBF0

CBF0 cessation of cerebral blood flow, EEG electroencephalograph, IQR interquartile range
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