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Interpretable and context-free deconvolu-
tion ofmulti-scalewhole transcriptomic data
with UniCell deconvolve

Daniel Charytonowicz1, Rachel Brody2 & Robert Sebra 1,3,4

We introduce UniCell: Deconvolve Base (UCDBase), a pre-trained, inter-
pretable, deep learning model to deconvolve cell type fractions and predict
cell identity across Spatial, bulk-RNA-Seq, and scRNA-Seq datasets without
contextualized reference data. UCD is trained on 10 million pseudo-mixtures
from a fully-integrated scRNA-Seq training database comprising over 28 mil-
lion annotated single cells spanning 840 unique cell types from 898 studies.
We show that our UCDBase and transfer-learning models achieve comparable
or superior performance on in-silico mixture deconvolution to existing,
reference-based, state-of-the-art methods. Feature attribute analysis uncovers
gene signatures associated with cell-type specific inflammatory-fibrotic
responses in ischemic kidney injury, discerns cancer subtypes, and accurately
deconvolves tumor microenvironments. UCD identifies pathologic changes in
cell fractions among bulk-RNA-Seq data for several disease states. Applied to
lung cancer scRNA-Seq data, UCD annotates and distinguishes normal from
cancerous cells. Overall, UCD enhances transcriptomic data analysis, aiding in
assessment of cellular and spatial context.

The ability to measure expression of the coding genome has revolu-
tionized the study of human disease1. Recently, the appreciation of
inter-patient cellular heterogeneity has led to methods such as single-
cell RNA Sequencing (scRNA-Seq) being introduced to increase study
resolution2. There is now interest in measuring the influence of spatial
cellular organization on pathophysiology, which is being accomplished
through Spatial Transcriptomics (ST). Broadly, ST platforms can be
divided into two categories. Targetted, high-resolution approaches
such as MERFISH3, split-FISH4, or OligoFISSEQ5 can profile tens to
hundreds of genes using variations of nucleic-acid hybridization tech-
niques at the subcellular level. Alternatively, whole-transcriptome,
lower-resolution approaches such as Slide-Seq6, Visium7, DBiT-seq8, or
Stereo-seq9 function via spatial-aware RNA capture and sequencing.
The unbiased nature of whole-transcriptome approaches makes them
appealing for early-stage discovery and hypothesis-generation.

Resolution of whole-transcriptome spatial platforms varies, ran-
ging from 10 um for Slide-Seq to 55 um for Visium.While the density of
capture arrays is increasing, spatial capture spots nevertheless contain
RNA content eluted from several single cells. Differences in gene
expression are driven in-part by varying cell type mixtures and levels
of individual cell transcript expression. As such, it is essential to
“deconvolve” cell type fractions for each spot to improve interpret-
ability and analysis of differential gene expression patterns. Multiple
machine learning methods addressing cellular deconvolution
have been introduced. Earlier approaches focusing on bulk-RNA-Seq
include methods such as DSA10, MuSiC11, CIBERSORT/CIBERSORTx12,13,
Scaden14, DeconRNASeq15, and SCDC16. The emergence of ST has ush-
ered in several next generation deconvolution algorithms, notably
Cell2Location17, SPOTLight18, Stereoscope19, SpatialDWLS20, DSTG21,
STDeconvolve22, and RCTD23.
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A significant limitation of most approaches is the requirement
for a reference profile of cell type expression. Meta-analyses of RNA-
seq deconvolution algorithms have shown that choice of reference is
more important than methodology in determining deconvolution
performance24. The choice of cell types to include in a reference is not
always apparent, and collecting matched samples for reference gen-
eration is not always possible. Furthermore, the use of general scRNA-
Seq “atlases” as references may not be appropriate when transcrip-
tional differences due to experimental or disease-related factors con-
found cell type expression patterns. It has been suggested that the
integration of numerous studies with varying experimental conditions
and technical platforms can improve the robustness and general-
ization of deconvolutions25.

To address these challenges, we introduce UniCell: Deconvolve
Base (UCDBase), a pre-trained, context-free, deep learning foundation
model for universal cell type deconvolution. UCDBase is trained using
10 million pseudobulk RNA mixtures generated from the world’s
largest fully integrated scRNA-Seq database, comprising 28 million
fully-annotated single cells representing 840 cell types collected from
899 uniformly preprocessed, validated, and published single-cell
datasets. First, we describe the collection and integration strategy
used to build training data for UCD, and then detail the architecture of
our model.

We demonstrate how UCDBase performance compares favorably
to existing reference-based approaches, with feature attribute analysis
enabling orthogonal validation of predictions by associating gene
expressionwith particular cell types. UCDBase can also be leveraged as
a global cell type feature extractor for transfer learning given user-
specified cell signatures, facilitating the rapid deployment of context-
specific deconvolution “UCDSelect” models.

We highlight UCDBase’s ability to deconvolve changes to immune
and stromal cell infiltrates in response to ischemic kidney injury,
associating differentially active stress response genes to kidney epi-
thelial cell types. Next, UCDBase applied to bulk-RNA-Seq data pin-
points specific losses in pancreatic beta cell and oligodendrocyte
fractions in type 2 diabetes and multiple sclerosis, respectively. UCD-
Base also accurately differentiates between cancer subtypes across
bulk, spatial and single-cell data. Lastly, UCDBase is used to annotate
primary human lung cancer data, providing marker genes to corro-
borate predictions, and distinguishes normal from cancerous
epithelial cells.

Results
Single-cell RNA-Seq simulated mixture benchmarking
Wecompared actual and predicted cell type fractions across simulated
mixtures for our three benchmarking datasets comprising PBMC,
Lung, and Retina tissues (see Fig. 1a, c, and e). For eachmixture set, we
compared actual and predicted cell type fractions across 500 simu-
lated mixtures (see Fig. 1b, d, and f). To better evaluate the perfor-
mance of UCDSelect, we performed an ablation study whereby
transfer learning performance of UCDBase embeddings alone was
compared with conventional gene feature extraction alone, as well as
combined.

For PBMCs, our pre-trained UCDBase model obtained strong
concordance correlation coefficient (CCC) values of 0.816 averaged
across the eight cell types identified in our dataset, while UCDSelect
achieved CCC of 0.864, 0.921 and 0.92 for deconvolution utilizing
gene features only, embeddings only, and both sources, respectively.
UCDBase performed comparably with current State of the Art meth-
ods such as Cell2Location (C2L) (see Fig. 1b top), despite the fact that
C2L and competing algorithms were trained to exclusively consider
the deconvolution of PBMCs. We note that in the PBMC task, the cell
type categories used for comparison are distinct and well-defined,
indicating that the corresponding cell types found inUCDBase training
dataset are likely to be well-aligned with the labels assigned for this

task. UCDSelect exhibited superior performance in this benchmarking
task compared with all competing methods.

Results seen in Lung and Retina data highlight the importance of
accounting for mismatch between UCDBase and target cell type
annotations, and the relevance of UCDSelect as a transfer learning
extension of UCDBase. We show that preliminary results indicated
average concordance (CCC=0.524 for Retina, CCC=0.532 for Lung)
with high variance when directly comparing annotated cell types from
reference data with the corresponding cell types found in UCDBase’s
840 cell type output. We investigated these discrepancies in Supple-
mentary Fig. 8, where we identified cell types with low initial con-
cordance measurements in both Lung and Retina datasets (see
Supplementary Fig. 8a, c). We select three low-performing cell types
and performed cross-correlation with output vectors of all 840 UCD-
Base cell types, andplotpearson correlation between the ground-truth
labeled cell type and top 16 highest correlated UCDBase outputs (see
Supplementary Fig. 8b, d).The results strongly illustrate that UCDBase
correctly identifies cellular state identity, albeit the annotation mat-
ched within UCDBase does not always perfectly align with those in the
target dataset. For example in our lung mixture dataset, “endothelial
cells”, which show a direct label matched correlation of effectively
zero, are identified by UCDBase as correlating most closely with “lung
endothelial cells” (pearson’s R =0.851). Similar patterns are seen
amongother examined cell types, supporting the notion thatUCDBase
is correctly identifying cell types, however label mismatches make it
difficult to discern true accuracy when working with benchmarking
datasets relying on potentially flawed, user-defined cell types as
ground truth labels. It further highlights the importance of detailed
interpretation when analyzing the results of a global pre-trained
deconvolution model.

UCDSelect however, represents a natural extension of UCDBase
and a solution to the complexity of label mismatch. By aligning UCD-
Base’s feature vectors to a user-specified reference signature, we are
effectively able to guide UCD to a solution within the parameter space
defined by the user. For the Lung benchmark, UCDSelect achieves
average CCC values of 0.832, 0.861, and 0.883 for features, embed-
dings, and both sources, respectively. The Retina benchmark saw
averageCCC values forUCDselect of 0.93, 0.97, and0.972 for features,
embeddings, and both sources, respectively. The strong performance
on the Retina benchmark is unsurprising, given that unlike the PBMC
and Lung datasets which featured mixture and reference data derived
from different studies, the paired Retina reference and mixture data
sources are both derived from two samples from the same study,
which likely minimizes the batch and/or experimental related differ-
ences between common cell types in these samples.

Downsampled spatial transcriptomic data
We measured the performance of UCDBase and UCDSelect in decon-
volution of downsampled mouse hippocampal Slide-SeqV2 spatial
transcriptomic data (Fig. 1g). We highlight strong visual concordance
between three representative ground truth hippocampal cell type
annotations and UCDBase / UCDSelect predictions in Fig. 1h. To
quantify performance, we deconvolve downsampled mixtures using
several comparator methods developed for spatial transcriptomics,
and show that UCDSelect exhibits comparable deconvolution perfor-
mance relative to state-of-the-art reference-based approaches, with
average CCC values of 0.511, 0.532, and 0.561 for features, embed-
dings, and both sources, respectively (Fig. 1i). Stereoscope and Tan-
gram showed the most consistent performance on this dataset, with
average CCC of 0.616 and 0.588, respectively.

Bulk RNA-Seq benchmarking
We compared the performance of UCDBase and UCDSelect in
deconvolution of gold-standard bulk RNA-Seq mixture and reference
profiles developed for the community DREAM bulk RNA-Seq
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deconvolution challenge with respect to the results obtained by sub-
mitted competitor methods (see Supplementary Fig. 9)26. UCDBase
achieved a mean score (measured by pearson’s R) of 0.68 when
deconvolving 96 cell mixtures, placing it in the top half of solutions. In
contrast, UCDSelect achieved mean Pearson’s R scores across 11
compared cell subtypes of 0.793, 0.892, and 0.903 respectively,
scoring considerably higher than competing approaches.

Hyperparameter sensitivity analysis
UCDBase and UCDSelect were found to be robust to changes in mix-
ture hyperparameters (see Supplementary Fig. 10) across our three
synthetic mixture datasets. We saw a minimal linear decrease in mean

performance as sample complexity (i.e. number of unique cell types)
increased (see Supplementary Fig. 10b, e and h). Model performance
was found to be consistent while varying the number of cells used to
generate each mixture, with a slight reduction for lower total mixture
cell counts, which we believe is caused by increased signal-to-noise
ratio (see Supplementary Fig. 10c, f and i).

When perturbing gene dropout, we found that significant per-
formance reductions were seen only after >80% of expressed genes in
the benchmarking mixture samples were removed as inputs. This
robustness to dropout suggests that UCDbase leverages nonlinear
combinations of gene sets as the basis of cell type fraction predictions,
and is resilient to the noise seen in transcriptomic data, especially at

Fig. 1 | Benchmarking UniCell deconvolution performance across tissue types.
a UMAP visualization of human peripheral blood mononuclear cell (PBMC) single
cells used to generate pseudobulk mixtures for deconvolution benchmarking,
annotatedby cell type.bBoxplots ofdeconvolution performance for each cell type
(n = 8) in the PBMC dataset, stratified by method (y-axis), as measured by con-
cordance correlation coefficient (x-axis). cUMAP visualization ofhuman lung tissue
single cells used to generate pseudobulk mixtures for deconvolution benchmark-
ing, annotated by cell type. d Box plots of deconvolution performance for each cell
type (n = 19) in the lung dataset, stratified by method (y-axis), as measured by
concordance correlation coefficient (x-axis). e UMAP visualization of human retina
periphery single cells used to generate pseudobulk mixtures for deconvolution
benchmarking, annotated by cell type. f Box plots of deconvolution performance
for each cell type (n = 17) in the retina dataset, stratified by method (y-axis), as
measured by concordance correlation coefficient (x-axis). g Spatial profile of
murine hippocampal formation profiled using Slide-SeqV2 colored by individual

cell type. h Spatial heatmaps representing a downsampled hippocampal dataset,
where each spot represents the average gene expression profile obtained from
multiple individual cells in close spatial proximity. The first column illustrates the
ground truth fractions of three representative cell types comprising the down-
sampledspatial spots (with the scale ranging from0 to 1 representing0% to 100%of
cells in that downsampled spatial spot corresponding to a given cell type). The
middle column denotes cell fraction predictions for matched or related cell types
given by UCD Base. The rightmost column denotes cell type predictions made by
UCDSelect trainedon individual cell profiles from the source dataset. iBox plots of
deconvolution performance for each cell type (n = 14) in the hippocampal dataset,
stratified by method (y-axis), as measured by concordance correlation coefficient
(x-axis). For boxplots in b, d, f and i, the center line, box limits and box whiskers
correspond to themedian, first and third quartiles, and the 1.5x interquartile range,
respectively. Individual data points are superimposed over each boxplot.
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lower read depth. It nevertheless suggested that the current UCDBase
architecturemay not be appropriately tuned for usewith technologies
profiling smaller numbers of genes. To validate this important dis-
tinction, we obtained mixture and reference signatures generated by
Li. et al. 2022 derived from the mouse visual cortex using the in-situ
STARmap spatial transcriptomic technology (see Supplementary
Fig. 11a, b)27. With an input of just 881 genes, we reasoned that UCD-
Base performancewould be limited by such a degree of sparsity (~97%)
relative to the whole transcriptome input space it was trained on.
Unsurprisingly, we see that UCDSelect achieves only modest decon-
volution performance (CCC=0.658, 0.567, and 0.64 for features,
embeddings and both sources, respectively). Notably, results indicate
that in this scenario, gene expression features, as opposed toUCDBase
extracted embeddings, provide superior deconvolution performance
(see Supplementary Fig. 11c). We therefore suggest to users that UCD
be utilized primarily in cases where whole transcriptome data is
available so as to maximize accuracy and performance.

Training data composition and sensitivity across selected
technology platforms
As UCDBase was trained using a comprehensive collection of studies
collected using a range of technology platforms, from a range of
sources including different species, we sought to better understand
the composition of our training dataset, and assess the impact, if any,
on UCDBase deconvolution accuracy. Utilizing keyword extraction on
metadata available for each collected project, we assessed the most
likely technology platform used to generate the collected dataset. For
instances where multiple technologies were identified, the most
common and/or first occurring keyword was assigned as a label for
that study. A similar keyword approach was used to detect species for
each dataset, with semicolons denoting multiple potential species
identified for a given study.We report on the results of this technology
and organism assessment in Supplementary Fig. 12. We estimate that
~66.4% of our collected cells were generated using a version of the 10X
Genomics Chromium platform (see Supplementary Fig. 12a). 95.1% of
cells in our database are estimated to derive from short-read sequen-
cing data, with just 4.9% coming from technologies such as Smart-Seq.
UCDBase and UCDSelect performance was then benchmarked for
deconvolution of synthetic mixtures generated from PBMCs derived
using a number of scRNA-Seq technologies from a study conducted by
Ding et al. 201928. We highlight the performance of this comparison in
Supplementary Fig. 13, where we demonstrate that both UCDBase and
UCDSelect show comparable performance in deconvolution accuracy
across multiple platform technologies, including Smart-Seq long-
read data.

Looking at species origins, human derived data made up the
majority of cells in our database at 43.2%, with 22.1% coming from
mice, and 33.1% of cells coming from datasets where both Human and
Mouse keywords were found. By and large the vast majority of single
cell data in our training dataset (98.4%) is derived from either Human
or Mouse sources, which represent the most common species subject
to single cell analysis (see Supplementary Fig. 12b). Across all matched
cell types, the average correlation between gene expression across
mouse and human data was found to bemoderately positive (pearsonr
r =0.46) (see Supplementary Table 4). Given the potential dis-
crepancies in gene expression between species, we therefore suggest
that users bear in mind the species of origin when utilizing UCDBase
given the species composition underpinning its training dataset.

Characterization of pathophysiologic cell type aberrations in
ischemic kidney injury
Kidney ischemia reperfusion injury (IRI) describes the oxidative stress
and inflammatory damage induced by revascularization following a
loss of blood flow and oxygen to cells of the renal system29. IRI is a
common perioperative complication occurring during major trauma,

shock, sepsis, or transplant, and understanding the pathophysiologic
changes it induces is critical in developing strategies to mitigate its
long term impacts30. Using temporal spatial transcriptomics data of
coronal kidney tissue sections collected from a mouse bilateral renal
IRI model, developed by Dixon et al. 202231, we leveraged UCDBase to
explore changes in kidney cell fractions associatedwith progressive IRI
damage (see Fig. 2a).

We began by examining deconvolution results in the context of
normal control tissue in Fig. 2c, comparing it with expected cellular
organization as summarized in Fig. 2b. UCDBase identified spatial
distributions of proximal (PCT) and distal convoluted tubule epithelial
cells localizing correctly to the outer cortex zone of the kidney. The
thick-ascending limb of the loop of henle (TAL/LOH) was localized to
the inner-renal medulla, while cells of the collecting duct (CD) were
identified to be distributed across the renal cortex with increased
abundance in the medulla, as they coalesce into the renal calyx.
Intercalated cells (IC) were identified mainly along the boundary zone
of the outer medulla, consistent with IC preferential localization in the
earlier sections of theCD32. UCDBase also predicted “brush cells” in the
outer medullary zone, which we suspect correspond to the S3 straight
segment of the PCT based on identified gene attributes (see Supple-
mentary Table 2). This is unsurprising, as the morphology of PCT cells
is brush-border like, and the S3 segment displays the least degree of
functional differentiation33. Specific genesUCDBase associatedwith all
renal cell types were contrasted with established literature and are
detailed in Supplementary Table 2.

We next examined changes in absolute cell type fractions pre-
dicted to occur following IRI. The overall composition and spatial
organization of major kidney cell types remained unchanged (see
Fig. 2c-center & right). Increases in t cell, suppressormacrophage, and
fibroblast content became apparent as early as 2 days post-IRI com-
pared with control, peaking at the 6week timepoint (see Fig. 2d, e).

A notable gene attributed to t cells was Ccr7. It has been shown
that Ccr7 + t cells mediate kidney injury during transplant allograft
rejection, suggesting a similar role in IRI34. Suppressor M2-like mac-
rophages promote kidney repair after acute IRI by modulating innate
immunity30.

Fibroblast infiltrate at the 6week timepoint (see Fig. 2h-left) was,
to our surprise, associatedwith complement factor-H (cfh) expression.
The authors of the original study explicitly noted the inability to
establish a link between cfh and fibroblasts from Visium data alone,
and verified its selective expression among kidney fibroblasts using an
independent single-nucleus RNA-Seq dataset31.

While the canonical PCT marker Slc34a1 remains a consistent
attribute of PCT cells across time points (see Fig. 2g), we see evidence
of secondary markers overexpressed following injury, suggesting
temporal physiologic changes to PCT cell function. The metabolic
waste efflux pump Abbc2 has been shown to be overexpressed after
acute renal IRI in mice35, and exhibits increased attribution for
PCT cells at 12 h post-injury, suggesting overexpression and increased
PCT stress35.

Together, UCDBase enables us to rapidly paint a comprehensive
picture of physiological changes underpinning the kidneys’ response
to IRI. Through cell type deconvolution in addition to feature attribute
analysis, UCDBase identifies physiologically relevant marker genes
underpinning the transition from homeostatic renal function to
chronic inflammation and fibrosis, while simultaneously capturing the
complex interplay between fibroblasts, t cells, and immunosuppres-
sive macrophages.

Robust malignant subtype identification and cancer feature
attribute analysis
Dysregulation of gene expression programs is a hallmark of cancer36,
as such we expected that deconvolution of nonmalignant cells from
cancerous cells using transcriptional profiles was possible. We sought
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to determine UCDBase’s cancer detection and subtype classification
performance.

Testing UCDBase’s sensitivity to malignant vs. normal tissues, we
deconvolved bulk RNA samples from GTEx (n = 7,851) and TCGA
(n = 10,459), predicting samples to be 97.3% vs 74% non-malignant
(p = 0) when comparing median values of GTEx and TCGA samples,
respectively (see Supplementary Fig. 14a right). A notable outlier pre-
diction is seen among GTEx liver samples (see Supplementary Fig. 14a
left), which can be attributed to sample-specific pathological,

preprocessing, or quality control factors (or UCDBase training data
label misannotation between non-malignant hepatocytes and liver
hepatocellular carcinoma (LIHC)). Using deconvolved TCGA data
spanning 18 cancer subtypes matched between UCDBase and TCGA,
we re-normalized malignant cell results independently of non-
malignant cell types to predict cancer subtypes (see Supplementary
Fig. 14b). UCDBase achieved a micro-average AUC of 0.889 across all
cancers (see Supplementary Fig. 14c), indicating strong classification
capability.
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To gain insight into the gene feature profiles learned by UCDBase,
we examined the top-5 gene integrated gradient weights for all
1,143,791 primary cancer cells in our training database averaged by
subtype (see Supplementary Fig. 15). Examining the results, we see that
UCDBase successfully learns gene expression profiles representing
unique transcriptome signatures of subtype-specific malignancies.
Demonstratively, prostate cancer adenocarcinoma (PRAD) is identified
via NKX3-1, a distinct marker of prostatic cancers37, as well as other
genes such as PCA3, and FOLH1. For melanoma (SKCM), UCDBase
associates it with the expression of MLANA, the melanoma diagnostic
antigen melanin-A38, as well as genes such as TRYP1 and MTRNR2L2.
Further inspection of the abovementioned gene features and others
(see Supplementary Table 2) demonstrates UCDBase learned subtype-
specific gene representations that appear to corroborate their rele-
vance as suggested in prior studies.

We next asked how exactly the feature weights learned by UCD-
Base distinguish, at a pan-cancer level, malignant vs. non-malignant
epithelial cells. We performed differential “relevance” analysis to
identify top gene feature weights that tended to be overrepresented
and/or underrepresented as predictors among malignant vs. non-
malignant epithelial cells across all cancer subtypes. In total, 1,365
genes were identified to be typically positively correlated with malig-
nant cells, while 821 genes were identified to be positively correlated
with normal epithelial cells. Each gene set was then subject to
GO_BIOLOGICAL_PROCESS_2021 gene set enrichment analysis using
Enrichr (see Supplementary Fig. 16). Of significance among
malignancy-associated genes, we found “inflammatory responses” to
be among the highest upregulated geneset (adj. p = 5.4E-5). Numerous
genesets pertaining to signaling pathways including PI3K (adj.
p =0.022), ERK1/2 cascade (adj. p = 0.024), and the MAPK (adj.
p =0.016) cascades were also identified to be significantly upregu-
lated, in addition to angiogenesis (adj. p =0.008). In contrast, normal
epithelial cell gene features appear to overwhelmingly favor cell cycle
and regulatory machinery, such as “regulation of G2/M transition of
mitotic cell cycle” (p = 2.57e-12). Overall, these results appear to sug-
gest that UCDBase may interpret an epithelial cell as cancerous if it
exhibits the simultaneous expression of inflammatory and pro-
proliferative signaling pathways. Further gene set analysis of UCD-
Base learned representations may yield additional insights into the
fundamental biology of cancer and other disease processes.

Spatial transcriptomic deconvolution of tumor
microenvironment
Wenext elected todeconvolve adiverse set of publically available solid
tumor spatial transcriptomic tissues, including Breast Adenocarci-
noma (BRCA), Prostate Adenocarcinoma (PRAD), and Colorectal
Adenocarcinoma (COAD). Where available, we compared UCDBase

deconvolution results to histological annotations performed by certi-
fied human pathologists to determine relative accuracy of underlying
cell type predictions. Feature attribute analysis was performed for all
predicted cell types, with pathophysiologic significance elaborated for
each gene in Supplementary Table 2 where appropriate.

Breast adenocarcinoma spatial deconvolution
UCDBase correctly identified the most likely tumor subtype, BRCA,
localized across ductal glands consistent with pathologists annota-
tions (see Fig. 3a). There was strong concordance with pathologist-
designated fibrous tissue deposits and fibroblast predictions, attrib-
uted to numerous well-established extracellular-matrix (ECM) genes
including COL12A1, a gene previously implicated in pro-inflammatory
stromal desmoplasia and tumor progression in several cancers39.
Endothelial cells were detected throughout the tumor stroma, and
particularly showed strong attribution to apelin receptor (APLN), a
gene involved inmaintaining pro-angiogenic states among endothelial
cells, possibly indicating active tumor neovascularization [73].

UCDBase identified multiple immune subtypes, including plasma
cells, macrophages, and t cells, localizing to regions of pathologist-
annotated immune infiltrate. Tumor-associated macrophages (TAMs)
were found at or around areas of comedo-like tumor necrosis40. T cells
were found to be localizing selectively around a distinctmalignant duct
located center-left of the tissue section, with attributed genes such as
immune checkpoint costimulatory receptorCD28, aswell as IFIT3,CCL5,
and PLAAT4 implicating an active anti-tumor immune response. CD28 is
required for an interferon-mediated immune response, coinciding with
expression of interferon induced response protein IFIT341. The potent
lymphocyte attractor ligand CCL5 is reported to be prospectively
upregulated in tumor-infiltrating CD4+ t cells following an initial
immune stimulation to maintain t cell infiltration42. Furthermore,
phospholipase A / acetyltransferase 4 (PLAAT4) has been identified as
loosely expressed in t cells to support the adaptive immune response43.

Interestingly, our model strongly implicates CXCL9 in the pre-
diction of t cells, which is traditionally believed to be secreted by
tumor cells themselves or TAMs to drive t cell recruitment44. When
overlaying gene expression of CXCL9, CD3D (t cells) and CD68 (mac-
rophages) (see Supplementary Fig. 17), we see moderate spatial cor-
relation with CXCL9 and CD3D (r =0.4, p = 3E-29) along the tumor-
stromal interface, and weaker correlation with CD68 (r = 0.17, p = 1E-
10). We hypothesize that cell-free RNA originating from apoptotic
tumor cells in proximity to tumor infiltrating t cells may be captured
during single cell encapsulation for sequencing. As the t cell category
of UniCell’s training data is a generalized category encompassing
191,425 cells of varying possible subtypes and originations, some of
which may be tumor-associated, this may be reflected in our results
when analyzing cancer datasets. Nevertheless, we see an active image

Fig. 2 | UniCell deconvolves mouse kidney undergoing ischemic reperfusion
injury. a Five publically available spatial transcriptomics samples were acquired
representing kidney cross sections taken frommice at different stages of ischemic
renal reperfusion injury (IRI), and analyzed using UCDBase to determine predicted
cell type compositions. A visual summary of the experimental conditions and
sample processing is provided. b Overview of critical kidney anatomy and general
spatial localization of key kidney cell types is shown as a reference. c Spatial
deconvolution and distribution of select cell types of the murine kidney across
different time points (n = 1 spatial sample at each time point) following IRI. d Bar
plots of average predicted fractions (y-axis) for select cell types deconvolved from
spatial transcriptomics samples taken at different time points (x-axis) following IRI.
Sample sizes are shown beneath each compared condition, representing individual
spatial capture spots. Spots with <0.5% reported fraction of a given cell type were
excluded from analysis. Bar height denotes the average predicted cell type fraction
for each cell type across conditions. Error bars denote 95% confidence interval (CI).
P-values indicate the significance of difference between groups evaluated using an
unpaired two-sided Wilcoxon rank sum test, with Benjamini-Hochberg correction

for multiple comparisons (Source Data File—(d)). e Spatial predictions of fibrotic
and immune infiltrate before and after IRI (n = 1 spatial sample at each time point).
f Box plots of feature attribution weights (x-axis) for genes (y-axis) indicative of
select cell types predicted to be present at the control (n = 1) timepoint. Sample
sizes represent individual spatial capture spots with at least 10% predicted fraction
for that given cell type (Source Data File—Fig. 2f). g Changes in feature attribution
weights for select genes (x-axis) indicating proximal convoluted tubule (PCT) epi-
thelial cell fractions shown across different time points (y-axis) following IRI
(Source Data File—Fig. 2g). h Box plots of feature attribution weights (x-axis) for
genes (y-axis) indicative of select cell types predicted to be present at the 6-week
post-IRI (n = 1) timepoint. Sample sizes represent individual spatial capture spots
with at least 10% predicted fraction for that given cell type (Source Data File—
Fig. 2h). For scale bars in c and e, these represent the fraction (range 0–1) a given
spatial coordinate is predicted to be composed of a given cell type. For boxplots in
f and h, the center line, box limits and box whiskers correspond to themedian, first
and third quartiles, and the 1.5x interquartile range, respectively. Individual data
points are superimposed over each boxplot.
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Fig. 3 | UniCell allows for deconvolution of tumor microenvironments across
varying cancer subtypes with unique histologic features. a (left) Hematoxylin &
Eosin (H&E) stained section of a breast invasive adenocarcinoma (BRCA) sample
with human-derivedpathological annotations (providedwith sourcedata) overlaid.
(right) UniCell Deconvolve Base (UCDBase) predicted distribution of key cell types
in the tumor microenvironment for a sequential section derived from the same
sample (n = 1). b Box plots of feature attribution weights (x-axis) for genes (y-axis)
indicative of select cell types predicted to be present in the BRCA spatial sample.
Sample sizes represent the top 2% (n = 51) of individual total spatial capture spots
by predicted fraction for that given cell type (Source Data File—Fig. 3b). c (left)
Hematoxylin & Eosin (H&E) stained section of a prostate adenocarcinoma (PRAD)
sample with human-derived pathological annotations (provided with source data)
overlaid. (right) UCDBase predicted distribution of key cell types in the tumor
microenvironment for a sequential section derived from the same sample (n = 1).
d Box plots of feature attribution weights (x-axis) for genes (y-axis) indicative of

select cell types predicted to be present in the PRAD spatial sample. Sample sizes
represent the top 2% (n = 88) of individual total spatial capture spots by predicted
fraction for that given cell type (Source Data File—Fig. 3d). e (left) Hematoxylin &
Eosin (H&E) stained section of a colorectal adenocarcinoma (COAD) sample. (right)
UCDBase predicted distribution of key cell types in the tumor microenvironment
for a sequential section derived from the same sample (n = 1). f Box plots of feature
attribution weights (x-axis) for genes (y-axis) indicative of select cell types pre-
dicted to be present in the COAD spatial sample. Sample sizes represent the top 2%
(n = 63) of individual total spatial capture spots by predicted fraction for that given
cell type (Source Data File—Fig. 3f). For scale bars on the right-side of a, c, and
e, these represent the fraction (range0–1) a given spatial coordinate is predicted to
be composed of a given cell type. For boxplots in b, d, and f, the center line, box
limits and box whiskers correspond to themedian, first and third quartiles, and the
1.5x interquartile range, respectively. Individual data points are superimposed over
each boxplot.
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of the breast tumor microenvironment rapidly painted by UCDBase,
whereby stromal and immune cellular components react to an ever-
changing environment driven by active malignancy.

Prostate adenocarcinoma spatial deconvolution
Turning our attention to prostate cancer (see Fig. 3c), UCDBase
robustly distinguishes the tumor subtype, PRAD (Prostate Adeno-
carcinoma), and localizes malignant cell signatures within the Invasive
Carcinoma region denoted in Fig. 3c-left, with nonmalignant luminal
epithelial / basal cells in the lower-left region designated as “Normal
Gland”. Fibromuscular zones outlined in green show distributions of
myofibroblasts and smooth muscle cells. This sample contained a
nerve fiber cross section, which UCD detected as schwann cells, the
myelinating cells of the peripheral nervous system45. PRAD is widely
considered to be an immunologically “cold” tumor, compared to
immunologically “hot” cancers such asmelanoma46,47. Supporting this,
UCDBase did not detect meaningful presence of immune cells in the
tested spatial section, and likewise we see PRAD ranking at the lowest
end of absolute immune cell fractions among TCGA data deconvolved
with UCDBase (see Supplementary Fig. 18).

Changes seen in prostate stromal tissue induced by carcinogen-
esis are mediated by cancer-activated fibroblasts (CAFs) adopting a
myofibroblast-like phenotype48. Differentiating between myofibro-
blasts and conventional smoothmuscle cells (SMCs) can be difficult as
this phenotype is thought to reflect a continuum spanning conven-
tional fibroblasts to mature prostatic SMCs49. Consequently, UCDBase
showed overlapping gene attributions used to differentiate these two
highly-related cell types (see Fig. 3d).

Feature attributes reveal how UCDBase learned to distinguish
normal from cancerous prostate cells. Normal prostatic luminal epi-
thelium was associated with KLK3 expression (see Fig. 3d). KLK3
encodes Prostate Serum Antigen (PSA), the most commonly used
serum biomarker for prostate cancer despite suffering from low sen-
sitivity due to its universal expression by both normal and malignant
prostate cells. UCDBase instead delineates prostate malignancy to
KLK4, an intracellular kallikrein localizing to the nucleus providing
markedly different functions from other KLK family genes50. Studies
comparing KLK gene expression between prostate cancer and healthy
controls have shown stronger statistical correlations between malig-
nancy status and KLK4 compared with KLK351.

Colorectal adenocarcinoma spatial deconvolution
Lastly, we examine UCDBase’s deconvolution of colorectal adeno-
carcinoma (COAD, see Fig. 3e-right), and we can see clear localization
of COAD malignant cells across presumptive tumor nodules shown in
the unannotated H&E section in Fig. 3e-left. The stroma surrounding
colorectal tumors has been shown to contain uniquely high propor-
tions of infiltrating plasmablasts, a rapidly-dividing intermediate cell
state representing activated B cells transitioned into mature, non-
dividing plasma cells that function in an immunosuppressive role,
which UCDBase readily detects in this sample52. Additional immune
infiltrates identified by UCDBase include macrophages and t cells sit-
ting among fibroblast cells, highlighting the significant stromal
immune responses commonly associated with pro-inflammatory
tumor microenvironments.

Detecting cell type compositional changes in pathological bulk
RNA-seq data
Given that scRNA-Seq and spatial transcriptomics remain cost-
prohibitive for large-scale translational studies, bulk RNA-Seq data
continues to dominate most clinical analyses. We tested UCDBase’s
bulk-RNA-Seq ability to deconvolve bulk RNA-seq data to reveal
pathologic changes in cellular fractions. Feature attributes for each
predicted cell type are shown in Supplementary Fig. 19, with detailed
analysis of each feature’s cellular relevance in Supplementary Table 2.

Increased fibromuscular tissue deposition in idiopathic
pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease char-
acterized by the progressive inflammation, damage, and subsequent
depositionoffibromuscular tissue into the lung interstitial space, and a
corresponding destruction of the alveolar epithelium leading to a
reduction in gas-exchange efficacy (see Fig. 4a)53. Acute lung injury
(ALI), also known as acute respiratory distress syndrome (ARDS), is
characterized by transient damage to the gas-exchange apparatus
often induced by viral infection, and features significant fibrous tissue
deposition as part of the tissue healing process54.

Comparing Normal, ALI, and IPF tissues (see Fig. 4b), we saw
significant reductions in fraction of Type II and Type I pneumocytes
(ATII & ATI cells) in chronic IPF patient lungs (p = 3.33E-09 ATII,
p = 5.16E-08 ATI), with no difference seen between Normal and ALI
(p = 0.705 ATII, p =0.058 ATI). This is consistent with the pathophy-
siologic destruction of alveolar epithelial cells in IPF. Fibroblast frac-
tions were considerably higher for both ALI (p = 2.77E-03) and IPF
(p = 2.41E-07) patients compared to normal controls, consistent with
the role that excessive fibroblast proliferation plays in IPF
pathogenesis55. We note a significant increase in smooth muscle cell
fractions (p = 1.55E-07), definedbymarkers such asmyosin heavy chain
11 (MYH11), occurring only in IPF patients. Pulmonary hypertension
(PH) is a common secondary sequelae to IPF, whereby excessive vas-
cular smoothmuscle deposition leads to elevated arterial pressure and
potentially fatal cardiopulmonary consequences56. Interestingly, we
also saw a distinct increase in monocyte fractions for IPF patients
(p = 7.65E-08), afindingnot seen inALI. It has beenpreviously reported
that elevated monocyte count is associated with IPF progression and
may play a role as a useful prognostic biomarker57.

Reduction of pancreatic Beta cells in Type II diabetes
Type II diabetes mellitus (T2DM) is a disease characterized by the
progressive increase in cellular insulin resistance, leading to a state of
persistent hyperglycemia causing a chronic increase of insulin
production58. The production stresses placed on pancreatic beta cells,
responsible for insulin production in the body, eventually lead to
apoptosis and selective reduction in beta cell fractions among pan-
creatic islets (see Fig. 4c)59.

As T2DM progression exclusively impacts beta cells, we
expected to see differences in cell type fractions with respect to
disease status only among this cell type. Indeed, we noted a clear,
statistically significant decline in pancreatic beta cell fractions
(p = 1.57E-03) between normal and diabetes status (see Fig. 4d), with
a downward trend (p = 0.0346; non-significant after correcting for
multiple comparisons) among pre-diabetes patients correlating
with disease progression. Beta cell fraction was not correlated to
age in this cohort (p = 0.67, see Supplementary Fig. 20), although
the rate of beta cell proliferation is known to decrease as age
increases in the general population60. Examining other subpopula-
tions of cell types present in pancreatic tissue (see Fig. 4c), we saw
no significant differences in Alpha, Delta, and PP (gamma) cells, and
similarly no differences in acinar and ductal cells forming the pan-
creatic glands.

Reduced oligodendrocyte fractions in chronicmultiple sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the
central nervous system characterized by chronic inflammation
induced by neural lymphocytic infiltration, which leads to progressive
destruction of oligodendrocytes, the cells responsible for production
of the myelin sheath (see Fig. 4e)61.

We sawsignificantly reduced oligodendrocyte fractions (p = 1.25E-
04) comparing control and active multiple sclerosis (MS) lesions
(see Fig. 4f). No significant changes to cortical neuron or neural pro-
genitor cell fractions were noted; however, a weak trend (p =0.041;
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non-significant after correcting for multiple comparisons) showing
increase in immature astrocytes between control and active MS was
found. The proliferation of immature macroglial cells such as astro-
cytes has been associated with the neurotoxic effects of chronic
inflammation induced by multiple sclerosis62.

Overall, we demonstrated that UCDBase is capable of faithfully
recapitulating pathological changes in cell type fractions across a wide
range of disease states. This robustness coupled with the validation

offered by feature analysis makes UCDBase a promising tool for the
analysis of other pathologic bulk RNA-Seq datasets.

Rapid cell type annotation and disease subtyping in non-small
cell lung cancer scRNA-seq data
Given strong performance across spatial and bulk RNA-seq tissues,
we leveraged UCDBase to assist in basic cell type annotation of a
non-small cell lung cancer scRNA-Seq dataset (see Fig. 5a and

Fig. 4 | UniCell resolves expected pathophysiological changes in cellular frac-
tions from Bulk RNA-sequencing data. a Visualization summarization basic
pathophysiology of interstitial pulmonary fibrosis and potential shifts in cell type
fractions. b Box plots of cell type fractions predicted by UniCell Deconvolve Base
(UCDBase) for key lung cell types (y-axis) stratified by disease state (x-axis) (Source
Data File—Fig. 4b). c Visualization summarization basic pathophysiology of type ii
diabetes and potential shifts in cell type fractions. d Box plots of cell type fractions
predicted by UCDBase for key pancreatic cell types (y-axis) stratified by disease
state (x-axis) (Source Data File—Fig. 4d). e Visualization summarization basic
pathophysiology of multiple sclerosis and potential shifts in cell type fractions.

f Box plots of cell type fractions predicted by UCDBase for key brain white matter
cell types (y-axis) stratifiedbydisease state (x-axis) (SourceData File—Fig. 4f). For all
boxplots shown in b, d, and f, the center line, box limits and box whiskers corre-
spond to the median, first and third quartiles, and the 1.5x interquartile range,
respectively. Sample sizes for each stratification across all dot plots are shown
below x-axis labels, with individual data points being patient samples and super-
imposed over each boxplot. For all boxplots shown in b, d, and f, P-values indicate
the significance of difference between groups evaluated using an unpaired two-
sided Wilcoxon rank sum test, with Benjamini-Hochberg correction for multiple
comparisons.
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Fig. 5 | UniCell assists in rapid annotation of an integrated scRNA-seq Non-
Small Cell Lung Cancer (NSCLC) dataset. a Visualization demonstrating the basic
steps underlying NSCLC sample collection, processing, and analysis using UniCell
Deconvolve Base (UCDBase). b UMAP visualization of human lung cancer biopsy
single cells, annotated by unsupervised leiden cluster (left) and sample of origin
(right). cUMAP visualization of cell type labels applied for each leiden cluster using
UCDBase deconvolution results to guide annotation. d UCDBase predictions are
used to separate normal from malignant epithelium. UMAP visualization showing
probability of malignant lung adenocarcinoma (LUAD) cells initially co-clustering
with cells labeled as normal epithelium (left). Re-clustering select subpopulation
reveals two major clusters separating by sample of origin, Adjacent Normal or

Tumor (right upper). Visualizing UCDBase LUAD probabilities on re-clustered cells
demonstrates Tumor-specific cluster contains the majority of predicted LUAD
malignant cells. e UMAP visualization showing probabilities of four major lung
normal epithelial cell types distributed across re-clustered cells. f Box plots of
feature attribution weights (x-axis) for genes (y-axis) indicative of LUADmalignant
cells learned by UCDBase. Sample size (n = 1576) reflects the total number of single
cells annotated as malignant LUAD. For boxplots, center line, box limits and box
whiskers correspond to the median, first and third quartiles, and the 1.5x inter-
quartile range, respectively. Individual data points representing single cells are
superimposed over each boxplot (Source Data File—Fig. 5f).
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Supplementary Fig. 21a), validating assigned cell types using feature
attribution analysis (see Supplementary Fig. 23) followed by a litera-
ture analysis of identified markers (see Supplementary Table 2).

Examining the annotated clusters (see Fig. 5b, c) further, we
sought to identify malignant LUAD cell subpopulations among
predicted epithelial cells, which were found by UCDBase to likely be
located within leiden clusters 18, 7, 22, 24, and 10 (see Fig. 5d-left).
Because these clusters appeared intermixed with normal epithelial
cells, we reclustered this subset of cells at higher resolution to
reveal separations between malignant and nonmalignant cells (see
Fig. 5d-right). We saw clear separation of cell clusters by biopsy
status, indicating most likely that tumor tissue contained a pre-
dominance of malignant cells. Indeed, UCDBase predicted a higher
probability of lung adenocarcinoma (LUAD) cells across the tumor
biopsy derived cell clusters, with little to no malignant signal across
cells derived from adjacent normal. To orthogonally validate
malignancy predictions, we performed copy-number variation
(CNV) inference, using a combination of smooth muscle, fibroblast,
lung ciliated, and endothelial cells as reference controls, finding
that UCDBase malignancy predictions overlapped estimated
increased copy number variation (see Supplementary Fig. 21b, c).
We quantified this relationship, finding considerably positive and
significant correlation (spearman r = 0.39, p = 1.7E-88) between
malignancy probability and average CNV score per cell (see Sup-
plementary Fig. 21d).

Some LUAD feature attributes (see Fig. 5f) were found to mirror
surfactant genes related to type II pneumocytes, unsurprising as ATII
cells are believed to be the cell of origin of LUAD63. A major
malignancy-specific feature identifiedwas carcinoembryonic antigen 6
(CEACAM6), known oncogenic gene overexpressed in numerous can-
cers including non-small cell lung (NSCLC), colon, and breast
cancers64. Additional NSCLC-related genes identified include NKX2-1, a
key transcription factor involved in early lung development and
diagnostic marker for LUAD65. Non-malignant epithelial cells (see
Fig. 5e) were clearly assigned to lung-related cell types with straight-
forward feature attributes (see Supplementary Figu. 22) correspond-
ing to established cell type markers (see Supplementary Table 2 for
details). Overall, UCDBase enabled the rapid and accurate annotation
of a complex NSCLC patient case, with feature attribute analysis
allowing for prospective validation of cell type assignment, in addition
to delivering contextual information pertaining to the biological pro-
cesses underpinning the data itself.

Discussion
In this work, we presented UniCell: Deconvolve Base, a universal,
context-free cell type deconvolution tool for transcriptomic data that
integrates the entirety of publicly-available scRNA-Seq data into a
single unified training dataset for deep learning applications. Our
corpus of 28M fully-annotated single cells enables UCDBase to gen-
erate accurate cell type fraction predictionswithout theneed for tissue
or disease-context, enhancing its ability to explore and discover bio-
logical phenomena across all major subtypes of transcriptomic data.
UCDSelect on the other hand, allows for context-specific deconvolu-
tion using user-defined cell signatures by leveraging transfer learning
of UCDBase features.

We demonstrate that UCDBase and UCDSelect are capable of
producing highly accurate deconvolution predictions using both
synthetic scRNA-Seq mixtures and real-world spatial transcriptomics
data, that are comparable and/or superior to state-of-the-art methods.

We highlight UCDBase’s deconvolution of the dynamics under-
pinning ischemic renal injury, in addition to the tumor microenviron-
ment from differing cancer subtypes. We show how UCDBase can be
leveraged together with feature attribute analysis to uncover patho-
physiologic responses in bulk RNA-Seq datasets for: idiopathic pul-
monary fibrosis, type II diabetesmellitus, andmultiple sclerosis. Lastly,

we leverage UCDBase to assist in cell type annotation of a scRNA-Seq
NSCLC dataset.

We acknowledge that cell type labels provided by authors either
directly via metadata or indirectly in studies may not be entirely
accurate, and/or lack specificity with respect to labeling of distinct cell
subtypes (i.e. labeling an immune cell as a CD4 + t cells vs. CD4 +
effector memory t cell). Prediction specificity can be improved mark-
edly by increasing the granularity of cell type label assignments via
enhanced data integration to refine our primary training data corpus.

We demonstrate in Supplementary Fig. 10 how high levels of gene
dropout (80%+), and by extension absolute sequencing depth, can
negatively affect model performance. This limits the applicability of
UCDBase and UDCSelect towards targeted / in-situ spatial tran-
scriptomics platforms. Improvements in training data augmentation
by directmodeling of count downsampling in real time during training
will enable future iterations of UCDBase to bemore robust to dropout,
and capable of better handling in-situ data.

UCDBase was designed using empirical evaluation of a range of
hyperparameters concerning layer sizes, depth, and regularization
parameters. Future iterations of UCDBase will leverage neural archi-
tecture search to iteratively test model layouts across a range of
architecture choices and corresponding hyperparameters66.

The analysis of transcriptomic data is a challenging process
necessitating significant time investment by end users to generate
biologically plausible conclusions. Cell type annotation and deconvo-
lution in the cases of scRNA and ST, respectively, are often laborious
processes. With UniCell: Deconvolve Base (UCDBase), we provide a
one step solution to this problem, generating accurate predictions
across three transcriptomic datamodalities, scRNA-Seq, bulkRNA, and
ST without the need for additional user input. With UniCell: Decon-
volve Select (UCDSelect), we enable deeper exploration of data,
leveraging the benefits of transfer learning from a global pre-trained
model, together with the contextual specificity of user-defined cell
signatures.

We believe that the UCD tools suite, as a consequence of its
comprehensive nature, ease of use, and speed, will accelerate the
ability for the broader research community to conduct complex sci-
ence, understand the cellular context underpinningdiseases, anddrive
the development of therapeutics to address them.

Methods
Ethics and oversight statement
The analysis in this manuscript was conducted using predominantly
publicly available datasets. Prospective tissue samples acquired for
single cell analysis were collected through the Mount Sinai Hospital
(MSH) via the Mount Sinai Pathology Core Facility. Approval for this
study was granted by the Mount Sinai Lung Tissue Utilization Com-
mittee. The tissue studied was acquired under the Institutional Bior-
epository protocol (12-00145) which allows for collection of excess
surgical tissue that is not needed for diagnostic purposes, to be used
for research. For this protocol, informed consent is based on specific
language included in the general surgical consent, which all patients
sign prior to surgery. All tissue is distributed in a de-identified fashion.

UCDBase model overview
UCDBase is a Deep Neural Network (DNN) with 281,397,066 trainable
parameters that accepts normalized RNA expression input and out-
puts predicted cell type fractions (see Fig. 6b). Below we describe the
UCDBase architecture in detail and provide a rationale for key design
choices.

Primary data input and preprocessing
UCDBase accepts, by design, nearly all coding and non-coding
human genes, for a total input size of 28,867 genes. Our approach
takes advantage of the fact that DNNs, by nature of their
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Fig. 6 | Summary of UniCell data collection, training mixture generation,
foundation model architecture, and transfer learning strategy. a Depicted on
the left is a flow chart summarizing the training data collection strategy. Candidate
studies are first indexed from several primary and secondary data sources. Raw
data is downloaded from respective source locations, and processed through an
ETL engine where the output represents a standardized single cell count matrix.
GPU accelerated post processing is performed, resulting in a normalized single cell
expression profile. The number of studies indexed and total number of cells pro-
filed (y-axis) is shown as a histogram on the right, within 3month interval buckets
(x-axis). b Each normalized single cell expression profile is utilized to form training
data in the form of single cell mixtures, whereby random subsets of cells from
across studies are selected (see flow chart on left) and averaged together to create
mixed expression vectors of known cell type fractions. Expression vectors are
fed into a deep learning model trained to predict the known cell type fraction.

The basic elements and structure of the UniCell Deconvolve Basemodel are shown
in the flow chart. On the right, an overview of the training process is shown. The y-
axis represents either model loss or coefficient of determination (R2) while the x-
axis represents training epoch, where one epoch represents a single full cycle
through training dataset. Each colored line corresponds to a different size of
training dataset (250K, 1M, 3M, or 10M synthetic mixtures). Solid lines represent
model performance on the training dataset, while dashed lines represent model
performance on test dataset. cUsers have the option of supplying a contextualized
reference profile, which is used in conjunction with embeddings obtained from
UCD Base acting as a universal cell state feature extractor. A regression model is
then trained using processed embeddings, yielding a fine-tuned transfer learning
model applicable to user-specific use cases. Details of the transfer learning model
architecture are shown in the corresponding flow chart.
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overparameterization, do not suffer reduced performance from
multicollinearity67; a phenomenon exhibited when one or moremodel
input values (e.g. gene expression) are highly correlated that can
negatively impact machine learning model performance. We hypo-
thesized that an overparameterized input space would buffer perfor-
mance against sparsity due to tissue heterogeneity and/or technical
resolution exhibited by current transcriptomics platforms, allowing
UCDBase to rely on alternate, non-canonical genes for cell type pre-
diction in cases where canonical markers are not captured insuffi-
ciently sequenced.

Inputs, consisting of a 1-dimensional vector of gene expression
values representing a single-cell or mixture of cells (hereby referred to
as input), are normalized on a per-input basis. We surmised that
UCDBase would be able to infer cell type signatures using relative
differences in expression signals, and that per-input normalization
would make the model more robust to differences in feature scales
between training and test data. Gene expression counts are first nor-
malized to 10,000, followed by log2 scaling so as to reduce the effect
of heteroscedasticity on expression distribution. Each sample is
z-scored to standardize variance across features. Lastly, we apply min-
max scaling to rescale each feature value from 0 to 1, which is then
used as input into UCD.

To further reduce reliance on canonical markers and limit the
impact of sparsity, we introduced a two-step corruption process to our
normalized sample inputs during model training. We first inject 5%
gaussian noise to the normalized expression profile of each gene (e.g.
A normalized expression value of 0.8 from a given gene i will range
anywhere from 0.75–0.85 following 5% gaussian noise injection). This
is followedby a dropout layer, where 20%of input values are randomly
set to zero. We reasoned that a combination of noise and dropout
would further encourage the DNN to learn more complex repre-
sentations of cell types that are robust to noise and missing genes.

Intermediate layers
The core of UCDBase consists of four fully connected dense layers of
8192, 4096, 2048, and 1024 neurons using an exponential linear unit
(ELU) activation function. Baseline characteristics of the model archi-
tecture, layer sizes, and overall depth of the network were determined
through sequential, empirical evaluation of preliminary models of
varying size on subsets of the final training dataset. In brief, we ran-
domly subset the core training dataset to between 250K to 1M mix-
tures, and repeatedly trained models out to 10 epochs to determine
the effect of sequential changes to individual parameters on decon-
volution performance. We noted that model performance in the
first few epochs (see Fig. 6b-right) was indicative of eventual con-
vergence accuracy, making this a suitable proxy for rapid iterative
optimization.

Output and post processing
The final layer of the model is a dense layer of 840 neurons, corre-
sponding to all cell types available in our training database to-date,
with a softmax activation function yielding cell type fraction estimates
summing to 1. No additional regularization is applied to the output
layer,for it was found to reduce overall performance.

The cell types in the resultingdeconvolution sit at varying levelsof
cellular specificity hierarchies (i.e. ‘t cell’ vs. ‘cd4-positive, alpha-beta t
cell’), a consequence of leveraging author-derived annotations and/or
low-confidence in more specific labels. In order to account for pre-
diction biases induced by this uncertainty (i.e. some t cells may in fact
be cd4 + t cells, while all cd4 + t cells are themselves t cells), we employ
a belief propagation (BP) step during output post processing. BP
involves projecting initial cell type fraction estimates onto a cell type
hierarchy subset from the Cell Ontology (see Supplementary Fig. 4)68,
and summing probabilities upwards along the directed tree structure.
In such a way, fractional probabilities assigned to certain cell type

subclasses are captured to yield higher confidence estimates of
deconvolution fractions for more generic cell types.

Generation of training data
UCDBase is trained using mixtures of simulated RNA-seq data (pseu-
dobulk mixtures) generated from scRNA-Seq data. The process of
generating a mixture is described in the following steps: (1) The total
number of cells (T) comprising a mixture is selected. Given our
desire to develop amodel robust to both low-input (i.e. single cell / ST)
andhigh-input (i.e. bulkRNA) samples fordeconvolution,we randomly
selected a value from 1 to 10,000 with uniform probability. (2) The
number of unique cell types (N) in amixture is chosen. We selected
anywhere from 1 to 32 cell types to appear in a given mixture with
uniform probability. The maximum value of 32 cell types (although
parameterizable for future training) was assigned after analyzing the
cellular diversity of all curated scRNA-Seq datasets, and taking the
nearest log2 value of the 95% percentile for the number of unique cell
types per dataset. Selecting cell types with uniformprobability has the
effect of oversampling cells with low representation in the dataset,
which improves model performance on rare classes. (3) The mixture
fraction ratios F for N cell types are assigned. We assigned a random
fraction ratio Fi for each cellNi in a givenmixture, such that all fraction
ratios summed to 1. (4) Expression data for cell types are accumu-
lated and averaged together. For each cell type Ni in a sample, we
randomly selected Ni*T cells of that type from our uniformly pre-
processed, integrated scRNA-Seq database. In cases where the
required number of cells exceeds the total number of cells of a given
type available in the dataset, the maximum number possible were
added to themixture, without duplication. Once all required cells were
randomly selected, expression profiles were averaged together with a
simple mean, resulting in a pseudobulk RNA expression profile with a
known cell type fraction.

Mixture formation via rapid data integration
The process of pseudobulk sample generation was implemented in
python and optimized for high-performance execution using the
python numba package (Numba: A high performance python compi-
ler. https://numba.pydata.org/). All hyperparameters T, N, and F were
precomputed as described above prior to generating mixtures, and
cell type array row locationswerepre-indexed to avoid repeat searches
and improve performance. A total of 10 million pseudobulk mixtures
were generated over the course of 18 h at a rate of 150 mixtures
per secondusing a total corpus of 28million annotated single cells into
a 28,000,000× 28867 compressed-sparse-row (CSR) matrix, running
on a Google Cloud Engine (GCE) n2d-standard-224 virtual machine
(VM) instance with 224 vCPU cores and 896GB system RAM. The
choice of 10 million pseudobulk mixtures was made by training mul-
tiple iterations of UCD with stepwise increases in training dataset size,
noting the impact the amount of mixture examples had on model
performance (see Fig. 6b-right). We observed an increasing logarith-
mic relationship between training data size and performance, and
determined 10M mixtures to be the optimal size for initial model
evaluation as a tradeoff between model accuracy and training time.
Increases in size offered diminishing projected returns with respect to
theoretical peak performance (see Supplementary Fig. 1). Ultimately,
these training parameters can all be customized as future training sets
becomemore expansive beyond 840 cell types and/or if necessary for
extended accuracy in use cases where runtime beyond 18 h is not
limiting given the rapid nature of the overall end-to-end training time.

Single cell dataset curation
The collection and integration of a large annotated scRNA-Seq data-
base is essential to the performance of UCDBase. In this section, we
describe themajor stages of our data curation process (summarized in
Fig. 6a) and highlight technical approaches used to overcome
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challenges inherent to operating with integrated high-dimensional
data at scale.

Study indexing
We generated an index of all publicly available scRNA-Seq datasets,
leveraging both primary sources such as NCBI Gene Expression Omni-
bus (GEO) (geo. Home—GEO—NCBI). https://www.ncbi.nlm.nih.gov/geo/
and EMBL ArrayExpress (AE) (EMBL-EBI. ArrayExpress. https://www.ebi.
ac.uk/arrayexpress/), as well as numerous secondary source including
the UCSC Cell Browser (UCSC Cell Browser. https://cells.ucsc.edu/?),
EMBL-EBI Single Cell Expression Atlas (EBI Gene Expression Team—

https://www.ebi.ac.uk/about/people/irene-papatheodorou, Single Cell
Expression Atlas. https://www.ebi.ac.uk/gxa/sc/home), TISCH69, and the
CZI Human Cell Atlas (Home, https://www.humancellatlas.org/). For
primary data repositories GEO/AE, we performed an API-based pro-
grammatic keyword search for “scRNA-Seq OR single cell OR single-cell
sequencingOR scRNA” to collect an exhaustive list of studies potentially
containing scRNA-Seq data. Primary and secondary sources were then
manually cross-referenced to eliminate duplicate entries.

At present, our base index contains 2695 studies published
between January 2015 and June 2021, as such any studies published
before or after this period are not currently included in UCDBase, but
will be ingested, indexed and included in training sets for future builds.
Examining global trends in publications (see Fig. 6a-top right), we note
a steady increase in the number of scRNA-Seq biomonthly binned
publications between 2014 and 2021 where data is available. Impor-
tantly, we see the number of single cells profiled in experiments
increasing from a general average of 100 cells beginning around 2015
to over 10,000 cells per study in 2021 (see Fig. 6a-bottom right). As
these trends are only expected to continue increasing, we anticipate a
plethora of additional transcriptomic information will become avail-
able, the integration of which into global, accessible datasets will fur-
ther aid in the development of not only machine learning algorithms,
but fruitful data reanalysis revealing unique biological insights. We
anticipate performing additional study indexing on at least a monthly
basis atminimum to allow for integration of recently published studies
into model training cycles, but it should be noted that ad hoc re-
training can be conducted anytime using public or non-public datasets
in <24 h using existing computing infrastructures.

Data extraction
Each indexed study is passed through an automated data loader cus-
tomized to each unique input source (i.e. GEO vs. AE) in an attempt to
automatically extract scRNA-Seq countmatrices.We first categorize all
supplementary files associated with a particular study, looking for
delimited file type extensions used for either transcriptional data or
metadata (e.g.csv,.tsv,.h5,.h5ad,.mtx, etc…). In cases where expression
data is stored as multiple files (i.e. 10X Genomics matrix.mtx/barco-
des.tsv/genes.tsv triplet format), we successfully match pairs of com-
mon filenames by stem using text-similarity unsupervised clustering.
Metadata when present, including cell type annotations, is typically
found in separated delimited files and is identified by matching file-
name substrings “meta OR metadata OR annot OR annotation”. Files
identified as potential expression or metadata are then batch down-
loaded using the aria2 utility for further processing.

Data transformation
For each datafile in a study, we attempt to load, parse, and standardize
gene expression data, and then match it with any associated metadata
(see Fig. 6a). In most cases, expression data is stored in a delimited file
structure (i.e.txt,.csv,.tsv formats) where each row and column corre-
spond to cells and genes, respectively, or vice-versa. Themajor steps in
file loading and standardization are: (1) File delimiters are first
identified based on the most common present in the first line of the
file (i.e. tab, space, comma, etc). (2)Weestimatefile dimensionsusing

a heuristic function that calculates the bytesize of the first N-lines of a
given file and compares it to the total file size. (3) Delimited files
exceeding 100,000 projected rows or columns are read using a
bespoke lightweight data parser, SRead, which distributes line reads
across a unified thread pool for rapid data loading. Smaller files are
read using the python pandas read_table function using the identified
delimiter. The final output is yielded as a pandas DataFrame object.
(4) Gene names are standardized to gene symbols using a compre-
hensive dictionary of gene IDs, synonyms, and symbols, where we
further identify whether or not a row or column in the loaded Data-
Frame contains gene information and set this as the index or header,
respectively. Depending on the initial data frame orientation, we cor-
rect orientation to follow tidy data conventions such that rows cor-
respond to cells (observations) and columns correspond to genes
(variables). Columns containing string-like characters are assumed to
correspond to cell index names or associated cell-metadata, while
those containing floating point or integer values are assumed to be
expression data. (5) We attempt to match rows or columns of
metadata with standardized row indexes of a given sample file. If a
high degree of concordance is found between a data matrix and files
flagged as potential metadata, we assume the file corresponds to cell-
level metadata and align both dataframes together for final integra-
tion. (6)Lastly,weconvert expressiondata into compressed-sparse
row (CSR)matrices andmap themtogetherwithalignmetadata (if-
any) using the annotated dataset (i.e. h5ad) library. These H5-like
objects are then uploaded to a Google Cloud Storage (GCS) bucket as
unprocessed, standardized data sets suitable for downstream
processing.

Data preprocessing
Before a scRNA-Seq dataset can be utilized, it must undergo addi-
tional preprocessing. The most commonly used packages for
scRNA-Seq processing and analysis, scanpy (python) and seurat (R),
were not originally designed for high-throughput batch processing
of thousands of scRNA-Seq datasets. Many computational steps,
including covariate regression, batch correction, nearest neighbor
calculation, and dimensionality reduction, can take significant time
for datasets exceeding 100,000 cells. To enable UCD, we developed
scanpyRAPIDS, a single cell analysis framework that enables com-
plete end-to-end GPU-accelerated scRNA-Seq preprocessing.
Leveraging the CuML, CuGraph, and CuPy python libraries from
RAPIDS.AI (API docs. RAPIDS Docs https://docs.rapids.ai/api), we
reimplement the entire standard scRNA-Seq preprocessing pipeline
from basic QC through batch correction, dimensionality reduction
and clustering residing entirely in GPU memory. Relative perfor-
mance gains compared to traditional CPU-bound analysis is
dependent on both the size of the input data and functional
requirements of data preprocessing. For example, our scanpyR-
APIDS implementation of the popular harmony batch correction
algorithm70 successfully integrates 209,264 cells from 107 indivi-
dual samples representing a time course of iPSC induction in 201.1 s
on an NVIDIA Tesla T4 GPU, compared to 1204.6 s on a 16-core vCPU
instance with 100+GB RAM. This presents a 6-fold speedup in run-
time that continues to scale linearly with dataset size.

Using scanpyRAPIDS, all raw H5AD objects from the previous
stage are concurrently preprocessed, parallelized across 4 NVIDIA
Tesla T4 16GB GPUs. In brief, cells with <200 counts or genes
expressed in <3 cells in a dataset were filtered out. Cells with >20%
mitochondrial read fraction were assumed to be dead or damaged
cells, and filtered out. Cells whose total counts exceeded two times the
standard deviation of log-normal total counts for all cells in the sample
were assumed to be damaged outliers, and filtered out. Total counts
were normalized to 10,000 reads per cell and subsequently log-
normalized. Depth normalized log counts are subsequently retained as
input vectors for training mixture generation.
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Dimensionality reduction and sample-level visualization was per-
formed to better facilitate manual quality control (QC) checks of
dataset quality and cell type annotations. As such, highly variable
genes (HVG) were calculated, keeping genes with a log-normed mean
between 0.0125 and 4, and a minimum dispersion of 0.25. HVGs were
then z-score scaled to +/− 10.We regressed the effect of cell readdepth
(total counts) on expression of each HVG using an CUDA-accelerated
ElasticNet regressor. Lastly, we performed PCA, with the number of
components determined based on the number of post-filtered cells
present in the sample. Nearest neighbor calculation was performed
with n_neighbors set to 30. We ran both 2D and 3D UMAP dimen-
sionality reductions, with min_dist set to 0.3. Lastly, unsupervised lei-
den clustering was performed, with resolution determined, like PCA
components, on the number of post-filtered cells in the sample. Post-
processed H5AD AnnData objects were then uploaded to a GCS
bucket. For cases where multiple samples were preprocessed for a
given study, we performed batch correction and re-clustering using
the described approach with our GPU-accelerated implementation of
the Harmony algorithm71.

Data storage
When determining the optimal active data storage format, we had two
concerns to address. Firstly, as our total preprocessed data repository
contains nearly 1TB of data, which is expected to grow overtime and
will need to be shared between team members, local on-disk storage
would not be practical. Second, the need to rapidly load, inspect, and
validate preprocessed data prior to final integration made traditional
disk-mapped data formats such as HDF5 (and by extension, H5AD)
limiting due to I/O throughput and cloud-access flexibility perspec-
tives. As a result, we designed a bespoke data storage model, Single-
CellData (SCD), built on top of the TileDB API. TileDB is a cloud-native
data storage solution that integrates with cloud storage solutions such
as GCS and S3,with explicit support formultidimensional, sparse array
storage and parallel, chunked I/O operations72. The conversion of our
preprocessed H5AD objects into SCD format allowed us to rapidly
access and validate preprocessing quality for our datasets.

Cell type annotation and label transfer
A total of 1,712 unique studies with 10,000+ associated data files were
successfully preprocessed and stored using the above methods.
Approximately 20% of preprocessed data had cell type annotations
available. Datasets without cell type labels were annotated using a
semi-automated procedure involving manual curation of annotations
using canonical & publication-derived marker genes, supported by an
initial coarse cell type label transfer.

Annotation of cell types
We sought to first project both annotated and unannotated cells into a
common latent space using a deep autoencoder model in order to
cluster similar cell types together and transfer labels of nearby known
cell types onto unannotated cells. Although manual verification of the
annotations was conducted, the use of an autoencoder joint-
embedding model significantly accelerated the rate at which annota-
tion could be accomplished.

To that end, we trained a spherical variational autoencoder (sVAE)
with 30 latent dimensions on all preprocessedgene expressionprofiles
(see Supplementary Fig. 5). In brief, sVAEs differ from conventional
variational autoencoders (VAE) in the use of a non-normal prior dis-
tribution for parameter regularization. Early work applying sVAEs to
scRNA-Seq data has shown benefits compared to traditional VAE in
terms of embedding stability, leveraging the von-Mises-Fisher (vMF)
spherical distribution73. For our implementation we utilized the Pow-
erSpherical distribution, a related distribution that offers improved
numerical stability during model training74. Nearest neighbors were
determined using cosine similarity relative to 30 embedded latent

dimensions using CuML, followed by unsupervised leiden clustering
with the resolution hyperparameter set to 2.

For each of the 4200 initially identified clusters, known cell type
classifications were averaged, assigning the most common annotation
within a cluster to any cells unknown labels.Preliminary validation of
each cluster annotation was performed by decoding the mean
embedding vector to obtain a denoised, average gene expression
profile for that cluster, and examining the highest expressed genes for
correlations between canonical marker genes and predicted class
types75,76. The process was then repeated, re-grouping cells into high-
level subtypes (i.e. b cells, t cells, neuronal cells, etc) to obtain more
refined subtype classifications.

For each dataset, cell type assignments were manually compared
to available figures published in corresponding studies. Cases where
first-pass, automated coarse annotations were too broad, incorrect, or
did not match tissue-specific labels found in the study, were each
manually identified and corrected. At the time of writing, 898/
1,712 studies were verified to pass QC, with an initial focus on the
largest and most diverse datasets available. Expression profiles of all
cells associated with studies that passed the QC criteria were then
averaged across common cell types, and the top 50 differentially
expressed genes for each cell type cluster were computed and made
available in Supplementary Table 3. Visual inspection of top marker
genes cross-referenced with known canonical markers provided
empirical evidenceof accurate cell type label assignments. In total, just
over 28,000,000 single cells are contained in our dataset reflecting
840 unique cell types, including 55 cancer subtypes and 156 distinct
cell lines (see Supplementary Fig. 3).

Training strategy
The UCDBase model described previously was implemented and
trained using Tensorflow 2.5.0. We utilized the Adam optimizer for
supervised backpropagation with a learning rate of 0.0001 and an
effective batch size of 256. Loss was computed using a variation of
mean-squared error, sparse MSE. Given that for most examples, the
vast majority of true cell type proportions are zero, we found during
initial testing that conventional MSE would be artificially inflated,
introducing a negative bias onmodel training. As a result, we opted to
mask cell types whose mixture proportions are zero from calculation
of MSE for that given sample, in effect focusing the loss function to
contextualize towards each training sample.

Pseudobulk training data generated as described previously was
serialized into TFRecord objects and saved into a separate GCSbucket,
subsequently fed into the UCDBase model using the tf.data API. We
trained UCD across 50 epochs over the course of 7 h running a pre-
emptible Google Cloud Engine (GCE) a2-megagpu-8g instance, com-
prising eight NVIDIA A100 40GB GPUs, 96 CPUs, and 680GB system
RAM. A train-test-split ratio of 80/20 was selected for training valida-
tion, and test validation was conducted every five epochs and subse-
quently interpolated for visualization. Early stopping was utilized with
a patience interval of 4 epochs and a loss delta threshold of 1.25E-5.
Learning rate was dynamically lowered by 50% if training loss did not
improve by 1E-4 within 5 epochs. Results of model training, as mea-
sured by sparse MSE and pearson correlation, are highlighted in
Fig. 6b-right. We observed model convergence by epoch 50, at which
point the conditions of early stopping weremet. Additional analysis of
model convergence (see Supplementary Fig. 6) demonstrated that
further training using the current training dataset would not yield
tangibly relevant increases in model performance.

UCDSelect model overview
UCDBase was designed to support the unbiased deconvolution ana-
lyses of datasets in instanceswhere a reference signature is unavailable
or unclear. However, when available, we recognize that following an
initial assessment of the cellular compositionwithin a dataset, it would
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bebeneficial to enable amechanism formodelfine-tuning using auser-
specified cell type signature. The contents of the user defined sig-
nature could also be determined and supported by the context-free
analysis generated by UCDBase. Ideally, this mechanism would work
seamlessly with the existing UCBase pipeline, and leverage the pre-
trained base model to increase performance with minimal computa-
tional overhead. To that end, we propose a transfer learning extension,
called UCDSelect (see Fig. 6c), that enables users to leverage the
benefits of a pre-trained foundation model together with the specifi-
city of a user-defined cell type signature.

As input, UCDSelect takes the same expression data representing
a cell type mixture as UCDBase, with an added reference expression
dataset including corresponding cell type labels. Reference data is
then averaged across cell types to generate a mean expression sig-
nature for user-specified cell states. The input data from both mixture
and reference are then fed into our pre-trained UCDBase model, with
outputs consisting of the middle two dense layers of the neural net-
work, of dimensions 4096 and 2048, respectively. The two feature
vectors corresponding to the reference signature are then indepen-
dently subject to dimensionality reduction using non-negative matrix
factorization, an approach similar to that employed by the SPOTlight
deconvolution algorithm, albeit with the input representing model
features rather than raw gene expression values18. Each NMF model is
fit using the reference, and used in turn to then transform themixture.
We utilize the Combat algorithm77 to perform batch alignment on the
resulting NMF components so as to improve distribution concordance
between reference and mixture, which has been used successfully in
other reference-driven techniques, such as CIBERSORTx12. We repeat
the above decomposition process using feature-selected gene
expression values, and generate a final merged set of batch-corrected
NMF components. We found that in most cases UCDBase features
achieve improved relative deconvolutionperformance, the integration
of both extraction techniques leads to slightly higher overall accuracy
with negligible performance degradation.

The resulting adjusted and merged components are then subse-
quently used as feature vector inputs into a bagging ensemble of 48
Nu-Support Vector Regressor (nu-SVR) models using a linear kernel,
implemented using the sklearn python library. The user in turn
receives cell type deconvolution results specific to the cell type sig-
natures used as a contextualized reference.

Synthetic mixture generation and spatial downsampling
To assess UCDBase & UCDSelect performance, we generated pseu-
dobulk mixtures using well-characterized baseline scRNA-Seq data
collected frommultiple tissue types profiledwith scRNA-Seq including
human PBMCs, lung, and retina (see Supplementary Table 1). Addi-
tionally, using an approach similar to Li. et al. 2022 in their Spatial
Benchmarking paper27, we computationally downsampled a high-
resolution (10 um) mouse hippocampal spatial dataset profiled using
Slide-SeqV278 and made available in the squidpy python package via
the function sq.datasets.slideseqv2 to create synthetic spatial mixture
profiles of lower 100 um resolution with known cell type fractions.

For the PBMC dataset, we performed standard scRNA-Seq pre-
processing, dimensionality reduction, and clustering, followed by
manual cell type annotation using canonical markers, identifying 8
unique cell types (see Supplementary Fig. 7). Preprocessed and
annotated lung and retinal tissue datasets were downloaded from the
cellxgene database79. For each tissue type we selected one of the two
paired datasets and generated 500 pseudobulk mixtures of 100 total
cells, representing two to ten randomly selected cell types. We note
that datasets utilized for mixture generation were not used in the
training of UCDBase. The corresponding paired dataset for each tissue
was then utilized as a reference profile. Cell types were matched
between both reference andmixture datasets such that references and
mixtures both contained the samepossible cell types, with no outliers.

To further assess UCDBase & UCDSelect performance on bulk-
RNA Seq data, we obtained reference andmixture datasets curated by
the recent community DREAM challenge focused on bulk-RNA
deconvolution26, and compared deconvolution accuracy to results
available from challenge participants.

Performance evaluation
We deconvolved mixtures using nine competing approaches devel-
oped for different deconvolution applications. Comparators primarily
developed for spatial deconvolution include Cell2Location, Stereo-
scope, Tangram, destVI, SPOTlight, and RCTD. Bulk deconvolution
approaches utilizing scRNA-Seq references include SCDC, MuSiC, and
Scaden.

Each comparator method was run using published default para-
meters as recommended by vignettes available at the time of writing,
unless otherwise stated. Tangram was run in “cluster” mode for
improved performance, given wewere only evaluating deconvolution.
Reference datasets were randomly downsampled to retain 5,000 cells.
Because existing deconvolution methods are sensitive to collinearity
and most recommend a degree of input gene filtering, input dimen-
sionality for comparators was limited to the top 7,000 most highly
variable genes in the source dataset, as determined by the scanpy
function sc.tl.highly_variable_genes using the seurat_v3 method.

Wemeasured performance on the basis of howwell UCDBase and
UCDSelect were able to predict cell type fractions relative to ground
truth. We reported results using Lin’s concordance correlation coeffi-
cient (CCC), a measure similar to pearson’s R, but one that is sensitive
to both slope and intercept in addition to variance,making it a suitable
metric for comparing deconvolution performance.

Sensitivity analysis
We reasoned that deconvolution performance of UCDBase and UCD-
Select would be sensitive to several hyperparameters pertaining to
model complexity, notwithstanding the total cells in a bulk sample, the
number of unique cell types present, and fraction of gene dropout.

Using our three scRNA-Seq mixture datasets, we established
baseline mixing hyperparameters consisting of 100 cells, 5 unique cell
types per mixture, and 0% gene dropout. We then systematically
perturbed each variable andgenerated 500distinctmixtures, followed
by deconvolution and performance evaluation. Total cells in a sample
varied from 1 to 1000. The number of unique cell types in a sample
varied from 1 to 8. Then, we tested the effect of gene dropout by
randomly removingbetween0and 100%of all expressed genes in each
mixture at the input stage.

Integrated gradients analysis
Deep neural network (DNN) models are often described as being
“black-box” in nature, whereby the underlyingmechanisms correlating
inputs to outputs are largely unknown. The ability to interpret DNN
models is highly desirable in biomedical science, as it enables
researchers to verify a model is learning to generate predictions using
plausible mechanistic correlations. Furthermore, interpretability can
potentially deliver unique insights into biological processes as they
pertain to input genes correlating with model outputs such as cell
types. Several approaches for DNN interpretability have been pro-
posed, including model agnostic approaches such as Shapley (SHAP)
values80, Local Interpretable Model-agnostic Explanations (LIME)81,
and DNN-specific methods such as Integrated Gradients (IG)82. IG dif-
ferentiates itself from competing approaches with respect to its scal-
ability to large input dimensions,making it particularly appropriate for
interpreting UCD predictions with a 28,867 gene input space. While IG
is only applicable to fully differentiable models, making it unsuitable
for interpretation of ML methods such as gradient boosted trees or
random forest, UCD’s implementation as a pure DNN makes it fully
compatiblewith integrated gradients. The goal behind IG is calculation
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of the effect a change in a particular input i has on a given output class
probability j, expressed as the gradient (i.e. partial derivative of j with
respect to i). The integrated component refers to the accumulation
(i.e. mathematical integration) of local gradients for input i across an
interpolated range of values starting from a zero-baseline to its true
value within a particular sample. Integrated gradients for each input
gene are then multiplied by a scaling factor representing the absolute
difference between the baseline case and normalized sample expres-
sion level, such that only genes actually expressed in the sample being
analyzed will yield non-zero input attributions. Intuitively, this enables
one to attribute the importance of input (gene) i with respect to how
much it is adding to (positive attribution) or subtracting from (nega-
tive attribution) themodels overall output probability for a given class
(celltype) j. The intuition behind this approach is visualized in Sup-
plementary Fig. 2.

For IG Analysis (IGA) in UCD, our baseline interpolation
function consists of a 50-step linear interpolation of gene expression
between zero and true sample values, multiplied by randomized
gene dropouts (with a 50-step descending probability of 100% to 0%
dropout, as a means of roughly simulating the effect of lower-read
depth on absolute gene transcript detection). We approximate the
integral of interpolated local gradients using a trapezoidal Riemann
summation.

Secondary spatial and Bulk-RNA-Seq data acquisition and
preprocessing
We collected five publicly available, temporal spatial transcriptomics
datasets from a mouse bilateral renal IRI model developed by Dixon
et al. 202231. Breast Invasive Adenocarcinoma and Prostate Adeno-
carcinoma Spatial FFPE samples were downloaded from the 10X
Genomics Datasets repository (see Supplementary Table 1). Colorectal
ST data was downloaded from the 10X Genomics Datasets repository
by means of the scanpy function sc.datasets.visium_sge.

Bulk-RNA Seq lung data originating from 5mg tissue samples of
patients with ALI, IPF, and healthy lungs collected by Sivakumar et al.
201983 was downloaded from the Gene Expression Omnibus (GEO)
using accession GSE134692. Bulk-RNA Seq data of whitematter lesions
sampled from patients with multiple sclerosis or healthy controls by
Elkjaer et al. 201984 was downloaded from GEO using accession
GSE138614. Bulk-RNA Seq data from Fadista et al. 201485 comprising
pancreatic islet samples from individuals with varying states of T2DM
was downloaded fromGEOusing accessionGSE50244. Severity of T2D
is monitored long-term by the measure of Hemoglobin % A1c (HgA1c).
Values <5.7% are considered “Normal”, values between 5.7 and 6.4 are
considered “Prediabetes” while values >6.4% indicate a patient has
T2DM86. Samples were stratified by patient HgA1c clinical thresholds
into three groups: normal, prediabetes, and diabetes.

For each bulk-RNA-Seq dataset, TMM-normalized (Lung & Pan-
creas) or raw (MS) count data, gene annotations, and clinical metadata
were integrated into a single annotated dataset object. No filteringwas
performed on genes or read counts, however read depths for raw
counts were normalized to 10,000 per sample. Depth-normalized
count data was then passed to UCD for deconvolution. Wilcoxon rank-
sums test was used to determine differences in deconvolve cell type
fractions between groups, with bonferroni correction for multiple
testing.

Primary non-small cell lung cancer data acquisition and
preprocessing
Paired biopsies reflecting tumor and matched adjacent normal tissue
were obtained from a patient with non-small cell lung cancer (NSCLC)
undergoing surgical resection at the Mount Sinai Hospital (MSH)
via the Mount Sinai Pathology Core. Samples were dissociated
into single-cell suspensions using the Miltenyi Tumor Dissociation Kit

(130-095-929) and theMiltenyi gentleMACSDissociator (130-093-235).
Single cell suspensions were processed with the 10X Genomics Chro-
mium Next GEM Single Cell 3' v3.1 kit (PN-1000121), targeting 10,000
loaded cells per sample. Whole-transcriptome sample libraries were
sequenced on a NovaSeq 6000, targeting 50,000 reads per cell.
Sequenced data was processed through CellRanger, yielding filtered
count matrices for use as input into downstream single-cell data ana-
lysis using the python scanpy package. Both count matrices were
concatenated into a singlemerged dataset. Briefly, cells with <2000 or
>100,000 reads were filtered out, as well as cells that contained <200
or >30,000 unique genes. Cells with >10% mitochondrial gene frac-
tionswereassumed tobedeadordamaged, andexcluded from further
analysis. Cell counts were normalized to 10,000 counts per cell, and
subsequently, the effects of total counts, percent mitochondrial
counts, and cell cycle scorewere regressedout. Regressed, normalized
counts were then log-scaled and z-scored with a min-max of +/−10.
Highly variable genes were identified on the basis of a dispersion score
of 0.1 or greater for genes with log-normalized expression values
between 0.1 and 20. HVGs were used to generate 75 principal com-
ponents. At this stage, we performed batch correction using harmony,
which outputs a corrected principal components array for use in all
subsequent analysis steps. Calculation of nearest neighbors using our
adjusted PCA vectors was done with n_neighbors set to 30. UMAP was
used for final dimensionality reduction with minimum_distance set to
0.3. Leiden clusteringwas thenperformed to identify transcriptionally-
related clusters, with resolution set to 1. Log-normalized counts were
used as input into UCD to generate cell type prediction scores.

Statistics and reproducibility
Unless otherwise noted, for all box plots depicted in this study the
center line, box limits andboxwhiskers correspond to themedian,first
and third quartiles, and the 1.5x interquartile range, respectively. For
bar plots, bar heights correspond to the mean value of the population
being visualized. Bar heights denote 95% confidence interval (CI).
Unless otherwise noted, p-values comparing distributions between
groups across box or bar plots were calculated using unpaired two-
sidedWilcoxon rank sum test, with Benjamini-Hochberg correction for
multiple comparisons where appropriate.

For experimental single cell profiling of lung cancer tissue, the
two samples were selected for processing and sequencing on the basis
of cellular viability and minimal debris post-dissociation. No statistical
methods were used to predetermine sample size for benchmarking,
and all available samples were used as described and provided in the
literature for each study. Reproducibility of the computational analysis
presented in this manuscript is achieved through robust benchmark-
ing, and public availability of both datasets and analysis code included
in the supplementary software file. All attempts at replication and
validation of the results presented were successful.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated for thismanuscript (scRNA-Seq countmatrices, used in
Fig. 5) has been deposited and is publically available at https://github.
com/dchary/ucdeconvolve_paper. All accession codes for publicly
available studies used as training data for the model presented in this
study are listed in Supplementary Table 5. All previously published
datasets used for benchmarking in this study are listed along with web
links to source data in Supplementary Table 1, and are additionally
made available at https://github.com/dchary/ucdeconvolve_paper.
Source data for bar and box plots in this paper are provided with this
paper. Source data are provided with this paper.
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Code availability
The UniCell Deconvolve user API is publically available as a Python
package and can be found at https://github.com/dchary/
ucdeconvolve/. Documentation and tutorials are available at https://
ucdeconvolve.readthedocs.io/en/latest/. All jupyter notebooks used to
collect, analyze, and visualize results presented in this manuscript,
with an associated list of all external software libraries and corre-
sponding versions, are publicly available at https://github.com/
dchary/ucdeconvolve_paper, as a supplementary software file, and
upon request.
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