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Background: Immune checkpoint blockade (ICB) therapies have redefined human cancer treatment, 
including for head and neck squamous cell carcinoma (HNSCC). However, clinical responses to various 
immune checkpoint inhibitors are often accompanied by immune-related adverse events (irAEs). Therefore, 
it is crucial to obtain a comprehensive understanding of the association between different immune tumor 
microenvironments (TMEs) and the immunotherapeutic response. 
Methods: The research data were obtained from The Cancer Genome Atlas (TCGA) database. We applied 
RNA-seq genomic data from tumor biopsies to assess the immune TME in HNSCC. As the TME is a 
heterogeneous system that is highly associated with HNSCC progression and clinical outcome, we relied on 
the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) 
algorithm to calculate immune and stromal scores that were evaluated based on the immune or stromal 
components in the TME. Then, the Tumor Immune Dysfunction and Exclusion algorithm (TIDE) was used 
to predict the benefits of ICB to each patient. Finally, we identified specific prognostic tumor-infiltrating 
immune cells (TIICs) by quantifying the cellular composition of the immune response in HNSCC and its 
association to survival outcome, using the CIBERSORT algorithm.
Results: Utilizing the HNSCC cohort of the TCGA database and TIDE and ESTIMATE algorithm-
derived immune scores, we obtained a list of microenvironment-associated lncRNAs that predicted different 
clinical outcomes in HNSCC patients. We validated these correlations in a different HNSCC cohort 
available from the TCGA database and provided insight into the prediction of response to ICB therapies in 
HNSCC.
Conclusions: This study confirmed that CD8+ T cells were significantly associated with better survival in 
HNSCC and verified that the top five significantly mutated genes (SMGs) in the TCGA HNSCC cohort 
were TP53, TTN, FAT1, CDKN2A, and MUC16. A high level of CD8+ T cells and high immune and stroma 
scores corresponded to a better survival probability in HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common type of cancer worldwide, accounting 
for approximately 4% of all cancers (1-3). Despite 
significant treatment progress in surgery, radiotherapy, and 
concomitant chemoradiotherapy, the mortality rate remains 
as high as 40–50% (4). Over the last decade, immune 
checkpoint inhibitors (ICIs) have emerged as a promising 
therapy for various cancers due to their prominent 
antitumor efficacy. Programmed death-1 (PD-1) inhibitors, 
such as pembrolizumab and nivolumab, programmed 
death-ligand 1 (PD-L1) inhibitors (durvalumab, avelumab, 
and atezolizumab) and Ipilimumab, a CTLA-4 inhibitor, 
soon followed, presenting promising results (5). However, 
clinical responses after anti-PD-1/PD-L1 treatment are 
heterogeneous; the majority of HNSCCs are resistant to 
immunotherapy ab initio, and serious immune-related 
adverse events (irAEs) are seen in patients experiencing 
ICI therapy (6,7). Malignant carcinomas, including 
HNSCC, are characterized not only by the intrinsic 
activities of cancer cells but also by the immune cells 
recruited to, and activated in, the tumor microenvironment  
(TME) (8). The sophisticated mechanistic basis remains 
largely unclear. According to the previous study, this may 
be due d to factors in the TME, such as a lack of proper 
rejection antigens, lack of immune surveillance, or the 
presence of immunosuppressive mediators (9). Therefore, 

a comprehensive investigation of immune profiling in 
the progression of HNSCC tumors may promote the 
development of new immunotherapeutic agents and novel 
treatment regimens. In this study, we mined The Cancer 
Genome Atlas (TCGA) database for genes with prognostic 
value and responses to various ICIs in the HNSCC 
microenvironment.

CD8+ T cells have an affinity for major histocompatibility 
complex (MHC) class I molecules and are key anticancer 
immune cells (10,11). Additionally, CD8+ T cells are 
the main effectors in PD-1 blockade-induced antitumor 
responses, and reinvigoration of exhausted CD8+ T cells 
is one of the major determining factors of responsiveness 
to PD-1 blockade (12,13). For instance, in breast cancer, 
previous studies have shown a significantly increased 
number of CD8+ T cells at tumor sites, which was 
negatively correlated with advanced tumor stages and 
positively correlated with clinical outcomes (14,15). CD8+ 
T cells were also significantly associated with the clinical 
outcomes of HSCNN. In the study of Zhang et al., they 
found that CD8+ T cells exhaustion in the TME of HNSCC 
determines poor prognosis (16). Moreover, CD8+ T cells 
differentiate to cytotoxic T cells, traffic into the TME, and 
exhibit cytotoxicity against tumor cells (17). Upon arrival 
in tumor beds, CD8+ T cells inevitably face many obstacles, 
including the intrinsic checkpoint regulators PD1-PD-L1 
and CD28-CTLA-4; an abnormal TME contain protumor 
inflammation; antigen loss and immune evasion of tumor 
targets; and tissue-specific alterations (18).

The TME is a complex microenvironment where the 
tumor cells are generated and located, consisting of immune 
cells, stromal cells, endothelial cells, surrounding blood 
vessels, inflammatory mediators and extracellular matrix 
(ECM) molecules (19). Cytotoxic T lymphocytes (CTL), 
natural killer (NK) cells, myeloid-derived suppressor cell 
(MDSC), regulatory T cell (Treg) and tumor-associated 
macrophage are immune cells which play vital roles in 
tumor biological process (20). Cancer-associated fibroblasts 
(CAFs) construct the main bulk of stromal cells in the 
TME to promote the growth of cancer cells (21,22). Also, 
the TME in HNSCC is comprised of heterogeneous non-
malignant cells that integrated in a complex ECM (23). 
Increasing evidences indicated that tumors can be classified 
by the components of TME and stromal cell proportions or 
activations status (24,25). TME of different types of tumors 
have their own characteristics and also commonalities. 
However, the TME of HNSCC is characterized by some 
unique features compared to other cancer types (26). 

Highlight box

Key findings 
• A high level of CD8+ T cells and high immune and stroma scores 

corresponded to a better survival probability in HNSCC.
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HNSCC patients have decreased absolute T cells count in 
tumor and circulation (27). Moreover, the interaction of 
various cellular components in the TME along with the 
production of cytokines and chemokines profoundly impact 
the function of T cells (26,28,29). Decreased number of 
NK cells is also common in HNSCC, leading to seriously 
immunodeficient tumors (30,31). YTHDF1 expression 
was significantly associated with the TME in HNSCC, 
which was correlated with CD4+ T cells and CD8+ T cells 
infiltration (32). In addition, HNSCC is characterized 
by desmoplastic stromal fibroblasts that promote tumor 
invasion and progression through autocrine and paracrine 
factors (33,34). In the TME, immune and stromal cells are 
the two main types of non-tumor components and have 
been suggested that they are valuable for the diagnostic and 
prognostic biomarkers of tumors. In recent year, algorithms 
have been developed to predict tumor purity using gene 
expression data based on the TCGA database. For example, 
Yoshihara et al. designed the Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expression 
data (ESTIMATE) algorithm (35). Immune and stromal 
scores to predict the infiltration of non-tumor cells by 
analyzing the specific gene expression signatures of immune 
and stromal cells were calculated based on the ESTIMATE 
algorithm. Many studies have applied the ESTIMATE 
algorithm to prostate cancer (36,37), breast cancer (38,39), 
colorectal cancer (40-42) and hepatocellular carcinoma (43), 
which demonstrated that such big-data-based algorithms 
are effective, although its utility on immune and/or stromal 
scores in glioblastoma multiforme (GBM) has not been 
explored in detail.

Mounting research has revealed that long noncoding 
RNAs (lncRNAs) play a pivotal role in cancer progression 
(44-46). However, their potential involvement in HNSCC 
remains to be elucidated. In this paper, we investigated the 
CD8+ T cell profiles in the TME and their clinical value 
in HNSCC patients using the TCGA RNA sequencing 
data. Signature lncRNAs combined with their coefficients 
in an elastic net model were used to calculate the risk 
score for every patient. The “ConsensusClusterPlus” R 
package clustered patients by the expression level of 22 
selected lncRNAs. We further predicted the benefits of 
immune checkpoint blockade (ICB) to each patient using 
the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm (http://tide.dfci.harvard.edu/). Moreover, 
mutation patterns of significantly mutated genes (SMGs) 
in relation to HNSCC subtypes and immune score and 
stromal score were calculated to reveal the relationship 

between tumor immune status and prognosis. Finally, 
tumor-infiltrating immune cells (TIICs) were found to be 
significantly associated with prognosis and the identification 
of immunotherapy targets.

This study is the first to utilize the HNSCC cohort of 
the TCGA database and TIDE and ESTIMATE algorithm-
derived immune scores to obtain a list of TME-associated 
lncRNAs to predict clinical outcomes in HNSCC patients. 
Notably, we validated these correlations in a different 
HNSCC cohort available from the TCGA database. And 
were able to provide insight into the prediction of response 
to ICB therapies in HNSCC. We present the following 
article in accordance with the REMARK reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6481/rc).

Methods

Data profiling

The lncRNA expression microarray data and clinical 
characteristics, including medication history, histologic 
grade, pathological TNM stage, and survival information 
for 546 TCGA-HNSC samples from 528 TCGA-HNSC 
patients was retrieved from the TCGA database using 
the TCGA “biolinks” R package. Patients with complete 
survival information and genetic expression data at that 
time point were included in this study. The detailed 
clinicopathological information for the TCGA data sets are 
shown in Table S1. The lncRNA annotation information 
was downloaded from Ensemble (ftp://ftp.ensembl.org/pub/
release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.
gtf.gz). The lncRNA annotations were extracted from the 
Ensemble gtf annotation file based on genecode-defined 
lncRNA biotypes (https://www.gencodegenes.org/pages/
biotypes.html). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

lncRNA differential expression analysis

The lncRNA expressions (fpkm values matrix) were 
extracted from the total RNA fpkm matrix by the Ensemble 
ID of the lncRNAs. Samples were classified into normal or 
tumor groups according to tissue definition. Differentially 
expressed lncRNAs between the normal and tumor samples 
were qualified using the “DESeq2” R package. lncRNAs 
with an adjusted P value <0.0001 were selected to plot the 
heatmap and volcano plot.

https://atm.amegroups.com/article/view/10.21037/atm-22-6481/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6481/rc
https://cdn.amegroups.cn/static/public/ATM-22-6481-Supplementary.pdf
ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.gtf.gz
ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.gtf.gz
ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.gtf.gz
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Construct and validation of survival-related lncRNA 
signatures

To find lncRNAs that were most relevant to the prognosis 
of patients, we first selected the top 1,000 most significant 
genes using univariate Cox models (genes were ranked by 
the Wald test P value). We then selected the most related 
lncRNAs using an elastic net model in the “glmnet” 
R package with an alpha =0.1 and family = “Cox”. 
These selected signature lncRNAs combined with their 
coefficients in the elastic net model were used to calculate 
the risk score for every patient. The risk score was defined 
as the sum of products from all signature lncRNAs and 
their coefficients. After calculating the risk score for every 
patient, these patients were then divided into two groups by 
the median value of all risk scores. The survival difference 
was calculated using the “survival” R package and plotted 
with the “survminer” R package.
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Consensus clustering 

The “ConsensusClusterPlus” is an open resource, 
Bioconductor-compatible R software package for 
unsupervised class discovery (47). The algorithm starts 
by subsampling a proportion of items and a proportion of 
features from a data matrix. In this study, we performed 
consensus clustering using “ConsensusClusterPlus”, where 
the lncRNAs for each HNSCC sample were divided into 
three subgroups and measured by the median absolute 
deviation (MAD). The most variable genes were used for 
subsequent clustering. 

Differential expression level of 22 selected lncRNAs

After selecting the signature lncRNAs using the elastic 
net model, we clustered patients by the differential 
expression level of 22 selected lncRNAs using the 
“ConsensusClusterPlus” R package (50 iterations, 
80% resampling rate, Pearson correlation, http://www.
bioconductor.org/). The “PCA” R package (R v3.5.1) was 
used to investigate gene expression arrays in the HNSCC 
sample groups.

Estimation of tumor mutational burden (TMB)

TMB has been recognized as an emerging therapeutic 

measure of sensitivity to predict immunotherapy response 
in clinical oncology. The TMB score of each patient with 
HNSCC was calculated as previously described (48). 

Immunotherapeutic response prediction

The programmed cell death 1 PD-1 and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) pathways 
are associated with tumor immune evasion; therefore, 
ICIs targeting PD-1 and CTLA-4 enhance the antitumor 
immunity. To predict clinical responses to ICIs, we used 
the TIDE algorithm and subclass mapping as previously 
described (49,50). 

Correlations between prognoses and stromal/immune 
scores

To investigate the relationship between tumor immune 
status and prognosis, we calculated the immune and stromal 
scores and identified the optimal score cutoff for grouping 
patients most significantly to the maximally selected 
rank statistics using the “maxstat” R package (51). Before 
calculating the scores, we first filtered genes that showed 
an fpkm value smaller than 5 in all samples. Patients were 
divided into 4 stages based on the stromal and immune 
scores estimated from each HNSCC sample and the 
prognoses for each group were examined. The log-rank 
tests were used to compare the survival outcomes.

Immune TME analysis 

To explore the differences in immune cell subtypes for 
each HNSCC sample, the CIBERSORT package was used 
to value the fraction of 22 immune cell subtypes, based 
on an expression file as previously described (52). We set 
the number of permutations to 1,000. A total of 22 types 
of TIICs were quantified for each sample, together with 
CIBERSORT metrics, including CIBERSORT P value, 
Pearson's correlation coefficient and root mean square 
error. The “Genefilter” R package was used to screen each 
sample, and the threshold was set at a P value <0.01. The 
final CIBERSORT output was subsequently analyzed.

Statistical analyses

All statistical analyses were performed using R statistical 
software (https://www. r-project.org/, version 3.5.2) 
and GraphPad Prism (version 8.0, LaJolla, CA, USA). 

http://www.bioconductor.org/
http://www.bioconductor.org/
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Progression-free survival (PFS) and overall survival (OS) 
analyses were estimated by Kaplan-Meier curves, and the 
P value was determined by a log-rank test. Univariate and 
multivariate analyses of PFS and OS were performed with 
the “rms” package. P values were adjusted for multiple 
testing using the false discovery rate (FDR) approach by 
Benjamini and Hochberg. A P value <0.05 was considered 
statistically significant.

Results

lncRNA differential expression analysis

To investigate the differentially expressed lncRNAs 
in normal and tumor tissue samples, the heatmap of 
the lncRNA expression pattern was constructed by 
the “DESeq2” R package (Figure 1A). A total of 2,281 
differentially expressed genes containing 1,466 upregulated 
genes and 815 downregulated genes were detected after 
analysis of the TCGA-HNSCC cohort (Figure 1B). 
The differently expressed lncRNA fold-change and 
corresponding adjusted P values are provided in https://cdn.
amegroups.cn/static/public/atm-22-6481-1.xls. In addition, 
we downloaded the transcripts per million TPM values 

of tumor and normal samples from the TCGA-HNSCC 
dataset and performed weighted gene co-expression 
network analysis (WGCNA) using the WGCNA R package. 
In the WGCNA analysis, a co-expression network was 
constructed according to the co-expression of all the genes 
in the samples, and 130 modules were identified, among 
which the MEroyalblue module was the most relevant to 
the normal samples, and the MElightyellow module was the 
most relevant to the tumor samples (Figure S1).

Prognostic signature construction with the LASSO Cox 
regression model using the training set

The LASSO Cox regression model was constructed using 
the “glmnet” package in R. Relying on a 10-fold cross-
validation, we chose 0.645 as the minimum value criteria 
for λ (Figure 2A). We calculated the risk score of every 
patient for 1,000 selected signature lncRNAs combined with 
their coefficients in the elastic net model. Subsequently, we 
assigned patients into the low- and high-risk groups based on 
the median value of all risk scores. The survival curve verified 
that patients with a low-risk score had a preferable survival 
rate compared to those with high-risk scores (Figure 2B).
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Figure 1 Comparison of lncRNA expression profiles between HNSCC tumor samples and normal samples. (A) Heatmap of differentially 
expressed lncRNA in normal and tumor tissue. Differentially expressed lncRNA are lncRNA show an adjusted P value ≤0.0001. Genes 
shown in red are upregulated and genes in blue are downregulated. (B) The significantly upregulated and downregulated lncRNA in 
HNSCC tumor samples and normal samples are shown in the volcano plot (log2 fold change >1.0, P<0.01). HNSCC, head and neck 
squamous cell carcinoma; lncRNA, long noncoding RNA.

https://cdn.amegroups.cn/static/public/atm-22-6481-1.xls
https://cdn.amegroups.cn/static/public/atm-22-6481-1.xls
https://cdn.amegroups.cn/static/public/ATM-22-6481-Supplementary.pdf
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Consensus clustering 

The elbow method and gap statistic were used to group the 
HNSCC samples into three clusters. With K=3, the elbow 
curve smoothly decreased (Figure 3A). Consensus clustering 
of related gene expressions grouped the HNSCC sample 
into three clusters with different pathological features 

and clinical outcomes. From the clustering results, we 
also observed a significant survival difference among the 
different groups of patients. Specifically, patients of cluster 
3 exhibited the best survival probability, followed by those 
of cluster 1, and patients of cluster 2 showed the worst 
survival probability (Figure 3B).

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time, days
0

P<0.0001

Group High

Low
P

ar
tia

l l
ik

el
ih

oo
d 

de
vi

an
ce

30

25

20

15

536 485 444 376 319 253 184 136 88 55 37 21 8 2

–3 –2 –1 0 1000 2000 3000 4000 5000
Log, λ

A B
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are drawn correspond to the optimal values by minimum criteria and 1- standard error criteria. The value of 0.6457363 was chosen for λ by 
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The TIDE signature predicted ICB response

CD8+ T cells are considered the major anti-cancer effector 
cells as they can give rise to CTLs that kill cancer cells 
presenting a specific pMHC complex. To investigate the 
response of these patients to immune therapy, the TIDE 
(http://tide.dfci.harvard.edu/) algorithm was used to predict 
the ICB of each patient. A high expression of CD8+ T cells 
was significantly related to a better prognosis in HNSCC  
(Figure 4A). When investigating the expression level of CD8+ 
T cells in patients at different stages, the expression level of 
CD8+ T cells showed a decrease from stage I to stage IV, which 
implied that the proportion of CD8+ T cells experienced a 
decline in line with HNSCC progression (Figure 4B).

Mutation patterns of SMGs in relation to HNSCC 
subtypes

The TMB is an independent indicator of a better response 
to ICB treatment (53). The average TMB was 3.48 mutants 
per Mb and the detailed TMB information can be found 
in Figure 5A and https://cdn.amegroups.cn/static/public/
atm-22-6481-2.xls. Gene expression has emerged as one 
of the most robust and reliable approaches to differentiate 
human lymphomas. Using manual selection, we divided 
508 tumor tissues into the training and validation cohorts. 
We identified 20 SMGs in the TCGA HNSCC cohort. 
An oncoplot of the top 50 mutated genes is shown in  
Figure 5B. TP53, TTN, FAT1, CDKN2A, and MUC16 
were much more frequently mutated in the high-risk 

subtype (Fisher exact test, OR >1, P<0.05; Figure 5B). The 
associations between these SMGs and the high-risk subtype 
were still significant after including the factors of age, 
gender, stage, and prognostic status (OR >1, P<0.01). 

Immune and stromal scores were significantly associated 
with HNSCC subtypes

To investigate the relationship between tumor immune 
status and prognosis, we calculated the immune and stromal 
scores using the “estimate” R package After excluding 
patients without complete clinical information and the 
normal control group, 508 patients with HNSCC were 
enrolled in this research. Relying on the pathological 
diagnosis given in the TCGA database, HNSCC was 
divided into four stages. The stromal scores among the 
different HNSCC stages decreased from stage I to stage 
III, and increased from stage III to stage IV (Figure 6A). 
However, the distribution of the immune scores among the 
different HNSCC stages was quite stable from stage I to 
stage IV (Figure 6B).

Association of stromal and immune scores with HNSCC 
patient tumor stages and prognosis

After excluding patients without complete clinical 
information and the normal control group, 508 HNSCC 
patients were enrolled in this research. Relying on the 
pathological diagnosis given in the TCGA database, 
HNSCC was classified into four stages. The association 

http://tide.dfci.harvard.edu/
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between the stromal and immune scores with HNSCC 
patient pathologic characteristics was qualified by 
comparing the score distributions in different tumor 
stages (Figure 6A,6B). A roughly increased stromal and 
immune scores with the advancing of tumor stage could be 
seen. There was a significant association between stromal 
(P=0.015) and immune scores (P=0.00088) and HNSCC 

patients survival probability (Figure 6C,6D).

Composition difference and prognosis value of TIICs in 
HNSCC samples

The CIBERSORT analytical tool allowed us to specifically 
analyze the intrinsic fractions of 22 subpopulation TIICs in 
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the bulk tumor samples. Insight into TIICs may be helpful 
in explaining the initiation and development of HNSCC. 
The total value of the 22 subset immune cells in each 
sample as one, and the fraction of all 22 subpopulations 
of immune cells in each sample is depicted in Figure 7A. 
Calculating the average fraction of each subset of TIICs 
among the HNSCC samples, the top five average fractions 
were M0 macrophages, CD8 T cells, M2 macrophages, 
CD4 resting memory T cells, and M1 macrophages. 
Detailed information is shown in https://cdn.amegroups.cn/
static/public/atm-22-6481-3.xls. Moreover, as presented in  
Figure 7B, we used unsupervised hierarchical clustering 
based on the above identified cell subsets to divide the 
HNSCC samples into two discrete groups. It was clear 
that the fractions of immune cells in the different HNSCC 
samples were significantly varied. Hence, we inferred 

that variation in TIIC fractions might be an essential 
characteristic of HNSCC. We further identified the 
prognostic subsets of TIICs in HNSCC. The Kaplan-
Meier plots and log-rank tests for the above-identified 
TIIC subpopulations showed that high expression levels 
of immune cells, including CD8 T cells (P=0.0014), 
follicular helper T cells (P=0.0024), and regulatory T cells 
(P=0.00034) were associated with a better OS; whereas high 
expression levels of CD4+ memory T cells (P=0.00035) 
corresponded to a poor OS (Figure 7C-7F).

Discussion

As increasing application of immunotherapy in cancer, 
the information of individual’s immune status could help 
identify those who will resist to ICB therapies. TME has 
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been reported to seriously affect gene expression of tumor 
cells, thus the clinical outcomes. The TME is a complex 
microenvironment where the tumor cells are generated 
and located. It is comprised of mesenchymal cells, stromal 
cells, immune cells, endothelial cells, surrounding blood 
vessels, as well as inflammatory moderators and ECM 
molecules (24,54). In the TME, immune and stromal 
cells are two notable kinds of non-tumor components, 
which have magnificent value for tumors diagnosis and 
prognosis assessment. HNSCC is one of the most common 
malignant tumors in the world, with high metastasis rate, 
low survival rate and poor prognosis (55). Importantly, 
most HNSCCs have significant immune infiltration, 
and the close interaction between tumor cells and their 
microenvironment significantly impairs the development 
and progression of malignant tumors, therefore influences 
the prognosis of patients (56).

In this study, we identified TME related genes that 
contribute to HNSCC OS and conducted prediction 
of  immunotherapeut ic  response us ing data  from 
TCGA database. Specifically, by comparing lncRNA 
expression level of 546 TCGA-HNSC samples from 528 
TCGA-HNSC patients, we then extracted 258 genes 
involved in prognoses and stromal/immune Scores and 
immunotherapeutic response prediction. We used the 
ESTIMATE algorithm to calculate immune and stromal 
scores in the TME. Therefore, we demonstrated that 
patients with low stroma risk score in line with a relatively 
higher survival probability, and low immune risk score 
corresponds a relatively higher survival probability.

In our study, the average TMB was 3.48 mutants per 
Mb from 508 HNSCC patients, which was similar to 
background TMB value in HNSCC (57). We verified 
top five mutation SMGs in TCGA HNSCC cohort were 
TP53, TTN, FAT1, CDKN2A and MUC16. Early studies 
verified that TP53 is a ubiquitous tumor suppressor which 
is critically mutated in different malignant tumors, with 
about two-thirds of HNSCC accompanying mutations 
in exons (58,59), and these alterations were intimately 
associated with resistance to radiation and cisplatin-based 
chemotherapeutics (60,61). Many studies have revealed 
that TP53 is one of the most frequently mutated genes in 
HNSCC (62-64). The TTN was included in old age specific 
clusters and pathway enrichment in HNSCC SMGs (65). 
Based on previous studies, FAT1 plays different roles in 
different tissues or cancer types and its expression level is 
downregulated in HNSCC and other cancers, which has 
been considered as a tumor suppressor (66,67). The highest 

mutation rate of FAT1 was approximately 23% in HNSCC, 
ranking as the second most mutated gene after TP53 (68,69). 
Several studies have shown that suppression of CDKN2A 
expression by methylation is involved in the development 
of HNSCC, which could be a potential diagnosis and 
prognosis biomarker for HNSCC (70-72). Although not 
much is known about the specific effects of MUC16 in 
HNSCC, many studies have been verified that deregulated 
expression of MUC16 was associated with several cancers, 
such as breast cancer (73), ovarian cancer (74), non-small-
cell lung cancer (75) and pancreatic cancer (76).

Furthermore, both CIBERSORT and TIDE algorithm 
outcome agree that a high level of CD8+ T cells was 
significantly corresponding to a preferable survival 
in HNSCC, which was in a line with that high CD8+ 
intratumoural counts exhibited a remarkable association 
with relapse free survival in breast cancer and Triple-
negative breast cancer (14,15). And this tendency is 
consistent with previous study that increased numbers of 
intraepithelial CD8+ TIL was associated with favorable 
outcome in HNSCC (77). Besides, the CD8+ T cells would 
experience a declination from stage I to stage IV. Though 
there are contradictory study point out, instead of CD8+ 
T cell, CD4+ T cells in cancer stroma are closely related 
to a favorable prognosis in human non-small cell lung  
cancers (78), We speculate that exogenous reactivation of 
CD8+ T cells might be theoretically feasible to alleviate 
HNSCC patients suffering using rational immunotherapy 
strategies (17,79).

Over the recent years, the TME was characterized as a 
pivotal role in determining tumor progression and treatment 
outcomes. As an indispensable part of the TME, the tumor 
stroma greatly affects tumorigenesis, cancer progression, 
metastasis, and therapy resistance in various cancers (80). 
In our study, even though the survival difference between 
high immune score group and low immune score group 
was quite slight, the high immune score corresponding to a 
high survival probability (P=0.015). Moreover, there are a 
huge survival gap between high stroma score group and low 
stroma score group, high stroma score group has obvious 
better survival than low stroma score group as depicted in 
Kaplan-Meier OS analysis (P=0.00088).

Conclusions 

In conclusion, we performed a comprehensive analysis of 
the TME in HNSCC using RNA-seq genomic data from 
TCGA database. Immune and stromal scores were calculated 
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by ESTIMATE algorithm. The responses of ICB to each 
HNSCC patient were predicted by TIDE algorithm. 
Finally, we used CIBERSORT algorithm identified specific 
prognostic TIICs by quantifying the cellular composition 
of the immune response in HNSCC and its association 
to survival outcome, using the CIBERSORT algorithm. 
The results showed that high level of CD8+ T cells was 
significantly corresponding to a preferable survival and 
high level of CD4+ T cells was significantly associated with 
poor survival in HNSCC. Furthermore, high immune 
score and stroma score corresponded to a better survival 
probability in HNSCC. In addition, we verified that top 
five SMGs in TCGA HNSCC cohort were TP53, TTN, 
FAT1, CDKN2A and MUC16. Therefore, the expression 
level of CD8+ T cells and CD4+ T cells could be used as 
prognostic biomarkers for HSCNN patients in clinical 
applications. The expression levels of characteristic genes 
that used by CIBERSORT and ESTIMATE algorithms, 
or the expression levels of characteristic lncRNAs of 
LASSO Cox regression model in this study can be detected 
through high-throughput sequencing methods, and then 
the relative T cells proportion, immune score or stromal 
score can be calculated based on the algorithm models. 
Hence, the prognosis of patients can be stratified using the 
comprehensive immune approaches at the transcriptome 
level. Our study results consolidate the role TME in 
the progression of HNSCC and keep investigating the 
mechanisms of TME that preciously mediate tumorigenesis 
will augment the new targets for cancer therapy.
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