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Conventional wet laboratory testing, validations, and synthetic
procedures are costly and time-consuming for drug discovery.
Advancements in artificial intelligence (AI) techniques have
revolutionized their applications to drug discovery. Combined
with accessible data resources, AI techniques are changing the
landscape of drug discovery. In the past decades, a series of
AI-based models have been developed for various steps of
drug discovery. These models have been used as complements
of conventional experiments and have accelerated the drug dis-
covery process. In this review, we first introduced the widely
used data resources in drug discovery, such as ChEMBL and
DrugBank, followed by the molecular representation schemes
that convert data into computer-readable formats. Meanwhile,
we summarized the algorithms used to develop AI-based
models for drug discovery. Subsequently, we discussed the
applications of AI techniques in pharmaceutical analysis
including predicting drug toxicity, drug bioactivity, and drug
physicochemical property. Furthermore, we introduced the
AI-basedmodels for de novo drug design, drug-target structure
prediction, drug-target interaction, and binding affinity
prediction.Moreover, we also highlighted the advanced applica-
tions of AI in drug synergism/antagonismprediction and nano-
medicine design. Finally, we discussed the challenges and future
perspectives on the applications of AI to drug discovery.
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INTRODUCTION
Drug discovery is a process through which new medications against
diseases are discovered. It involves the use of a wide variety of
technologies and expertise. In general, discovering and developing a
drug takes US$2.8 billion and 15 years on average.1 The low-
efficacy and high-cost characteristics of conventional methods have
become the hurdles of drug discovery. Therefore, developing new
methods to deal with such a time-consuming and expensive task is
necessary.2

The revolution in high-performance computer hardware and the
availability of multi-omics data have enabled artificial intelligence
(AI) techniques to transcend from theoretical studies to real applica-
tions in multiple disciplines. The successful application of AI tech-
niques, particularly to biological data analysis, has attracted the
attention of the pharmaceutical industry. Thus far, AI techniques
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have been implemented in drug discovery processes, such as drug-
target prediction,3 bioavailability prediction,4 and de novo drug
design.5 Some major pharmaceutical companies, such as Bayer,
Roche, and Pfizer, have also begun to collaborate with information
technology (IT) companies to develop AI technique-based methods
for drug design.6 Recently, with the help of AI, the Insilico Medicine
company discovered the drug treating idiopathic pulmonary fibrosis,
which exhibits positive results in Phase I trials (https://clinicaltrials.
gov/ct2/show/NCT05154240). Hence, drawing the conclusion that
AI techniques have modernized the field of drug discovery and
development is reasonable.

The basic schematics of applying AI techniques to drug discovery and
evaluation are summarized in Figure 1. The major procedures include
data collection and curation (Figure 1A), compound representation
(Figure 1B), and AI methods and their applications in drug discovery
(Figure 1C). To provide researchers with a catching-up view of the
development in this field, we first introduced representative data
resources, molecular representations and descriptors, and AI tech-
niques in drug discovery. Then, we introduced the successful applica-
tions of AI to different stages of drug discovery. Finally, we discussed
the challenges and future perspectives on applyingAI to drugdiscovery.

RESOURCES AND METHODS FOR AI-BASED DRUG
DISCOVERY
As indicated in Figure 1, data resources, data representation schemes,
and AI methods are the three key components of applying AI to drug
discovery and evaluation. Accordingly, they will be introduced briefly
in this section.

Data resources

A high-quality dataset is the key to applying AI to drug discovery.
Advances in high-throughput sequencing and IT have boosted the
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Figure 1. Framework of AI technique application to drug discovery and evaluation

Major procedures include (A) data collection and curation; (B) compound representations by using molecular descriptors; and (C) AI methods and their applications.
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generation of a series of free and open-access databases for drug dis-
covery. These databases enable drug discovery to transit into the big
data era and accelerate the drug discovery process. Representative
databases, along with their web links, brief descriptions, and refer-
ences, are listed in Table 1. Their applications are not reviewed in
the present work due to the limited space.

ChEMBL is a manually curated database that currently contains
more than 2 million compounds that exhibit drug-like properties.7

ChEMBL gathers information regarding the action mechanisms,
molecular properties, absorption, distribution, metabolism, excretion,
toxicity, therapeutic indications, and target interactions of the
deposited compounds.

ChemDB is a freely accessible database that contains nearly 5 million
commercially available small molecules and their physicochemical
properties, such as molecular weight, solubility, and rotatable bonds.8

In addition, a series of cheminformatics tools, such as Smi2Depict,
MOLpro, AquaSol, and Reaction Predictor, are embedded into
ChemDB, making this database user-friendly for drug discovery.

The Collection of Open Natural Products (COCONUT) is one of the
best annotated databases of natural products.9 It aggregates 407,270
elucidated and predicted natural products collected from a large num-
ber of chemical data sources. As a free database, COCONUT can be
searched in multiple ways, such as molecule names, molecular struc-
tures, and structural properties. COCONUT also provides molecular
properties and descriptors for each natural product. Moreover, all
the data in COCONUT are available for download and can be queried
programmatically via an application programming interface (API).

The Drug-Gene Interaction Database (DGIdb) provides information
on drug-gene interactions and genes or gene products that can
692 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
interact with drugs.10 To date, DGIdb contains more than 40,000
genes and 10,000 drugs involved in over 100,000 drug-gene interac-
tions. These data are mined from multiple diverse sources by per-
forming expert curation and text mining. All the deposited genes in
DGIdb are clustered into 43 categories. Users can either browse the
genes in each category or enter a list of genes or drugs to retrieve
drug-gene interactions in the search module. In addition, DGIdb
can be accessed programmatically by API through the web-based
interface.

DrugBank is a free-to-access reference drug database.11 It currently
contains 14,746 drugs, along with comprehensive information about
drug-drug interactions, drug-target associations, drug classifications,
and drug reactions. Users can search, browse, and extract text, images,
and structural data in DrugBank by using the embedded tools.
DrugBank has become the world’s most widely used resource for
drug screening, design, and metabolism prediction.

Drug Target Commons (DTC) is a freely accessible online resource
that provides annotated and unannotated drug-target interaction
(DTI) data.12 For its recent release, DTC includes clinical trial infor-
mation and disease-gene associations, facilitating the chemical
biology and drug-repurposing applications of compounds. As an
open resource, DTC not only supports database dump but also API
to access its deposited data.

The Intelligent Network Pharmacology Platform Unique for Tradi-
tional Chinese Medicine (INPUT) is an online analytical platform
that is uniquely for traditional Chinese medicine.13 At present,
INPUT contains 4,716 herbs, 29,812 herbal compounds, and 9,847
diseases collected from public databases and the literature. The herbs,
compounds, and diseases are cross-linked through the herb-com-
pound-gene-disease network in INPUT, which facilitates the
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Table 1. Representative databases for drug discovery

Database Website URL Description Reference

ChEMBL https://www.ebi.ac.uk/chembl/
A manually curated database of bioactive molecules with drug-like properties.
It gathers chemical, bioactivity, and genomic data to aid the translation
of genomic information into effective new drugs.

Mendez et al.7

ChemDB http://cdb.ics.uci.edu
A chemical database that contains nearly 5 million commercially available
small molecules, along with their predicted or experimentally determined
physicochemical properties.

Chen et al.8

COCONUT https://coconut.naturalproducts.net/
A database that contains 407,270 unique natural products, along with
information about their molecular properties and molecular descriptors.

Sorokina et al.9

DGIdb http://www.dgidb.org
A database that provides information on DTI and druggable
genomes from over 30 trusted sources.

Freshour et al.10

DrugBank http://www.drugbank.ca
A database of drugs, their targets, 3D structures,
and other useful information.

Wishart et al.11

DTC http://drugtargetcommons.fimm.fi/
A crowd-sourcing platform that provides drug-target bioactivity data
and classification of targets.

Tang et al.12

INPUT http://cbcb.cdutcm.edu.cn/INPUT/
A network pharmacology platform for traditional Chinese medicine.
It contains 29,812 compounds isolated from 4,716 Chinese herbs.

Li et al.13

PubChem https://pubchem.ncbi.nlm.nih.gov/
An open chemistry database that provides information about molecules,
such as chemical structures, identifiers, chemical and physical properties,
and biological activities.

Kim et al.14

SIDER http://sideeffects.embl.de
A database that provides information on marketed medicines and their
recorded adverse reactions.

Campillos et al.15

STITCH http://stitch.embl.de/
A database of known and predicted interactions between chemicals
and proteins, including 9,643,763 proteins from 2,031 organisms.

Szklarczyk et al.16
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discovery of herb-oriented drugs and the scientific interpretation of
traditional Chinese medicine.

PubChem is a freely accessible chemical information resource that
contains the biological, physical, chemical, and toxic information of
chemical molecules.14 All these data are collected from more than
850 sources. Users can search for chemicals in PubChem by inputting
molecular formula, structure, and other identifiers as keywords. At
present, PubChem has become one of the foremost data sources for
computational drug discovery and design.

The Side Effect Resource (SIDER) is a database that focuses on drugs
and their side effects.15 The current release of SIDER includes 1,430
drugs, 5,880 side effects, and 140,064 drug-side effect pairs. These
data can be browsed through either drugs or side effects. They have
been used in many aspects, such as predicting drug indications, min-
ing side effects, and identifying metabolic dysregulation.

The Search Tool for Interacting Chemicals (STITCH) is a database
that contains known and predicted interactions between chemicals
and proteins.16 These interactions encompass 9,643,763 proteins
from 2,031 organisms, which were collected from computational
prediction, knowledge transfer between organisms, and other data-
bases. Users can query STITCH in multiple ways, such as through
the names of chemicals and proteins, chemical structures, and pro-
tein sequences. For large-scale analyses, the data in STITCH can be
obtained either via bulk download or accessed programmatically
with API.
Molecular descriptors and structure representations

With the explosive growth of natural products, another key point in
AI-based drug discovery and analysis is the transfer of molecules
into computer-readable format, while keeping their intrinsic physi-
cochemical properties.17 Various types of descriptors have been
proposed to represent drugs; these descriptors can be classified
into four categories in accordance with their dimensionality (Fig-
ure 2). To accelerate the drug discovery process, a series of
open-source toolkits has been proposed for calculating molecular
descriptors and structure representations, such as OpenBabel18

and ChemmineR.19

The zero-dimensional (0D) descriptor is the simplest molecular rep-
resentation; it is obtained in accordance with the chemical formula of
drugs.20 The 0D descriptor typically includes molecular weight, atom
number, atom-type count, and other basic descriptors (e.g., number
of heavy atoms). The 0D descriptor is extremely simple, and it can
only extract shallow information.

The one-dimensional (1D) descriptor encodes drugs in accordance
with their substructures, such as the number of rings, functional
groups, substituent atoms, and atom-centered fragments.20 The ele-
ments of the 1D descriptor are typically binary (e.g., 1/0 indicates
the presence/absence of a substituent atom) or the occurrence
frequencies of some substructures. Apart from the property-based
1D descriptor, the simplified molecular-input line-entry system
(SMILES)21 is another type of 1D descriptor. SMILES represents
drugs with a string of characters. SMILES depends on atom order,
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 693
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Figure 2. Summary of molecular and structural representation schemes
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and thus, a drug will have several SMILES representations, and the
normalization algorithm should be performed to obtain canonical
SMILES.

The two-dimensional (2D) descriptor provides additional informa-
tion to the 1D descriptor by considering adjacency, connectivity,
and other types of topological features of the atoms. Therefore, 2D de-
scriptors are typically derived by representing a drug as a graph,
wherein the nodes indicate atoms and edges indicate bonds. Prop-
erty-based 2D descriptors frequently include graph invariants,
connectivity bonds, graph-based substructures, and topological de-
scriptors. To extract more information, the molecular fingerprint
(FP) was proposed for encoding molecules in binary form.22 FP indi-
cates the presence/absence of particular substructures through a
694 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
string with a given length and marked by 1/0. The commonly used
2D FPs are the molecular access system fingerprints,23 daylight-like
fingerprint,18 and extended-connectivity fingerprints.24

The three-dimensional (3D) descriptor depicts a molecule in 3D
space,25 and each atom of a molecule is spatially characterized by
the x, y, and z coordinates. The 3D descriptor includes spatial and
geometrical configuration information; it has high information con-
tent. Thus, information about surface area, volume, and steric prop-
erties can be obtained by using 3D descriptors. Non-property-based
3D descriptors, such as geometrical fingerprint26 and pharmacophore
fingerprint,27 are also available. They can represent complex physico-
chemical properties of drugs and are widely used in drug discovery
and virtual screening.

http://www.moleculartherapy.org


Table 2. Widely used AI techniques in drug discovery

Category Task Method Representative application Reference

Supervised learning

Regression analysis

MLR DTI Talevi et al.29

DT Adverse drug reactions Hammann et al.33

LR Drug-drug interaction Schober and Vetter34

Classification

SVM Compound classification Maltarollo et al.35

CNN Bioactivity prediction El-Attar et al.36

RNN De novo drug design Gupta et al.37

GAN Molecule discovery Blanchard et al.38

Unsupervised learning

Clustering
k-means Drug candidate selection Shen et al.39

Hierarchical Molecular scaffold analysis Manelfi et al.40

Dimension reduction
PCA QSAR Yoo and Shahlaei41

t-SNE Chemical space mapping Karlov et al.42

CNN, convolution neural network; DT, drug target; GAN, generative adversarial network; LR, logistic regression; MLR, multiple linear regression; PCA, principal-component analysis;
RNN, recurrent neural network; SVM, support vector machine; t-SNE, T-distributed stochastic neighbor embedding.
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The schematic diagrams illustrating the representations of com-
pounds by using 0D-3D descriptors are shown in Figure 1B. In addi-
tion to these encoding schemes, graph-based methods have also been
proposed recently to encode molecules. Examples of the graph-based
schemes include the spectral and spatial graph convolutional
network. For more details about graph-based molecular representa-
tion methods, readers can refer to a recent review.28

Commonly used AI techniques

To be a fit-for-purpose approach, the selection and application
of AI techniques are problem-oriented. Two common types of AI
techniques, namely, supervised and unsupervised learning, are used
in the field of drug discovery.29 A supervised learning technique
uses input-labeled data to train models that are capable of classifying
or predicting outcomes of new data. By contrast, an unsupervised
learning technique deals with unlabeled data and aims to develop
models that are capable of identifying recurring patterns and clus-
tering of the input data in a manner without prior knowledge.30

Supervised learning techniques can be further classified into classifi-
cation and regression algorithms, and unsupervised learning tech-
niques include clustering and dimensionality reduction algorithms.
To facilitate users in applying these AI techniques, a series of open-
source packages and frameworks, such as Scikit-learn,31 PyTorch,32

and Keras (https://github.com/fchollet/keras), have been developed
for practicing the aforementioned algorithms. Widely used AI tech-
niques in drug discovery are listed in Table 2 and briefly discussed
below.

Regression analysis technique

Multiple linear regression (MLR) is a modeling technique that aims to
estimate the relationship between independent variables and the
dependent variable by fitting a linear equation into observed data.29

The ordinary least squares method is used to find the best-fit line
by reducing the sum of squared errors, which are the differences be-
tween the observed value and the fitted value given by the model.
A decision tree (DT) is a nonlinear supervised learning technique that
can be used in classification and regression tasks.33 The primary com-
ponents of a DT model are nodes (including root nodes, internal
nodes, and leaf nodes) and branches. The algorithm starts at the
root node and selects a branch according to the decision rule of the
root node. Subsequently, the algorithm reaches the internal nodes
and further makes decisions on the basis of this node. Finally, the
algorithm will reach leaf nodes that represent possible outcomes
within the dataset.

Logistic regression (LR) is a supervised learning technique that can be
used to estimate the probability of occurrence of an event on the basis
of log odds ratio.34 LR can be classified into three categories, namely,
binary, nominal, and ordinal LR, in accordance with the categories of
response variables.

Classification technique

Support vector machine (SVM) is a classical supervised learning tech-
nique that is widely used in drug discovery.35 The basic idea of SVM is
to cast data into higher-dimensional feature space by using kernel
functions and find the optimal separating hyperplane that maximizes
the margin of training data.

Convolution neural network (CNN) is a deep learning technique with
feedforward neural network architecture.36 The CNNmodel includes
three types of layers: the convolutional, pooling, and fully connected
layers. The convolutional layer aims to learn feature representations
of the input. The pooling layer is used to reduce the number of train-
able parameters. The fully connected layer aims to produce classifica-
tion scores and perform reasoning. Compared with conventional
machine learning methods, the advantages of CNN include automat-
ically extracting non-handcrafter features from raw input.

Recurrent neural network (RNN) is a feedforward artificial neural
network (ANN) that specializes in dealing with sequential data.37
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 695
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RNN consists of numerous successive recurrent layers, and its infor-
mation cycles through a loop. These features make RNN distinct from
the traditional neural network. Hence, RNN has the ability to capture
contextual content from input data. RNN has also been used in drug
design and discovery given its great promise in handling sequential
data.43

Generative adversarial network (GAN) is a deep learning framework
with two components: the generator and the discriminator.38 The
former is used to generate new data with the same characteristics as
the training data. The latter is used to distinguish actual samples
from the generated fake ones. Compared with conventional machine
learning methods and other deep learning techniques, GAN is good at
solving problems with a small sample size.

Clustering technique

k-means clustering is one of the most important and popular clus-
tering algorithms.39 It aims to group similar data into clusters, such
that samples in the same cluster are more similar to each other
than to those in other clusters. This algorithm iteratively identifies a
certain number of centroids (i.e., the arithmetic mean of all data
points assigned to a particular cluster) within a dataset and allocates
every datum to the nearest cluster. These procedures are repeated
until cluster assignments stop changing.

Hierarchical clustering is another type of clustering algorithm that is
used to group data into clusters on the basis of similarity measures.40

Distinct from k-means clustering, hierarchical clustering initially
regards each datum as an individual cluster and then identifies the
two closest clusters and merges them together. These procedures
are iterated until all the clusters are merged together. The final result
is presented in a dendrogram.

Dimension reduction

Principal-component analysis (PCA) is a linear dimensionality
reduction technique that can transform a large dataset into a smaller
one while maintaining most of the original information.41 The basic
idea of PCA is to find principal components that explain a large
portion of the variation in a dataset. The procedures for conducting
PCA include standardizing data, computing the covariance matrix,
computing the eigenvalues and eigenvectors, identifying the principal
components, and remodeling the data.

T-distributed stochastic neighbor embedding (t-SNE) is a nonlinear
dimensionality reduction technique that is capable of visualizing
high-dimensional data in 2D or 3D space.42 The t-SNE algorithm first
converts similarities between data points into joint probabilities.
Then, it minimizes the Kullback-Leibler divergence between the
joint probabilities of high-dimensional data and low-dimensional
embedding.

Application of AI to pharmaceutical analysis

Pharmaceutical analysis involves the processes of identification,
determination, quantification, and purification of pharmaceutical
696 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
raw materials; it is an essential part of drug discovery. Qualitative
and quantitative analyses are the two major types of experimental
methods in pharmaceutical analysis. Although these techniques
exhibit high accuracy, their cost for screening novel drug candidates
from a huge amount of natural products is still expensive. Compared
with experimental techniques, the costs required by computational
methods are negligible. Hence, AI techniques have been used in
pharmaceutical analysis to complement experimental techniques.
The representative applications of AI techniques in pharmaceutical
analysis are summarized in Figure 3.

Drug toxicity prediction

Toxicity is a measure of the unwanted or adverse effects of chemi-
cals.44 Toxicity evaluation is one of the fundamental steps in drug dis-
covery, and it aims to identify substances that have harmful effects on
humans.45 However, the in vivo test requires animal tests and thus
increases the costs of drug discovery. Computational methods exhibit
the advantages of being able to predict a chemical’s toxicity with low
cost and high efficiency.46 Accordingly, a series of AI technique-based
methods have been developed to predict the toxicity of chemicals.47,48

To assess the performance of different computational methods for
predicting the toxicity of chemicals, the scientific community pro-
posed the “Toxicology in the 21st Century (Tox21)” challenge.46

DeepTox is an ensemble model for predicting the toxicity of chemi-
cals, and its fundamental framework is based on a three-layer deep
neural network (DNN).49 After performing data cleaning and quality
control, the remaining chemicals are encoded by using the aforemen-
tioned 0D to 3D molecular descriptors, which are used as input of
DNN. The DeepTox pipeline is obtained by tuning and optimizing
a set of hyperparameters, such as number of hidden units, learning
rate, and dropout rate. Comparative results based on the Tox21 data-
set demonstrate that DeepTox outperforms its counterparts in
toxicity prediction.49

Drug bioactivity prediction

In reality, a large number of drugs derived from natural products are
ineffective due to the lack of bioactivity. Hence, drug bioactivity
assessment has become an active area in drug discovery. Although
in vitro and in vivo experiments can mimic the functions of molecules
in the human body, they are still time-consuming and expensive.
Given their cost-effectiveness and time economy, AI techniques
have been effectively applied to predicting drug bioactivities, such
as anticancer, antiviral, and antibacterial activities.50–52

For example, Stokes et al. proposed a directed message passing neural
network that is capable of predicting antibacterial activity.53 For each
molecule, they first constructed a molecular graph in accordance with
its SMILES and then obtained the feature vector based on atomic
features (e.g., number of bonds for each atom and atomic number)
and bond features (e.g., bond type and stereochemistry).53 By
applying the message passing operation multiple times, the optimized
feature vector was fed into the feedforward neural network that
outputted the antibacterial probability of a molecule.53 This model
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Figure 3. Application of AI techniques to pharmaceutical analysis
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is available at http://chemprop.csail.mit.edu/, and it can facilitate the
discovery of antibacterial molecules.

Drug physicochemical property prediction

Physicochemical properties are intrinsic characteristics of drugs.
Knowledge about physicochemical properties is required for under-
standing and modeling the action of drugs. Among the numerous
types of physicochemical properties, solubility is important because
it affects the pharmacokinetic properties and formulations of
drugs.54,55 However, laborious and costly experimental techniques
have precluded rapid solubility prediction; hence, considerable effort
has been devoted to develop AI-based solubility prediction models.

Panapitiya et al. assessed different deep learning methods (i.e., fully
connected neural networks, RNNs, graph neural networks, and
SchNet) and molecular representation approaches (i.e., molecular
descriptors, SMILES, molecular graphs, and 3D atomic coordinates)
for solubility prediction.54 Based on the same test dataset, the authors
found that the fully connected neural network achieved the best per-
formance for solubility prediction by leveraging molecular descrip-
tors. In addition, the authors analyzed the importance of different
features for prediction and found that 2D molecular descriptors
made the greatest contributions. To facilitate further research on
solubility prediction, an open-source code was provided at https://
github.com/pnnl/solubility-prediction-paper.

AI in natural product-inspired drug discovery

Drug discovery is a process of identifying active compounds
with therapeutic effects on the intended diseases. Although a high-
throughput screening technique can scan thousands of different com-
pounds one at a time, it is still time-consuming and costly.56 To
address these challenges, AI techniques have been applied to nearly
all aspects of drug discovery. The applications of AI to natural prod-
uct-inspired drug discovery, such as de novo drug design, target struc-
ture prediction, DTI prediction, and drug-target binding affinity
prediction, are illustrated in Figure 4.
De novo drug design

De novo drug design refers to the process of generating novel drug-
like compounds without a starting template. Although conventional
structure-based and ligand-based drug design methods have
enhanced the discovery of small-molecule drug candidates, they
respectively rely on knowledge about the active site of a biological
target or the pharmacophores of a known active binder,57 hindering
their applications to modern drug discovery. The boom of AI tech-
niques has offered new opportunities to de novo drug design and
accelerated the drug discovery process.

In recent years, various deep learning-based models have been pro-
posed for de novo drug design, such as the reinforcement learning-
based model ReLeaSE,58 the encoder-decoder-based model
ChemVAE,59 the GAN-based model GraphINVENT,60 and the
RNN-based model MolRNN.61 Another key point of de novo drug
design is molecular representation. SMILES, fingerprint, molecular
graph, and 3D geometry have been used as input of deep learning al-
gorithms. The fundamental framework of deep learning-based de
novo drug design methods is shown in the left upper corner of
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 697
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Figure 4. AI techniques for natural product-inspired drug discovery
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Figure 4. Detailed information about deep learning-based de novo
drug design models is provided recent reviews.57,62
Target structure prediction

Most drug targets are proteins that play important roles in enzy-
matic activities, cell signaling, and cell-cell transduction. The func-
tions of proteins are determined by their structures. Although
conventional experimental techniques, such as X-ray crystallog-
raphy, cryogenic electron microscopy, and nuclear magnetic reso-
nance spectroscopy, have been proposed to determine protein
structures, they are still time-consuming and costly.63 As reported,
experimental techniques have only deciphered the structures of
100,000 unique proteins, which account for only a small part of
known proteins.64 Therefore, developing novel methods to fill the
gap between the number of protein sequences and known protein
structures is an urgent need.65

With the rapid growth of computational power and the break-
throughs of AI techniques, many computational approaches have
been proposed for protein structure prediction. The basic schematics
of computational protein structure prediction models are presented
in the right upper corner of Figure 4. The neural network-based
AlphaFold method developed by DeepMind is the best-performing
method, and it is able to predict the 3D structures of proteins from
their amino acid sequences and achieve accuracies competitive with
experiments.64 The descriptions of the algorithm and architecture
of AlphaFold are provided in Senior et al.66 The source code of
AlphaFold is available at https://github.com/deepmind/alphafold.
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DTI prediction

DTI prediction refers to the interaction between chemical com-
pounds and protein targets in living organisms.67 DTI prediction is
an essential process for drug discovery. Hence, experimental methods
have been used to determine DTI, such as co-immunoprecipitation,68

phage display technology,69 and yeast two-hybrid.70 However, these
wet laboratory techniques are time-consuming when they are used
to predict DTI. Recently, the ever-increasing biological data have
paved the way for the in silico prediction of DTI. Therefore, compu-
tational methods are being increasingly used in DTI prediction. These
methods, which were summarized in a recent review,71 can be classi-
fied into the following categories: ligand-based methods, docking
simulations, gene ontology-based methods, text mining-based
methods, and network-based methods.

Compared with other types of methods, deep learning-based methods
frequently exhibit better performance in DTI prediction.72 The com-
mon workflow of the deep learning-based DTI prediction method is
illustrated at the left bottom corner of Figure 4. First, compounds and
proteins are encoded by using their corresponding features. Then, the
feature embedding of the compounds and proteins is used as the input
of deep learning methods. In accordance with this strategy, models
based on deep belief neural network,73 CNN,72 and multiple layer
perceptron74 have been proposed for drug-protein interaction predic-
tion, considerably facilitating drug discovery.

In real life, many diseases lack well-defined targets. Hence, finding
drugs for these diseases is impossible by using the aforementioned
methods. Zhu et al. recently proposed a deep learning-based efficacy
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prediction system (DLEPS) that can identify drug candidates in
accordance with the changes in gene expression profiles rather than
specific targets.75 First, compounds were encoded using SMILES
and used as input of CNN to fit gene expression changes. Subse-
quently, the potential efficacy of compounds against diseases was
evaluated on the basis of gene signatures specific to certain diseases
and sorted using a method similar to gene set enrichment analysis.
DLEPS provides novel insights into identifying new drugs for com-
plex diseases.

Drug-target binding affinity prediction

Inmost cases,DTI prediction is regarded as a binary classification prob-
lem, but binding affinity between a drug and its target is disregarded.67

Binding affinity reflects the strength of drug-target pair interactions,
and it is considerably informative for drug discovery. Although binding
affinity can be experimentally determined by measuring dissociation
and inhibition constants, the time cost and financial expenses of these
procedures are extremely high. Therefore, developing computational
methods for predicting binding affinity is necessary.

In 2018, Öztürk et al. proposed the first deep learning model, called
DeepDTA, for predicting binding affinity between drugs and their
targets.76 In DeepDTA, the drug and the target were encoded using
SMILES and amino acid letters, respectively, which were then used
as input for CNN. The basic framework of DeepDTA is shown at
the right bottom corner of Figure 4. The comparative results demon-
strated that DeepDTA suppressed KronRLS77 and SimBoost78 for
drug-target binding affinity prediction. Inspired by DeepDTA, a
series of deep learning-based models has been sequentially proposed,
such as WideDTA76 and DeepAffinity,79 which have become useful
tools in drug discovery.

Advanced applications of AI in drug design

AI in drug synergism/antagonism prediction

Synergism and antagonism are the two categories of drug combina-
tion effects. The former can overcome primary and secondary drug
resistance, and it is effective for the treatment of cancers,80 AIDS,81

and bacterial infections,82 whereas the latter reduces the effectiveness
of drugs. With the ever-increasing number of drugs, their possible
combinations are astronomical. Thus, experimentally investigating
drug combination effect is costly and time-consuming. The advance-
ments of AI techniques have made them applicable to exploring
possible drug combinations at lower cost and with more efficiency.

In 2015, Li et al. proposed a Bayesian network model for exploring and
analyzing drug combinations.83 In the same year, Wildenhain et al.
developed a random forest-based model for predicting compound
synergism from chemical-genetic interactions.84 Recently, Preuer
et al. proposed DeepSynergy,85 a deep learning-based model for
predicting the synergism of anticancer drugs. The inputs of
DeepSynergy included the chemical information of drugs and the
genomic information of diseases, which were then propagated through
the network to the output unit. The comparative results froma publicly
available synergy dataset demonstrated that DeepSynergy outper-
formed its counterparts in predicting drug synergism. The web
server and source code of DeepSynergy are provided at www.bioinf.
jku.at/software/DeepSynergy and https://github.com/KristinaPreuer/
DeepSynergy, respectively.

AI in nanomedicine design

Nanotechnology has been applied to design nanomedicines by using
nanometric-scale materials in the clinical setting.86 Nanomedicines
are developed by materials at the nanometric scale, and, thus, they
can penetrate the barriers to interact with targets in the body. At pre-
sent, some nanomedicines have already been approved by the U.S.
Food and Drug Administration, and they have exhibited better
performance in the treatment of cancers87 and HIV-1 infection.88

However, the lack of quantitative and qualitative understanding of
nanomaterial properties and biological responses precluded the
wide application of nanomedicines.

A combination of nanotechnology and AI provides novel solutions to
deal with this dilemma. For example, Li et al. proposed an ANN for
the task of nanomedicine composition optimization.89 Muñiz Castro
et al. developed a 3D printing nanomaterial formulation pipeline that
can predict the extrusion temperature, filament mechanical charac-
teristics, and dissolution time of nanomaterials.90 In addition, the
effectiveness of a nanomedicine is affected by its cellular uptake.
Hence, a cellular uptake prediction model will considerably help
researchers in predicting nanomedicine effectiveness. On the basis
of an ANN, Alafeef et al. developed a platform for predicting
nanoparticle cellular internalization in different cell types.91 Other
applications of AI to nanomedicine design and their principles
were summarized in a recent comprehensive review.80

AI in oligonucleotide design

Besides the drugs derived from natural products, oligonucleotide
therapeutics composed of short strands of DNA or RNA have become
a novel class of drugs.92 Antisense oligonucleotides (ASO), small
interfering RNA (siRNA), and CRISPR (clustered regularly inter-
spaced short palindromic repeats)-Cas (CRISPR-associated protein)
are the main oligonucleotide therapeutics systems that enable the pre-
cise treatment of diverse diseases. Since experimental designing these
oligonucleotides will cost enormous resources, the AI approaches
have also been used to help researchers to identify and design the
oligonucleotide-based drugs. For example, Chiba et al. proposed a
machine learning-based model, eSkip-Finder, to identify effective
exon skipping ASOs.93 Dar et al. developed SMEpred to predict the
efficacy of siRNAs.94

CONCLUDING REMARKS AND PROSPECTS
Over the past few years, we have witnessed the wide applications of AI
techniques to various steps of drug discovery and development. The
boom of AI techniques has made substantial contributions to the
acceleration of drug discovery. The application of Chat Generative
Pre-Trained Transformer (ChatGPT) is also a promising topic in
drug discovery and development. Since it can provide methods to
identify potential targets, design new drugs, and optimize the
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 699
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pharmacodynamics of drug candidates, ChatGPT has the potential to
speed up drug development process. However, AI techniques are not
versatile tools for drug discovery due to the following challenges.

The first key point is the availability of high-quality data that can be
used to train AI technique-based models. Although the amount of
biological and chemical data is increasing, the issue of poor data qual-
ity hinders the full use of these data. To solve this issue, data curation
can be performed to organize andmanage raw data. For this objective,
academic institutions and pharmaceutical companies should coop-
erate to develop data standards and frameworks that will be helpful
in data collection and clearance. Data quantity is also important for
the applications of AI techniques. In real cases, the number of positive
samples is smaller than that of negative ones. The sample imbalance
problem will directly affect the performance of the models. Thus,
oversampling and undersampling methods are suggested to be used
to balance samples in the datasets.

Another typical issue of AI technique-basedmodels for drug discovery
is the lack of interpretability. A model’s interpretability is the degree to
which humans can understand the processes it uses to arrive at its out-
comes. In most cases, the proposed models fall short in interpreting
their biological and pharmaceutical meanings. Hence, trusting the pre-
dictive results obtained by AI techniques is difficult for experimental
scientists.95 In addition, the lack of interpretability also makes models
unable to troubleshoot these approaches when their performance is
poor on the test data. To deal with this issue, post hoc explanation
techniques are suggested to be used when building models.96 Popular
techniques for post hoc interpretations include text explanation, visu-
alization explanation, and attention mechanism explanation. Text
explanation techniques can provide qualitative interpretations by pre-
senting human-understandable verbal words. Visualization explana-
tion techniques, such as t-SNE, can visualize the learned latent
high-dimensional features in 2D space.96 Attention mechanism expla-
nation techniques can automatically learn and calculate the contribu-
tion of input to output, making the model interpretable.97

The availability and accessibility of the proposed models are also chal-
lenges in drug discovery. Although many AI technique-based models
have been developed, neither related freely accessible web servers nor
source codes are provided for most of these models. Even though
some smart tools have been designed, they are only commercially avail-
able. These issues preclude their applications to drug discovery and
development. Hence, developing open-source tools or packages, which
will become invaluable sources in the near future, is necessary.

Although there exist the above-mentioned challenges, AI techniques
have been incorporated into drug discovery and development indus-
try. It is believable that AI techniques will bring revolutionary changes
for this field.
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