Skip to main content
. 2023 Feb 18;31:691–702. doi: 10.1016/j.omtn.2023.02.019

Table 2.

Widely used AI techniques in drug discovery

Category Task Method Representative application Reference
Supervised learning Regression analysis MLR DTI Talevi et al.29
DT Adverse drug reactions Hammann et al.33
LR Drug-drug interaction Schober and Vetter34
Classification SVM Compound classification Maltarollo et al.35
CNN Bioactivity prediction El-Attar et al.36
RNN De novo drug design Gupta et al.37
GAN Molecule discovery Blanchard et al.38
Unsupervised learning Clustering k-means Drug candidate selection Shen et al.39
Hierarchical Molecular scaffold analysis Manelfi et al.40
Dimension reduction PCA QSAR Yoo and Shahlaei41
t-SNE Chemical space mapping Karlov et al.42

CNN, convolution neural network; DT, drug target; GAN, generative adversarial network; LR, logistic regression; MLR, multiple linear regression; PCA, principal-component analysis; RNN, recurrent neural network; SVM, support vector machine; t-SNE, T-distributed stochastic neighbor embedding.