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ABSTRACT: Rigorous physics-based methods to calculate bind-
ing free energies of protein−ligand complexes have become a
valued component of structure-based drug design. Relative and
absolute binding free energy calculations have been deployed
prospectively in support of solving diverse drug discovery
challenges. Here we review recent applications of binding free
energy calculations to fragment growing and linking, scaffold
hopping, binding pose validation, virtual screening, covalent
enzyme inhibition, and positional analogue scanning. Furthermore,
we discuss the merits of using protein models and highlight recent
efforts to replace costly binding free energy calculations with predictions from machine learning models trained on a limited number
of free energy perturbation or thermodynamic integration calculations thereby allowing for extended chemical space exploration.
KEYWORDS: rational drug design, FEP, prospective prediction, lead optimization, late-stage functionalization

Estimating binding affinities of ligand−protein complexes
on a regular basis has become a reality in many drug

discovery endeavors today.1 Fueled by high-resolution protein
structures derived from crystallography, cryoelectron micros-
copy, and deep learning methods and guided by maturing
computation technologies and increasing compute resources,
relative (RBFE) and absolute (ABFE) binding free energy
(BFE) calculations have been utilized with more confidence
and greater reliability in designing lead compounds for drug
discovery.2−4 Free energy perturbation (FEP) and thermody-
namic integration (TI) are two prominent algorithms used to
calculate BFEs; commercial and open source implementations
are available.5−7 Often the aim of using physics-based RBFE
and ABFE calculations is to decide what compound to make
next in the course of a multiparameter lead optimization
campaign.8 However, BFE calculations are now used to
support a variety of additional tasks including scaffold hopping,
advancing fragments into leads, improving covalent binders,
exploring alternative modalities, guiding positional analogue
scanning, validating binding mode hypotheses, and making
forays into virtual screening (Figure 1). In addition, results of
computationally intensive RBFE calculations that can take
several GPU hours to finalize can be predicted by machine
learning (ML) methods allowing for the exploration of larger
chemical spaces of congeneric series. In this Microperspective,
we review applications of RBFE and ABFE calculations across

these areas of application as they are relevant to drug
discovery.
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Figure 1. Application of alchemical RBFE and ABFE calculations to
different drug design tasks.
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■ RBFE AND ABFE CALCULATIONS
While we leave a rigorous introduction to the methodology
and technical aspects of RBFE and ABFE calculations to
comprehensive reviews written on the subject,4,9,10 we briefly
touch on the underlying alchemical nature of the BFE
calculations performed in silico and how they relate to
observable parameters for relative and absolute BFEs. Figure
2 illustrates the thermodynamic cycles deployed by the two
methods. As free energy is a thermodynamic state function,
RBFE calculations take advantage of the net zero free energy
variation in a complete thermodynamic cycle. The difference of
BFEs between two ligands can be calculated by alchemically
changing one ligand into another in the protein binding site
compared to aqueous solution. Although this process cannot
be experimentally tested, it is feasible to simulate in silico and
forms the basis of FEP or TI methods predominantly used to
calculate RBFEs (left side of Figure 2). Following an
alternative thermodynamic cycle (right side of Figure 2), an
alchemical ABFE can be calculated by simulating the
annihilation of a ligand in the protein binding pocket and in
solvent. While FEP and TI RBFE calculations are well
established and convenient software implementations are
available, ABFE calculations incur higher computational costs
and are less accessible, although Schrodinger recently tested an
ABFE implementation.11

RBFE calculations have been successfully applied to drug
discovery tasks, yet they are not a panacea. A number of
practical considerations and best practices help increase the
chances of success. They include appropriate protein and
ligand preparation, the choice of a suitable simulation protocol
and runtime assessment, validation of the protein−ligand
system at hand, comparison to benchmarks, and assessing the
applicability domain, statistical reliability, and reproducibility
of the simulation protocol.12 General limitations of alchemical
BFE calculations lie in the inadequate force field representation
of molecules studied and the inability to sample large
conformational changes in the allotted sampling time leading
to a ∼1 kcal/mol accuracy threshold for current RBFE
calculations.4

■ PERFORMANCE OF PROSPECTIVE RBFE
CALCULATIONS

Schindler, Kuhn, and colleagues presented a comprehensive
assessment of BFE calculations in 18 drug discovery projects as

well as eight benchmark systems of pharmaceutically relevant
target proteins.2 An important element for assessing the
suitability of a protein system for RBFE calculations is a
validation step. The authors establish a root-mean-square error
(RMSE) threshold of <1.3 kcal/mol between predicted and
experimental RBFE for ten or more ligands with known activity
to validate the FEP system. The validation succeeded for 14
out of 17 protein systems involving 21 out of 25 chemical
series where sufficient ligand data and a protein−ligand
cocomplex structure were available. After successful validation,
the FEP system was applied prospectively to 12 targets with 19
chemical series consisting of at least 5 data points each. The
authors reported an average mean unsigned error (MUE) of
1.24 kcal/mol ranging from 0.48 to 2.28 kcal/mol with the
median at 1.1 kcal/mol. The average RMSE was 1.64 kcal/mol
across all 19 series. Although the accuracy of the prospective
calculations was lower than that of the validation set, the
reported results across a number of diverse protein targets
illustrate the general usefulness of RBFE calculations for drug
design.

■ LATE-STAGE FUNCTIONALIZATION
O’Donovan et al.13 applied FEP calculations prospectively to
the late-stage functionalization of polycomb repressive complex
2 (PRC2) methyltransferase inhibitors. Combining FEP with
late-stage functionalization allowed for the synthetic prioritiza-
tion of previously unexplored regions of the embryonic
ectoderm development (EED) subunit of the PRC2 complex.
For a series of triazolopyrimidines, the authors predicted the
potency of analogues of compound 1 (Figure 3). The
hydrophilic pocket explored at R1 was challenged with
functional groups of different sizes and polarities. In agreement
with prospective FEP predictions, F, Cl, and NH2 substitutions
yielded potent analogues. In contrast, larger moieties such as
OMe led to a substantial loss of EED binding. A nitrile
substitution, although requiring some induced fitting, was
correctly predicted to lose 30-fold activity compared to
compound 1. Several analogues were not synthesized due to
predicted loss of binding illustrating the committed use of FEP
calculations for synthesis prioritization.

■ FREE ENERGY CALCULATIONS FOR FRAGMENTS
Fragments are valued hits for drug discovery because of their
high ligand efficiency and implicit coverage of chemical space.

Figure 2. Thermodynamic cycles of RBFE and ABFE calculations for ligand Lig. ΔΔGbind
Ref→Lig is the difference in BFEs between ligand Lig and a

reference ligand Ref calculated by alchemically changing Ref to Lig in solvent and in the protein binding site. ΔGbind
Lig is the ABFE of Lig calculated as

sum of the creation of Lig in the protein binding site (ΔGcomp
Lig ) and annihilation of Lig in the solvent (−ΔGsolv

Lig ).
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Especially when protein structures of fragment−protein
complexes are available, fragments are often considered
productive starting points for hit-to-lead efforts. BFE
calculation methods have been explored to guide in the
growth and exploration of fragment hits. A systematic analysis
involving 90 fragments studied in eight protein systems using
FEP suggested that RBFE calculations are suitable to
accurately predict fragment binding affinities with an RMSE
of 1.1 kcal/mol,14 which is close to the generally accepted limit
of ∼1 kcal/mol.4 This result is remarkable as in vitro binding
experiments are often less accurate for fragments. Moreover,
fragments can sometimes assume multiple binding modes
more easily due to their small size compared to leadlike or
druglike compounds. Even within a congeneric series, binding
modes do not always stay the same when functional groups
change, although methods have been devised to accommodate
multiple binding modes of ligands in FEP calculations,
especially when high energy barriers are encountered.15

Although different binding modes and different scaffolds add
uncertainty and limit the applicability of BFE calculations,
recent success has been reported in predicting the effect of
fragment linking on binding affinity. When linking two
fragments, the BFE is expected to gain 3.6−4.8 kcal/mol
because the second fragment does not pay an entropic penalty
upon protein binding when tethered to the first fragment.16

However, such gain is rarely observed. Yu et al.16 showed, for
ten fragment linking cases, that entropy gains due to restricting
the conformational space in the solvent or gas phase constitute
only one of multiple contributions to the BFE. The
configurational entropy incurred by restricting the movement
of the nonlinked fragments in the receptor site is a major
detrimental factor affecting the BFE by 1.7−3.9 kcal/mol.
Additional factors are the changes in hydration free energy of
the free and linked fragments, strain induced by the linker, and
the interaction energy of the linker with the protein. While the

hydration energy changes are smaller for the reported examples
(0−1.8 kcal/mol), the linker−protein interaction energies span
8 kcal/mol ranging from −4.3 to 3.7 kcal/mol. In fact,
throughout the ten fragment examples described by Yu et al.,
the linker−protein interaction energy correlates surprisingly
well with the total change in BFE upon fragment linking. While
the configurational restriction of the linked fragment in the
binding pocket is the main reason for not gaining binding
energy in most fragment linking cases, the results also suggest
that the most promising path to improve BFEs of linked
fragments is the choice of the right linker and its favorable
interactions with the protein, a concept relevant for instance to
the design of proteolysis-targeting chimeras for targeted
protein degradation.

■ SCAFFOLD HOPPING
Changes to the chemical scaffold of a small molecule are
introduced to enhance efficacy or target selectivity, improve
molecular properties, or escape intellectual property space.
Reliably estimating the effect of scaffold hops on binding to a
protein target can reduce the risks associated with introducing
ring openings, closures, or changes in linker length. Established
RBFE methods are largely unsuitable due to an increased error
propensity associated with changing the entire, often large,
scaffold as part of the perturbation. Instead, FEP methods have
been adapted to include specific bond stretch potentials to
accommodate ring size changes, openings, closings, and
extensions. Alternatively, auxiliary constraints can hold atoms
in place during ring bond forming and breaking allowing for
more complex ring modifications.
A recent example of finding novel phosphodiesterase 5

(PDE5) inhibitors using an ABFE-FEP approach was reported
by Wu et al.17 Starting from compound 2, tadalafil (IC50 2 nM
in a PDE enzymatic assay), and LW1607 (not shown), the
authors arrived at a substantially altered scaffold (compound
3), which was adopted for further optimization (compound 4).
The FEP method correctly predicted a comparable binding
affinity of compound 4 to PDE5 (IC50 8 nM). The observed
changes in the binding pose and interactions with PDE5 are
remarkable. While a key hydrogen bond to Gln817 is
maintained through the NH of an indole moiety, several
other interactions as well as the water network in the active site
are significantly altered (Figure 4). This outcome would have
been difficult to predict without the use of a method such as
MD that samples conformations of protein−ligand complexes
with proper representations of relevant interaction energies.

■ PREDICTED PROTEIN MODELS
Small changes in protein structure, as introduced by different
preparation methods of the protein, can have a significant
influence on the accuracy of FEP calculations.18 Hence, one
might wonder if homology models of protein structures are

Figure 3. Reference compound for FEP calculations of R1-substituted
analogues of EED ligands. The surface of the ligand binding site (EED
protein bound to analogue of 1; PDB ID 6YVI) is colored by
hydrophilicity (purple) and hydrophobicity (green). The yellow
arrow illustrates the chemical space exploration vector.

Figure 4. FEP-guided scaffold hopping for PDE5. Crystal structures of 2 (tadalafil; PDB ID 1XOZ, orange) and 4 (PDB ID 7FAR, cyan).
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suitable for BFE calculations. A comprehensive study involving
an induced-fit docking MD methodology compared FEP
results of congeneric ligand series in 29 homology models with
those obtained from crystal structures for 14 protein targets.19

For protein models built on template structures of 30−50%
sequence identity, FEP results were comparable to those
obtained with protein crystal structures in an impressive 86%
of the cases. Likewise, AlphaFold2 models for 14 proteins
structures built on templates with <30% sequence identity
yielded FEP results comparable to those generated with crystal
structures suggesting suitability for lead optimization pur-
poses.20 These examples support the notion that RBFE
calculations can succeed when using protein models. However,
we believe that caution is still warranted because unsuccessful
attempts to use model structures, as experienced on multiple
occasions by us (unpublished) and others,2 are rarely
advertised.

■ POSITIONAL ANALOGUE SCANNING
Our recent work on using RBFE calculations focused on the
application of Amber GPU-TI on assessing the effect of
positional analogue scans (PAS) on changes in compound
potencies.21 PAS is an established strategy for lead
optimization, where methine groups in aromatic and
heteroaromatic ring systems are systematically exchanged
with heteroatoms or other small substituents.22 PAS trans-
formations involving only a single atom can result in significant
changes in binding affinity. Three-fold changes in binding
affinity occur in 30−43% of 110,000 matched molecular pairs
of changing CH groups to N, CF, CMe, or COH.22 In 10−
20% of these pairs a 10-fold shift was observed,21 suggesting
that prospectively predicting such small changes would be
quite meaningful as complete PAS can often not be performed
due to time and resource constrains. Using 14 protein systems
and 20 PAS sets of compounds, we showed that potency
changes could be predicted with an MUE of 0.74 kcal/mol and
an RMSE of 0.91 kcal/mol for 120 individual RBFE
calculations. For only two compounds a large deviation of
>2 kcal/mol was obtained, although the direction of the
potency change was still correctly predicted. In fact, for all 66
PAS compounds and 120 individual RBFE calculations, the
directions of potency changes were correct in cases where
either the experiment or the prediction showed a >10-fold
change in potency. The finding suggests that RBFE
calculations are suitable to prioritize positional analogues for
synthesis and testing.

■ BINDING POSE VALIDATION
Accurate BFE calculations rely on the knowledge of the
binding pose of at least one ligand of a congeneric series in the
receptor site. Even small deviations of the starting pose from a
given experimentally confirmed binding mode can lead to
reduced free binding energy prediction accuracy in FEP
calculations.23 Turning this observation around, one can utilize
the correct prediction of observed BFEs of a congeneric ligand
series as an indicator for a correct binding mode.
An illustrative case of applying FEP to binding pose

elucidation involved a series of dihydropyrimidinones as
stereoselective antagonists of the human A2B adenosine
receptor.24 Following a binding mode hypothesis of compound
5 in the A2A adenosine receptor, docking into a homology
model of A2B adenosine receptor resulted in two different

binding mode hypotheses. Both binding poses featured
hydrogen bonds to Gln254 and π-stacking interactions with
Phe173; however, the furyl group and proximal substitution
vector R1 were situated at opposite sites (Figure 5). FEP

calculations using the two different binding mode hypotheses
as starting points conclusively identified the pose assumed by
the green compound in Figure 5 as the correct pose.
In another more challenging example, Shan et al.25

demonstrated for an IL-2 ligand not only that a cryptic pocket
could be found through MD simulations, but also that the
correct binding mode could be identified through the use of
FEP calculations, further supporting the utility of FEP for such
purpose.
FEP calculations not only allow for pose validation but can

also provide mechanistic insight into conditional binding
events. Xiaoli et al.26 reported FEP calculations for the cyclic
peptide antagonist PMX53 binding to C5a anaphylatoxin
chemotactic receptor 1 (C5aR1). Depending on whether the
allosteric nonpeptide antagonist NTD9513727 was bound to
C5aR1, binding of PMX53 to the binary or the ternary
complex was favored by FEP providing energetic insights to
the allosteric mechanism of NTD9513727.

■ ABSOLUTE BINDING FREE ENERGIES AND
VIRTUAL SCREENING

Virtual screening progresses in stages from computationally
less demanding ligand-based similarity and property filtering to
pharmacophore- and structure-based techniques involving
molecular docking into the target protein and using rigorous
physics-based methods such as BFE calculations as a final filter.
RBFE calculations are not suitable to assess compounds with
diverse structures. In contrast, alchemical ABFE calculations
allow for comparing binding affinities across not only different
chemical structures but also different targets thereby enabling
ABFE calculations to predict selectivity against potential
counter targets. Recent work by Feng et al.27 showed how
ABFE calculations enriched known hits performing a molecular
docking-based virtual screen of hundreds of actives and tens of
thousands of decoy compounds against the well-studied drug
targets BACE1, CDK2, and thrombin. For two of the targets, a
significant improvement in the enrichment of actives in the top
1% of virtual screening hits could be observed when using
ABFE calculations starting from docking poses. For BACE1
the enrichment factor increased from 8 to 28 and for CDK2
from 14 to 30. The result suggests not only that ABFE
calculations are a useful last step of virtual screens but also that
docking poses seem to be a useful starting point for ABFE
calculations.

Figure 5. Two binding mode hypotheses (green, orange) of
compound 5 in a homology model of the A2B adenosine receptor.
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■ COVALENT INHIBITORS
Many drugs form a covalent complex with their target protein.
Covalent inhibitors offer potential advantages of higher target
selectivity, increased potency, and residence time, offsetting
concerns of off-target toxicities. The covalent binding of an
inhibitor to an enzyme comprises a reversible and an
irreversible (unless it is a reversible covalent binder)
component (eq 1). The equilibrium of the noncovalent
binding (Ki) as well as the nonequilibrium kinetics of the
irreversible covalent binding (kinact) need to be evaluated to
determine the rate of covalent bond formation, kinact /Ki, the
most relevant parameter to assess its efficiency.

+ ·FE I E I E I
K ki inact (1)

Computational approaches to calculate the reaction kinetics
of covalent binding have been devised. Yu et al. introduced a
method where the transition state barrier of the rate limiting
step of the ligand warhead covalently binding to the specific
protein residue is calculated first using density functional
theory methods.28 FEP is then used to model the interaction of
ligands sharing the same warhead to the protein environment,
thereby avoiding the need to calculate kinact. The approach
allows for the calculation of relative binding kinetics of
irreversible covalent inhibitors. It was applied to 28 ligands and
four target proteins yielding a promising MUE of 0.79 log units
comparing experimental and calculated Δlog(kinact/Ki). The
approach has also been implemented in Schrodinger’s
commercial FEP+ software. In a related approach, Mihalovits
et al. calculated reaction barriers using a QM/MM approach
and modeled the noncovalent binding step with TI reporting
MUE < 2 kcal/mol for KRAS and EGFR inhibitors.29 For lead
optimization purposes of a congeneric series, calculating
relative covalent BFEs is most practical; however, absolute
free energies of covalent binding were also successfully
calculated for different warheads.30

In contrast to irreversible covalent binding, for reversible
covalent binding the noncovalent and covalent binding states
are in equilibrium. Therefore, without the need for calculating
the transition barrier of the covalent binding reaction, FEP has
been used to estimate how much covalent and noncovalent
binding states add to the overall binding affinity of a reversible
covalent ligand.31 In a recent example Bonatto et al. showed,
for human cathepsin L, how FEP can be used to estimate free
energy changes.32 Using a small set of nitrile-based reversible
covalent cathepsin L inhibitors, the authors found that FEP to
predict relative BFEs, using the covalent state, generated more
predictive results than using the noncovalent state. The
respective MUE and Pearson correlation coefficients were
reported as 1.33 (0.92) and 0.69 (0.89) for the noncovalent
(covalent) transformations. While a general conclusion that
FEP calculations of reversible covalent binders are generally
more dependent on the covalent state may be premature based
on the limited data set, the observations provide an interesting
starting hypothesis for calculations of other covalent systems.

■ PREDICTING FEP WITH AI
The high cost of FEP limits the number of RBFE calculations
to practically less than a few hundred leaving large parts of a
congeneric series unexplored. Iteratively training automated
ML (AutoML) models with a limited number of RBFE
calculations has been suggested as an alternative. Gusev et al.33

proposed an iterative AutoML workflow where Amber GPU-

TI RBFE calculations were conducted for a small number of
SARS-CoV-2 papain-like protease binders. For a focused set of
8175 potential ligands, the centroids of 45 clusters were
subjected to Amber GPU-TI RBFE calculations. The
calculated RBFEs were used as dependent variables of an
AutoML workflow deploying a number of well-known ML
algorithms including random forest, linear regression, k-nearest
neighbors, support vector machines, and Gaussian processes.
For five iterations, the 200 molecules with the lowest predicted
RBFE were clustered and 30 structurally diverse representa-
tives subjected to Amber GPU-TI RBFE calculations thereby
increasing the training set of the AutoML approach for each
subsequent iteration. In the last two iterations, a random set of
30 compounds as well as the 30 compounds with the lowest
predicted RBFE were added to the TI calculations bringing the
final AutoML training set to 253 compounds. Negative RBFE
were computed for 53% of the TI calculations (133
compounds) compared to only 10% for compounds chosen
in a random cycle illustrating the utility of the approach for the
rapid exploration of large chemical spaces.
Recently, a collaboration between Google Research and

Relay Therapeutics led to an exhaustive study of RBFE
calculations on 10,000 congeneric tyrosine kinase 2 (TYK2)
inhibitors using RDKit Morgan fingerprints as descriptors and
deploying active learning (AL) strategies.34 A number of ML
methods were explored, but the performance appeared to be
largely independent of the specific ML algorithm used. After
ten iterations of subsets sampled, only 6% of the 10,000 TYK2
inhibitors had been explicitly calculated with an FEP protocol,
while the remaining compounds were predicted using the AL
approach identifying 75 of the top 100 scorers. Using ML
methods promises a significant speedup of RBFE predictions.
However, a more rigorous test of this attractive approach as
well as broader applications to diverse sets of ligands are still
forthcoming.
Alchemical BFE calculations to predict binding affinities of

ligands to their therapeutic targets have enjoyed continuous
attention for many decades. Conducting BFE calculations has
become practical in drug discovery due to increased compute
power and convenient access to well-validated RBFE
implementations. More recently, the use of RBFE and to a
lesser extend ABFE methods has expanded to support a
broader spectrum of structure-based drug discovery tasks.
They include fragment growing and linking, scaffold hopping,
binding pose validation, virtual screening, covalent enzyme
inhibition, as well as assisting multiparameter optimization
strategies such as positional analogue scanning. Recently,
methods have been introduced to predict BFE calculation
results using ML methods. This latest development holds great
promise to expand chemical spaces accessible to RBFE
calculations, otherwise restricted by time and computer cost.
While many publications focused on introducing and validating
BFE calculation methods using existing data sets, recent
prospective studies illustrated the practical utility of alchemical
BFE calculations for drug discovery.
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