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ABSTRACT: The recent shift toward increasingly larger drug modalities has
created a significant demand for novel classes of compounds with high
membrane permeability that can inhibit intracellular protein−protein inter-
actions (PPIs). While major advances have been made in the design of cell-
permeable helices, stapled β-sheets, and cyclic peptides, the development of
large acyclic β-hairpins lags far behind. Therefore, we investigated a series of 26
β-hairpins (MW > 1.6 kDa) belonging to a chemical space far beyond the
Lipinski “rule of five” ( fbRo5) and showed that, in addition to their innate
plasticity, the lipophilicity of these peptides (log D7.4 ≈ 0 ± 0.7) can be tuned to
drastically improve the balance between aqueous solubility and passive
membrane permeability.
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In the past decade, rapid progress in genomics and
proteomics led to the discovery of an unprecedented

number of novel proteins engaged in protein−protein
interactions (PPIs) and more complex networks.1 Many of
these PPIs are associated with disease progressions often
deemed “undruggable” by our current arsenal of natural
products and small-molecule drugs alike.2 Blocking PPIs
presents challenges as binding interfaces typically feature
large, shallow, and potentially dynamic water-exposed surfaces,
commonly not suited for small inhibitors as defined by the
Lipinski’s rule of five (Ro5).3,4 Given the need for novel
therapeutic modalities, larger peptides exploring a space
beyond the rule of five (bRo5) are attracting a great deal of
attention.5,6 However, as rightfully questioned by Jan
Kihlberg7�“How big is too big for cell permeability?”�such
increase in molecular size brings on a number of challenges
including rigidity, solubility, cell permeability, and ultimately
oral bioavailability.8,9 The traction by pharmas for transitioning
large macrocyclic peptides in this bRo5 space to potential drug
candidates spawned significant advances in understanding the
major physicochemical and structural determinants responsible
for artificial and cellular membrane permeation.10−15 Recent
studies on large macrocycles (MW < 1.2 kDa, 3D-PSA < 280
Å2)16−20 and helical peptides21−24 have taught us that plasticity
must be adjusted through intramolecular H-bonds (IMHBs)
and conformational strain to reduce the molecular polar
surface area (PSA) and achieve membrane permeation. In stark
contrast, our current understanding of the major structural and
conformational features of large acyclic β-hairpins falling far

beyond the rule of five ( fbRo5: MW > 1.6 kDa; SASA > 1200
Å2) is still at its infancy.25−27 Our group was therefore drawn
to the challenge of developing acyclic β-hairpins in this space
(Figure 1) to study their properties and evaluate potential
correlations between passive membrane permeability (Papp),
lipophilicity (log D7.4(ow)), and the hairpin tertiary structures
while transitioning between aqueous-to-lipid environments.
Parallel membrane permeability assays (PAMPAs) were
performed to assess the impact of residual side-chain
lipophilicity on permeability. As a result, we observed that,
independently of the loop primary sequence, these large
hairpins must retain a fine balance between lipophilicity and
hydrophilicity (|log D7.4| ≤ +0.7) to achieve a practical
solubility and a relatively significant membrane permeability
(Papp ≥ 10 nm/s). Our circular dichroism (CD) study also
demonstrated that the conformation of hairpins in water
adapts into large β-structures when transitioning into a
hydrophobic environment.

Given the significant role of the programmed cell death-1
protein (PD1) pairing to its ligand-1 (PDL1) as one of the
major immune checkpoint exploited by cancer cells to suppress
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immune response,28,29 our group has been interested in
studying β-hairpin blockers of this particular PPI.30,31 Recent
studies have shown that cancer cells can package both PD1 and
PDL1 intracellularly into exosomes, in the first scenario to be
released as a decoy against anti-PD(L)1 drugs in the tumor
microenvironment, and as enhancer of tumor-specific cytotoxic
T-cell exhaustion in the latter scenario.32−34 Although several
anti-PD(L)1 monoclonal antibodies (mAbs) afford impressive
clinical outcomes in many tumor types,35 these drugs have
disadvantages including a lack of oral bioavailability, poor
tumor penetration,36,37 and immunogenicity, leading to
adverse effects.38,39 These deficiencies underscore the need
for alternative strategies including smaller molecules capable of
penetrating tumor cells to target exosomal and soluble forms of
PD(L)1.40 For these reasons, we set our goal to synthesize a
library of potential blockers of the PD1·PDL1 interaction by
miniaturizing some of the most bioactive anti-PD(L)1 mAbs
into long acyclic β-hairpins. Yet, synthetic strategies for
creating β-hairpins that mimic the native loop structures
found in proteins and antibodies remain largely unexplored.41

Recently, our group reported the synthesis of β-hairpins that
mimic the complementary determining region (CDR) of
antibodies, and more specifically the apex of the heavy-chains 3
(CDR-H3) found in pembrolizumab.31,42 We demonstrated
that hairpins with long loops of varying plasticity can be
synthesized in a highly folded state by exploiting a stabilizing β-
strap motif (strand + cap)31 that combines a tryptophan zipper
motif43 with a terminal capping originally described by
Anderson.44 Thus, we set our goal to synthesize β-hairpin
mimics of mAb CDR-H3 loops, inhibitors of the PD1·PDL1
interaction, from which crystal structures have been reported.
Two stabilizing motifs, straps A and B of sequences RWVW···
WVWE and RWVAR···DYWVWE designed for regular and
bulged hairpins, respectively, were found to be exceedingly
efficient to obtain structurally folded and stable hairpins
(Figure 1). In total, a library of 28 peptides encompassing
seven scaffolds 1−7 were synthesized by solid-phase peptide

synthesis (SPPS) with model peptides 1a−d, 15 analogs of
pembrolizumab (1e−s),45−48 two analogs each of GY-14
(2a,b),49 tislelizumab (3a,b),50,51 and durvalumab (4a,b),52,53

and a single analog each of mAb59 (5),54 atezolizumab
(6),53,55 and MW11-h317 (7) (see Supporting Information
(SI), Table S1).56 The hairpin folds were characterized by CD
spectroscopy using a typical exciton couplet at 230 ±2 nm,
characteristic of the W/W cross-strand interaction in hairpin
stems (see Figure 4, below).57 Thermal denaturation experi-
ments were performed in aqueous buffer by heating these
hairpins from 0 to 95 °C, and the unfolding transitions were
fitted to a two-state model equation to obtain the
corresponding melting curves (see Supporting Information
Excel file and Table S1).58 As shown by the selected examples
in Table 1 (vide inf ra), most hairpins 1−7 were relatively well-
folded, and some were found to be stable to both thermal and
chemical denaturation (i.e., 1f, 1j, 1l, 1n, and 3b, χF > 90% at
291 K).

Analogs of CDR loops were synthesized as hairpins by SPPS
and purified by semi-preparative RP-HPLC. The analytical RP-
HPLC retention times of these peptides can be correlated to
their overall polarity (PSA). Indeed, this series of peptides is
relatively homogeneous in terms of molecular weight (MW =
1.6−2.7 kDa) and overall solvent-accessible surface area
(SASA = 1200−1900 Å2),59 as well as the number of
IMHBs within the hairpin stems, and numerous solvent-
exposed amide groups (HBDs/HBAs). In this library, two
hairpin scaffolds, regular-A and bulged-B, bearing a simple and
positively charged polyglycine loop [G4K2G2/4], were included
as controls 1a,b, along with a model of synthetic coil 1c and
the native primary sequence of pembrolizumab 1d. As shown
by their retention times on RP-HPLC (17−19 min), peptides
1a−c are relatively polar, which is correlated to a largely
negative partition coefficient (log D7.4) and a poor apparent
membrane permeability (Papp threshold of 10 nm/s).60 The
low Papp values measured for hairpins 1a,b presenting a highly
flexible polyglycine loop strongly suggested that the strap
segments (A and B) are not inherently membrane-permeable
(Figures 1 and 2). Therefore, we thought to examine a

potential correlation between Papp and lipophilicity among the
different hairpin loops to determine if the log D7.4 values could
be used as a predictor of membrane permeation.

During the initial screening, 28 peptides were evaluated by
PAMPA in 96-well plates, and the Papp value averages of
triplicate experiments were obtained for each compound (SI,

Figure 1. Primary sequence alignment of antibody CDR loops used
for the library of β-hairpins (3D-model): analogs of pembrolizumab
(1c−s), GY-14 (2a,b), tislelizumab (3a,b), durvalumab (4a,b),
mAb59 (5), atezolizumab (6), and MW11-h317 (7). Regular and
bulged hairpins (straps A and B) are presented in black and blue/red,
respectively, with H-bonded residues underlined. Hydrophobic
residues selected for substitutions by Gly are highlighted in magenta.

Figure 2. Passive membrane permeability (Papp) analysis. Dashed
lines indicate the Papp threshold and the lipophilicity range delineating
the most permeable β-hairpins within the peptide library.
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Figure S4). The artificial membranes’ integrity was established
for each plate with Lucifer yellow as negative control (Papp =
5.4 ± 0.6 nm/s) and with warfarin (Papp = 70.6 ± 5.4 nm/s), a
known cell-permeable drug to ensure PAMPA reproducibility
and to detect compounds having a high passive membrane
diffusion.61,62 Overall, the coefficients of variation of Papp
obtained between all PAMPA plates (CV ≤ 11%) are
indicatative of a strong reproducibility between experiments.
Across the different folded hairpins 1−7, a strong inverse
correlation between kinetic aqueous solubility (S) and log D7.4
was observed (see Table 1). Indeed, we found that large

octanol−water partition coefficients for either highly lipophilic
or hydrophilic compounds |log D7.4| > 0.7 correlated strongly
with peptides having the weakest membrane permeability. Our
results on this particular set of hairpins suggested that peptides
able to cross this artificial membrane model had typically
log D7.4 values close to zero (−0.26 ± 0.54, mean ± s.d. with N
= 9). As shown in Figure 2, peptides that were not permeable
have a higher average and a wider dispersion of log D7.4 values.
Even if the log D7.4 appeared as a relatively accurate predictor
of membrane permeation, satisfying the rule of |log D7.4| ≤ +

0.7 did not consistently afford permeable peptides (blue
markers, Figure 2). These results support the idea that a
balance between polarity, lipophilicity, and solubility might be
required in order to yield a measurable passive permeability for
these remarkably large hairpin peptides (MW = 1.6−2.5
kDa).63

We previously demonstrated that replacing the Phe residue
within the loop of hairpins 1e and 1o by Gly resulted in
enhancing both the solubility and the %-folding of analogs 1f
and 1p.31 In turn, this modification enabled the full structural
NMR characterization of these β-hairpins. Although hairpins
1f/1p were about 40% more folded than 1e/1o, their retention
times measured by RP-HPLC were shorter (∼2 min),
suggesting that the Gly analogs were inherently more polar
(Table 1). To further establish a possible trend between
passive permeation and lipophilicity, we therefore evaluated
seven congeneric pairs of hairpin loops based on a single side-
chain modulation, Phe/Trp → Gly (see positions in Figure 1,
and results in Figure 3). As shown by their retention times of

22−24 min in Table 1, the original yet less folded hairpin
mimics of pembrolizumab (1e, 1g, 1i, 1k, 1m), GY-14 (2a),
and tislelizumab (3a) were strikingly more hydrophobic than
their Gly analogs (1f, 1h, 1j, 1l, 1n, 2b, and 3b, TR = 20−22
min). In addition, normalized HPLC retention times showed a
relatively strong correlation to our experimental log D7.4 across
the library (SI, Figure S3). These results further confirm that
the global %-folding of such large hairpins (and potentially the
overall number of IMHBs) is not a major contributor to the
net physicochemical properties of these molecules. As shown
in Figure 3, the F10G substitution in the loops of each
pembrolizumab analog (1e−n), but also the W12G in the loop
of 2a vs 2b, and the W11G substitution in the loop of 3a vs 3b,
had in each case a similar detrimental effect on passive
membrane permeability. Across the entire set of congeneric
pairs, we measured a 10- to 50-fold reduction in Papp on
average between the original most hydrophobic hairpins and
their glycine-derived analogs. Although hairpins with a Gly-
mutated loop adopt a more stable fold (higher %-folding and
thermal stability Tm), the drop of lipophilicity imparted by the
removal of a single hydrophobic residue (e.g., Phe and Trp)
reduced their permeability properties. In addition, hairpins
wrapped around a bulge strap B, such as 1e, achieved high
membrane permeability with either a V18H substitution in the
strap of 1k or a D15N replacement within the bulge of 1m

Table 1. Selected Examples of Lipophilicity Scanning from
Varying Loops and Hairpin Scaffolds (Physicochemical
Properties at 291 K)

aHairpin folded fractions at 291 K calculated from the best-fitted
melting curves of thermal denaturation recorded by CD spectroscopy.
bRetention times (min) determined by analytical RP-HPLC. cKinetic
solubility (mM) measured in a phosphate buffer (PB, 50 mM) at pH
7.4 (N = 3). dPartition coefficients (octanol−PB) measured by shake
flask assay and reported as mean values ± s.d. (N = 3). eApparent
membrane permeability values (nm/s) determined by PAMPA (pH
of 7.4) at 291 K. Data reported as the mean of three (N = 3) or nine
replicates (N = 9, marked with a star) with s.d. calculated across those
experiments.

Figure 3. Correlation plot between passive permeation and
lipophilicity by single side-chain modulation within the hairpin
loops. Original loops with Phe/Trp and their Gly-derived analogs.
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(Table 1). Yet, adding a charged residue (His or Lys) within
the strap of hairpins 1i−l did not improve their passive
permeation in comparison to the more lipophilic analogs 1e−
h. Finally, a macrocyclic hairpin 1r (analog of 1e), stapled
through a disulfide linkage, was also tested and revealed a 2-
fold increase in membrane permeability. As shown in Table 1,
a total nine peptides�eight acyclic hairpins 1e−g, 1k, 1m, 1o,
3a, and 4b with a significantly high passive permeability
comparable to that of the macrocycle 1r�were identified from
the library despite their large size. For most of these
compounds, Papp values were confirmed on three separate
PAMPA plates and on different days. Taken together, the two
peptides 1m and 4b appeared to possess the most promising
balanced properties between solubility, log D7.4, and membrane
permeability. We concluded that hydrophobic residues at the
apex of hairpin loops are likely more exposed to water, which
significantly enhances molecular lipophilicity and enables
sizable hairpins to passively translocate through membranes.

It is becoming increasingly evident that even strained
macrocyclic peptides should retain some backbone flexibility to
“actively” penetrate and translocate through mem-
branes.10,18−20 Indeed, this effect of plasticity on the
conformational behavior of peptides between aqueous and
lipophilic media is an important area of investigation to inform
the design of cell-permeable (macro)molecules. In fact, the
enthalpy−entropy compensation required of peptides and
other drug-like small molecules during membrane trans-
location entails a number of events within the solute−water
and solute−lipid interactions. For example, the folding of polar
groups (via IMHBs) has been shown to decrease the overall
PSA of flexible molecules and lower the energetic cost of
desolvation associated with passive cell penetration, often
resulting in increasing molecular compactness during trans-
location.64,65 As eluded by Fouche ́ in a recent study of large
macrocyclic peptides (decamers, MW ≈ 1.0 kDa),66 a high
structural rigidity in the apolar membrane environment might
not be beneficial, whereas a flexible backbone would afford an
entropic benefit and a driving force to more actively diffuse.
Several other groups drew a similar conclusion that large
molecules (MW ≥ 1.0 kDa) are more likely to achieve
membrane permeation if they possess an important conforma-
tional chameleonicity. To test this notion of conformational
flexibility, four of the most membrane permeable hairpins (1g,
1k, 1m, and 1o) were selected, and their far-UV CD spectra
were recorded in aqueous media (pH 7.4) and in a membrane-
like media of octanol (Figure 4).67−69 The small amounts of
methanol cosolvent (20% v/v) added to both aqueous and
octanol peptide solutions for consistency were shown to
enhance solubility without affecting the hairpin folds and the
overall CD spectra (see Figure S2).

As expected, the tertiary structure of these hairpins in
phosphate buffer was characterized by an intense π−π* exciton
couplet maximum at 230 ± 2 nm of the Trp/Trp pair
interactions (indole T-shape stacking), and in most cases by a
positive band at 204 ± 1 nm, likely generated by the kinked β-
bulge within strap B (Figure 4A).57 Strikingly, in octanol, a
complete shift of the main band wavelength at 230 nm to β-
sheet band at 215 ± 1 nm was observed with an overall larger
intensity in molar ellipticity (Figure 4B). This drastic change of
three-dimensional structure clearly indicates that the hairpin
folds are largely disrupted in octanol70 by forming extended
intra- or intermolecular β-structures.71 Given the order of
magnitude of the new β-sheet band at 215 nm (θ of 170,000°

to 340,000°) a supramolecular assembly of β-hairpins might
take place in a more lipophilic environment.72 These results
indicate that the four acyclic hairpin considered are highly
flexible, which would be consistent with a minimization of
entropic cost through conformational rearrangement in a
membrane-like environment. While hairpins 1g/1k remained
largely folded (exciton intensity at 230 nm) in octanol, the two
most membrane permeable hairpins 1m/1o (see Table 1)
were completely converted into a different β-structure (no
observable 230 nm exciton). Collectively, these results
complement the octanol−water model to suggest that the
lipophilicity and the conformational flexibility of these long
acyclic hairpins are two key determinants of passive membrane
permeation.

In conclusion, we demonstrated that out of a library of 28
peptides, nine hairpins have significant passive membrane
permeability (from only three different loop sequences).
Overall, the PAMPA results showed a significant correlation
between membrane permeability and lipophilicity (|log D7.4| ≤
+0.7). In each case, replacing Gly by Phe/Trp residues within
the loops resulted in hairpins with high passive permeability.
Our results also revealed that these hairpins are innately
flexible and can adapt into different β-structures in a lipophilic
environment. This suggests that hairpins may alter their
tertiary structure during membrane translocation. Although the
size and polarity of the β-hairpins evaluated herein generally
fail to meet the common criteria of drug-likeness, our study
demonstrated that such chemotypes ( fbBro5: MW = 1.6−2.5
kDa, loop SASA > 500 Å2) can exhibit passive permeability
similar to that of small molecules. This study is important in
showing that some antibody CDR loops can be incorporated
into large yet permeable β-hairpin scaffolds.73 Further NMR
and computational studies of the hairpin backbone rigidity and
the change of tertiary structures will be required to understand
the potential of this largely untapped chemical space. We hope
that our results will inform and stimulate future studies on β-
hairpins and other large proteomimetic scaffolds that will
extend a chemical space fbRo5 toward bioactive molecules
offering uniquely large three-dimensional surface areas for
protein binding.
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Figure 4. CD spectra comparison of peptides 1g, 1k, 1m, and 1o (A)
in a 50 mM phosphate buffer (pH 7.4), and (B) in octanol with
addition of MeOH (1:4 v/v) in each case.
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