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Abstract

Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various 

anatomical structures in medical images but often suffer from relatively poor generalizability. 

Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to 

generalize well to unseen datasets with different characteristics from the training dataset. Several 

groups have attempted to integrate the power of DCNN to learn complex data representations 

and the robustness of MAS to changes in image characteristics. However, these studies primarily 

focused on replacing individual components of MAS with DCNN models and reported marginal 

improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS 

and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of 

two main components with learnable weights, including a weighted voting subnet that mimics the 

MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final 

segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical 
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structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-

modality, multi-field-strength MRI and Computational Tomography). These experiments show 

that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the 

state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the 

training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets 

with different characteristics (different MRI field strength or different patient population). DLF is 

also shown to consistently improve upon conventional MAS methods. In addition, a modality 

augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be 

beneficial in improving the segmentation accuracy of learning-based methods, including DLF 

and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the 

contribution of each individual modality.
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1. Introduction

In recent years, deep convolutional neural network (DCNN) algorithms based on the U-Net 

architecture (Çiçek et al., 2016; Khandelwal et al., 2021; Ronneberger et al., 2015) have 

been shown to outperform conventional approaches with a significant margin in segmenting 

anatomical structures in medical images, such as ventricles of the heart (Chen et al., 2020; 

Duan et al., 2019) and brain regions from MRI (Thyreau and Taki, 2020; Yushkevich et al., 

2015), spine from computational tomographic (CT) images (Khandelwal et al., 2021; Kim et 

al., 2020; Lessmann et al., 2019; Whitehead et al., 2018) and so on. Also, when multimodal 

data is available, either from different imaging devices (e.g., MRI, CT, ultra-sound) or 

different imaging sequences of the same device [e.g., T1-weighted (T1w), T2-weighted 

(T2w) MRI], DCNN can efficiently be trained to make use of information from each 

modality. However, its generalizability, the ability to perform similarly well on data that is 

not well represented in the training samples, is relatively poor, especially when the training 

set is small or homogeneous. Improving the generalizability of deep learning methods, by 

applying various augmentation strategies, few-shot learning (Snell et al., 2017) in domain 

adaptation (Ganin et al., 2016) or domain generalization (Khandelwal and Yushkevich, 

2020; Li et al., 2017), is an active area of research. Prior to the emergence of DCNN 

segmentation algorithms, multi-atlas segmentation (MAS) was considered a leading medical 

image segmentation technique, capable of achieving promising segmentation accuracy using 

relatively small training datasets and of good generalization to unseen patient populations 

and imaging protocols (Parivash et al., 2019; Sone et al., 2016). MAS consists of two 

steps: (1) a set of atlases, i.e., images together with manual segmentations of structures of 

interest, which are transformed (warped) into the space of the target image via linear and 

deformable registration; (2) the warped atlas segmentations are combined into a consensus 

segmentation of the target image using a label fusion algorithm, which typically involves 

weighted voting among the atlases. Majority voting (MV) (Heckemann et al., 2006) is the 

first and simplest MAS algorithm that gives equal weights to all the atlases. More accurate 

spatially varying weighted voting (SVWV) schemes (Coupé et al., 2011; Sanroma et al., 
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2015) assign each atlas a different weight at each location in the target image based on 

patch-level intensity similarity between the warped atlas image and the target image. Joint 

label fusion (JLF) (Wang et al., 2012) further improves label fusion accuracy by taking the 

correlated errors among atlases into account in weight estimation. However, conventional 

SVWV/JLF algorithms derive weights based on heuristic assumptions about the relationship 

between patch similarity and atlas suitability (e.g., negative exponential relationship). 

Relatedly, conventional MAS algorithms lack an optimal way to combine atlas-to-target 

similarity estimations across multiple modalities. These limitations may negatively impact 

the accuracy of conventional MAS techniques, particularly in multimodality applications.

This paper seeks to develop a hybrid method that combines the relative strengths of DCNN 

and MAS algorithms. Built on prior work on combining non-DCNN machine learning 

methods with MAS (Bai et al., 2014; Sanroma et al., 2018, 2015), several attempts that 

focus on using DCNN with MAS have been made. The first set of methods uses DCNN 

to improve atlas-target image similarity (or dissimilarity) estimation, replacing the heuristic 

models used in SVWV and JLF with data-driven models. Sanroma et al. (2018) and Ding et 

al. (2020) used neural networks to learn a non-linear embedding that transforms the image 

patches to a feature space in which the discriminability between atlas-target patch pairs that 

have the same label and that have different labels is maximized. Alternatively, Ding et al. 

(2019a, 2019b) and Xie et al. (2019a) directly estimated the likelihood of an atlas having 

an erroneous vote either for a patch (Xie et al., 2019a) or for the whole image (Ding et al., 

2019b, 2019a). One common issue with these methods is that the improvement in similarity 

(or dissimilarity) estimation for weight computation does not fully translate to better final 

label fusion accuracy. Ding et al. (2019) reported that a 2% improvement in discriminating 

error votes results in only 0.4% increase in final segmentation accuracy, which is consistent 

with the results in the other two studies (Ding et al., 2020; Xie et al., 2019a). A potential 

way to improve final segmentation accuracy over these techniques would be to train an end-

to-end DCNN-based MAS pipeline with a loss function that directly quantifies segmentation 

errors. Such an end-to-end pipeline was explored for the first time by Yang et al. (2018). 

Their pipeline consists of a DCNN-based feature extraction subnet with learnable weights 

and a label fusion subnet with a fixed non-learnable structure that mimics conventional label 

fusion. Although this pipeline is trained end-to-end, there is no modification to the label 

fusion process, limiting the potential improvement. Furthermore, although demonstrating 

consistent improvement compared to conventional MAS and DCNN-based approaches, 

Yang et al. (2018) only evaluated their pipeline on 2D cardiac MRI images, which limits its 

utility for medical image segmentation.

In this study, we build on these prior attempts to combine DCNN and MAS by developing 

and evaluating a 3D hybrid MAS-DCNN end-to-end pipeline that has learnable weights in 

the label fusion subnet and can adapt to a variable number of datasets. We hypothesize 

that our pipeline, named deep label fusion (DLF), will improve the segmentation accuracy 

and generalizability compared to MAS or DCNN alone across a range of medical image 

segmentation problems. This work is a follow-up study to our prior proceeding presentation 

at the 27th international conference on Information Processing in Medical Imaging 2021 

(IPMI 2021) (Xie et al., 2021), which proposed the first such 3D hybrid MAS-DCNN 

end-to-end pipeline. The following extensions are unique to the current work: (1) A more 
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comprehensive evaluation with five datasets on different anatomical structures [medial 

temporal lobe (MTL) subregions and lumbar vertebrae] acquired with different imaging 

modalities (MRI and CT) to demonstrate the feasibility of the DLF in various applications. 

(2) A novel augmentation strategy that is designed specifically for training DCNN models 

on multimodal datasets is proposed and evaluated to show its potential utility in interpreting 

the contribution of individual modalities and in missing data scenarios. (3) We compare DLF 

with nnU-Net, the state-of-the-art DCNN segmentation pipeline, in terms of accuracy and 

generalizability. (4) We perform a more comprehensive evaluation on the contribution of 

different components of the network to segmentation accuracy and generalizability.

2. Methods and materials

2.1 Datasets

Five datasets acquired with different imaging modalities covering two different organs of 

interest [multimodal MRI images of human MTL subregions and computational tomography 

(CT) scans of human lumbar vertebrae] are used to evaluate the segmentation accuracy and 

generalizability of the proposed DLF. Figure 1 summarizes the experiments (cross-validation 

or testing for generalizability) done on these datasets and includes some examples.

2.1.1 Multimodal 3T and 7T brain MRI of the hippocampal subfields and MTL 
cortical subregions (Brain-3T-T2 and Brain-7T-T2 datasets)—As in prior work 

presented in IPMI 2021, a multimodal structural 3T MRI dataset from the University of 

Pennsylvania (UPENN) was primarily used to develop the DLF algorithm. The dataset 

consists of T1w (MPRAGE sequence, 0.8×0.8×0.8 mm3) and T2w (TSE sequence, 

0.4×0.4×1.2 mm3) brain MRI scans of 23 subjects from the Penn Alzheimer’s Disease 

Research Center (ADRC). The T2-weighted scans are optimized for imaging hippocampal 

subfields and adjacent MTL cortical subregions, which play related but distinct roles in 

memory function and are affected to different degrees by neurodegenerative diseases (Braak 

and Braak, 1995; Ding and Van Hoesen, 2010). Automatic segmentation of these subregions 

can potentially yield promising biomarkers for detecting and tracking the progression 

of early Alzheimer’s disease (Coupé et al., 2011; Xie et al., 2019b; Yushkevich et al., 

2015). Following the anatomical protocol described in Berron et al. (2017) with some 

modifications (details in Supplementary Material S1), manual segmentations are generated 

in the space of the T2w MRI with labels including hippocampal subfields [cornu ammonis 

(CA) 1 to 3, dentate gyrus (DG), subiculum (SUB), the tail of hippocampus (TAIL)], 

MTL cortical subregions [entorhinal cortex (ERC), Brodmann areas 35 and 36 (BA35/36) 

and parahippocampal cortex (PHC)] together with 4 supporting non-gray-matter labels 

[hippocampal sulcus, collateral sulcus (CS), cysts in the hippocampus and miscellaneous 

voxels around the cortex]. Bilateral segmentations are available for each subject. This is 

a challenging dataset because the boundaries of most adjacent gray matter subregions are 

defined based on anatomical landmarks and geometric rules, and there is no perceivable 

difference in contrast between them. Spatial context is important for accurate segmentation, 

which makes this dataset well-suited to compare DLF with conventional MAS and general 

DCNN frameworks, such as the U-Net (Çiçek et al., 2016; Ronneberger et al., 2015). Since 

the segmentation is in the space of the 3T T2w MRI focusing on the MTL, we refer to this 
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dataset as the Brain-3T-T2 dataset. A similar naming convention was used to name the other 

datasets.

A similar multimodal 7T MRI dataset from the PennADRC, which consists of T1w (the 

second inversion image of the MP2RAGE sequence, 0.7×0.7×0.7 mm3) and T2w (TSE 

sequence, 0.4×0.4×1.0 mm3) MRI scans of 25 subjects (named Brain-7T-T2 dataset), was 

used as an out-of-sample dataset to evaluate the generalizability of DLF trained on the 

Brain-3T-T2 dataset. Bilateral manual segmentations are available in the space of the 7T 

T2w image following the same segmentation protocol (Berron et al., 2017) as the Brain-3T-

T2 dataset with the same modifications (details in Supplementary Material S1). Subtle 

differences in the placement of tissue boundaries between the Brain-3T-T2 and Brain-7T-T2 

datasets are expected, despite following the same segmentation protocol, because tissue 

contrast and resolution between the two datasets are different (Figure 1). In addition, four 

subjects are present in both datasets and thus are excluded from training in experiments 

evaluating generalizability (details in Section 3).

2.1.2 Multimodal 3T brain MRI of the hippocampus and MTL cortical 
subregions (Brain-3T-T1 dataset)—T2w scans optimized for hippocampal subfield 

segmentation are not always collected in MRI studies of aging and neurodegeneration, 

whereas T1w MRI scans with approximately 1×1×1 mm3 are very common. Xie et al. 

(2019b, 2016) transferred the MTL subregion segmentations from a prior MTL subregion 

dataset (including hippocampal subfields and MTL cortical subregions) in the T2w MRI 

space (Yushkevich et al., 2015) (segmentation protocol is different from Brain-3T-T2) 

into the space of 3T T1w MRI of the same subjects, first upsampling these scans to 

0.5.0×0.5×1.0 mm3 resolution using the non-local means algorithm (Manjón et al., 2010). 

Since boundaries of hippocampal subfields cannot be reliably visualized in T1w MRI (de 

Flores et al., 2015; Laura E. M.Wisse, Geert Jan Biessels, 2014), hippocampal subfield 

labels were merged into a single hippocampus label, which was then divided along the 

hippocampal long axis into anterior and posterior subregions. MTL cortical labels (ERC, 

BA35, BA36 and PHC) were retained in the T1w MRI segmentation. The non-gray-matter 

supporting labels were expanded to include anterior and posterior dura mater, as well as CS, 

occipital-temporal sulcus (OTS) and miscellaneous (i.e., cerebrospinal fluid) voxels in the 

hippocampus. In total, 29 subjects are available in the Brain-3T-T1 dataset.

The Brain-3T-T1 provides another dataset, in addition to Brain-3T-T2, to evaluate DLF in 

the context of multiple MRI modality segmentation since for each individual in the atlas 

set, a T2w MRI is available. A five-fold cross-validation experiment is performed using this 

dataset (details in Section 2.2.2.1).

2.1.3 Computational tomography scans of human lumbar vertebrae (Lumbar- 
Healthy and Lumbar-Disease datasets)—To evaluate the proposed algorithm in a 

different imaging modality and different organ of interest, two additional datasets of human 

lumbar vertebrae acquired using CT are included in this study. The first CT dataset is from 

the MICCAI Computational Spine Imaging Challenge 2014 (Yao et al., 2016). It consists 

of spine CT images (resolution: 0.3×0.3×1.0 mm3) of 10 healthy adults acquired in daily 

clinical routine work in a trauma center. Although images of the whole spine are available, 
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we only included the area around the 5 lumbar vertebrae to be consistent with the second CT 

dataset described below. We perform five-fold cross-validation using this dataset to evaluate 

segmentation accuracy (named Lumbar-Healthy, details in Section 2.2.2.1).

The second publicly available CT dataset (resolution: 1.0×1.0×1.0 mm3), named Lumbar-

Disease dataset (Ibragimov et al., 2014), consisting of lumbar vertebrae images of 15 

pathological cases of vertebrae with fractures of different morphological grades and cases, is 

used to test the generalizability of the segmentation algorithm in unseen disease cases with 

large difference in image contrast and field of view (see Figure 1).

2.2 Deep label fusion

Like conventional MAS methods, DLF utilizes a set of atlases (medical images with expert 

segmentations of the structures of interest) that are deformed to fit each target image using 

non-linear diffeomorphic deformable registration. These registrations are performed using 

conventional variational techniques that minimize an image dissimilarity metric (normalized 

cross-correlation) between the target image and each atlas image. Specifics of the image 

registration for each dataset are provided in Section 2.2.2.2. The task of the DLF pipeline is 

to combine the deformed (warped) atlas segmentations into a single consensus segmentation 

of each target image.

As illustrated in Figure 2, the DLF takes as inputs a target image (T) and a set of 

registered atlases, i.e., warped images [A = Ai, i = 1, 2, …, Natlas , where Natlas represents 

the number of atlases] together with the corresponding warped manual segmentations 

S = Si, i = 1, 2, …, Natlas . The output of DLF is the segmentation for the target image 

(ST). To avoid confusion, in the rest of this paper, only the registered images are referred 

to as “atlases” and the original expert-labeled images (before registration) in the training 

set are referred to as training images [I = Ij, j = 1, 2, …, Ntrain , where Ntrain is the number 

of images in the training set]. The training scheme of DLF is similar to that of DCNN 

networks. First, pairwise registration is done between all the training images I. Then, DLF 

is applied to each training image (Ij) and the corresponding registered atlases (the warped 

remaining training images) to generate an automatic segmentation. The segmentation error 

between the automatic and the manual segmentations, evaluated by a loss function, is then 

backpropagated to update the weights of DLF. This process is repeated until convergence. 

The details of DLF network architecture will be described in Section 2.2.1. Implementation 

details will be provided in Section 2.2.2.

2.2.1 Network architecture—The proposed deep label fusion algorithm consists of 

three parts: the weighted voting subnet that estimates similarity between atlas and target 

images, label fusion computations that mimic the MAS algorithm, and the fine-tuning 

subnet that takes advantage of the U-Net to improve segmentation accuracy. The network 

architecture is similar to our prior work presented at IPMI 2021 (Xie et al., 2021). Figure 2 

gives an overview of the network architecture and details are described below.

2.2.1.1 Weighted voting subnet: The weighted voting subnet is designed to replace the 

weight computation using conventional similarity metrics (e.g., sum-of-square difference) 
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with a data-driven learning-based approach. It takes in a pair of atlas-target images together 

with the coordinate-maps (3 channels for coordinates in x, y, z axes, which provide spatial 

context) and outputs label-specific weight maps [one for each of the Nlabel labels, denoted 

as W i = W l
i, l = 1, 2, …, Nlabel  for atlas i with value wln

i  at voxel n]. The subnet has the 

U-Net architecture (Çiçek et al., 2016) with three levels. as shown in Figure 2 (detail of the 

architecture is described in Supplementary Material S3).

2.2.1.2 Label fusion computation: After applying the weighted voting subnet 

to all the Natlas atlases, label fusion is performed to fuse the candidate 

segmentations Si, i = 1, 2, …, Natlas  to generate the initial consensus segmentation 

Sinit = pl
init, l = 1, 2, …, Nlabel  with voxel value pln

init at location n] with the following steps: 

(1) For the itℎ atlas-target pair i = 1, 2, …Natlas , the label-specific weight mapsW i, outputted 

from the weighted voting subnet (the same network for all the atlases), is generated. 

(2) Then the candidate segmentation Si is converted to one-hot encoding segmentations 

Si = pl
i, l = 1, 2, …, Nlabel  for each label l with voxel value sln

i . (3) Next the vote maps are 

computed for all the labels [V i = V l
i, l = 1, 2, …, Nlabel with voxel value vln

i ] by elementwise 

multiplying W i withSi, i.e., vln
i = wln

i ⋅ pln
i for all labels l = 1, 2, …, Nlabel and spatial location n. 

(4) For each label, the corresponding vote maps of all the atlases are averaged to generate 

the initial segmentation, i.e., pln
init = ∑i = 1

Natlas vln
i /Natlasfor each n and l. Importantly, the average 

operation allows varying number of atlases as inputs to the network, providing flexibility in 

adjusting the number of atlases in training to fulfill the limit of the GPU memory capacity.

2.2.1.3 Fine-tuning subnet and atlas mask: The fine-tuning subnet, which shares a 

similar U-Net architecture with the weighted voting subnet (the number of levels is four 

instead of three), is employed to allow the network to correct for residual errors that may 

remain after the label fusion computation. It takes Sinit and the coordinate maps as inputs and 

outputs a set of feature maps that have the same dimensions asSinit. Then, a label-specific 

mask, generated by taking the union of all the candidate segmentations of the corresponding 

label (i.e., binarze ∑i = 1
Natlas pl

i , referred to as atlas mask), is multiplied with the corresponding 

channel of the fine-tuning subnet output to generate the final segmentation ST. The atlas 

masking operation assumes that the truth label should be contained inside the region that has 

atlas votes of that label.

2.2.2 Implementation details—The model was implemented in PyTorch using 

functionalities from the MONAI project (Consortium, 2020), a freely available, community-

supported, PyTorch-based framework for deep learning in healthcare imaging (https://

monai.io/). NVIDIA Tesla P100 in Google Cloud Platform (16GB, used to conduct 

experiments related to Brain-3T-T2 and Brain-7T-T2 datasets) and NVIDIA RTX A5000 

in local computer (24GB, used to perform experiments related to Brain-3T-T1, Lumbar-

Healthy, and Lumbar-Disease datasets) were used in this project. All the models were 

trained using generalized Dice similarity coefficient (GDSC) loss (Sudre et al., 2017) with 

the Adam optimizer. Since the GDSC accounts for the volume differences of all labels, it 

is more suitable to evaluate the overall performance when there is a big difference in label 

volumes, such as in our brain MRI applications. We adopted the deep-supervision scheme 
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(Dou et al., 2016) (four levels with weights of 1.0, 0.5, 0.2, 0.1) in the fine-tuning subnet 

to improve training efficiency. Due to GPU memory limitation, the proposed network was 

trained using image patches, obtained following steps described in Section 2.2.2.2. The 

batch size was set to one, constrained by GPU memory capacity.

2.2.2.1 Cross-validation experiments and parameter tuning: Since the datasets are 

relatively small, cross-validation experiments were performed in each of the Brain-3T-

T2 (4-fold), Brain-3T-T1 (5-fold) and Lumbar-Healthy (5-fold) datasets to evaluate the 

segmentation accuracy of DLF. To tune DLF for each application, in each dataset, we use 

the first fold as the validation set and the remaining folds as the training set to determine the 

set of parameters that generate the optimal performance in terms of GDSC of all gray matter 

labels in MRI datasets and Dice similarity coefficient (DSC) of lumbar vertebrae in the CT 

dataset. The same set of parameters is applied in the rest of the cross-validation experiments 

(experiments using each of the folds other than the first fold as the validation set). To reduce 

potential bias, results excluding the experiment that is used to tune parameters (the one using 

the first fold as a validation set) are reported.

2.2.2.2 Preprocessing steps to obtain the patch-level training and validation sets: Each 

step of network training involves randomly selecting one of the training images in a given 

cross-validation fold as the “target” and selecting a random patch in the target image 

space. The remaining training images take the role of “atlases”. Using previously computed 

registrations between all image pairs, the patches corresponding to the target patch are 

extracted from the warped atlas images and warped atlas segmentations. These patches are 

input to the end-to-end network, which yields the segmentation of the target patch,ST. The 

loss function measures GDSC between this segmentation and the ground truth segmentation 

of the target patch. Registration between image pairs is computed differently for different 

datasets, as detailed in Supplementary Material S4.

To make full use of the bilateral segmentations of the MTL datasets (Brain-3T-T2 and 

Brain-3T-T1) during network training, we effectively double the number of segmented 

images by flipping each image across the midsagittal plane, i.e., each training subject 

provides both left and right MTL as training images in segmenting each side of the MTL of 

the target image. This is not done in the Lumbar-Healthy dataset. The Greedy registration 

toolbox (github.com/pyushkevich/greedy) with the normalized cross-correlation metric is 

used in all the registration tasks.

From each training image and the corresponding registered atlases, we sampled twelve 

patches (10 and 2 centered on voxels with foreground and background, respectively) in 

the MRI datasets (Brain-3T-T2 and Brain-3T-T1) and seventeen patches (15/2 centered on 

foreground/background) in the Lumbar-Healthy dataset. The patch size is set to 72×72×72 

voxels for the MRI datasets and 104×104×104 voxels for the Lumbar-Healthy dataset, 

determined in the parameter tunning stage (Section 2.2.2.1). All the patches are normalized 

by subtracting the mean and dividing by the standard deviation.

Following similar steps, the patch-level validation set that is used to tune parameters is 

generated by treating the subjects in the first fold of the cross-validation experiments 
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(parameter tuning stage in Section 2.2.21) as the targets and all the remaining training 

subjects as the atlases.

2.2.2.3 Augmentation strategies: In addition to using common augmentations methods, 

including random flipping, random rotation (≤ 10°), random elastic deformation 

augmentation and random additive Gaussian noise to both the target and the atlases, we 

propose two novel augmentation strategies that are unique to the DLF pipeline. (1) The first 

strategy is related to how the atlases are sampled in patch extraction. Instead of using all the 

atlases in a fixed sequence, which may result in a network not being robust to different atlas 

combinations or different ordering of atlases as input channels to the weighted voting subnet 

(this is important as one more atlas will be available in the test phase), we randomly select 

Natlas out of all available atlases. To make it more robust to atlas variability, the selection 

is done with replacement, and we allow Natlas bigger than the number of available atlases, 

i.e., duplicated atlases may be present. This is desired as the network may learn to handle 

repeated/similar votes, similar to the core idea of JLF in penalizing correlated errors among 

the atlases (Wang et al., 2012). This process is empirically repeated three times to generate 

enough sample for training. (2) The second one is that we extend the random histogram shift 

augmentation in the DLF setting. In detail, random histogram shift is applied to the target 

image as well as the atlases independently with a 0.8 probability. By doing this, we allow 

variability in contrast between atlases and target to help the weighted voting subnet to be 

more sensitive to the similarity of underlying structure rather than the intensity distribution 

of the target image, which helps improve the generalizability.

With the advancement of medical imaging, multimodal imaging data, either from different 

imaging devices (e.g., MRI, CT, ultra-sound) or different imaging sequences of the same 

device (e.g., T1w MRI, T2w MRI), is becoming more and more common. Active research 

is being conducted to answer important questions such as how to effectively make full 

use of the complementary information provided by different modalities, how to deal with 

missing or corrupted data both in training and test time, how to accurately interpret the 

contribution of each modality. One unique characteristic of multimodal data is that the 

information provided by different modalities, although complementary, is highly correlated. 

When a DCNN model is trained directly on multiple modalities, it is unclear which modality 

contributes the most to successful segmentation. Furthermore, if at test time one of the 

modalities is missing or is corrupted by noise or artifact, a DCNN model trained on multiple 

modalities may be confused and produce a poor segmentation. In this paper, we propose 

to make our model more robust to missing/corrupted modalities using a simple modality 

augmentation (ModAug) strategy. When training with multimodal data (the Brain-3T-T2 

and Brain-3T-T1 datasets with multiple MRI modalities in this study), we randomly (with a 

probability of 0.5) replace one of the channels (T1w or T2w MRI) with random white noise. 

By doing this, the model is forced to base its prediction on individual modalities as much as 

possible. The ModAug strategy is applied to both standard U-Net (StandU-Net, detailed in 

Section 2.3.3) and DLF training.

2.2.2.4 Inference and postprocessing: In the inference phase, either in applying the 

models to the validation fold in cross-validation experiments or to the out-of-sample dataset 
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in the experiments testing generalizability, each of the test images is treated as the target 

and all the subjects in the training dataset are used as atlases. After performing registration 

following the steps in Supplementary Material S4, the sliding window inference approach is 

applied with spacing equal to half of the patch size to generate an automatic segmentation 

of each test image. A gaussian kernel (standard deviation equal to 1/5 of patch size) is 

multiplied by the prediction of each sliding window to give more weight to the center of 

the patch before fusing patch-level predictions to generate the whole-image segmentation. In 

the cross-validation experiments of the MRI MTL datasets, the posterior probability maps of 

the original and the corresponding flipped images are averaged before generating the final 

segmentation, which has been found to produce more accurate results.

In the parameter tuning phase, we observe that all the methods generate isolated islands of 

segmentation in the background in some subjects. Therefore, an additional postprocessing 

step is performed by multiplying the automatic segmentation with a binary mask of the 

largest component of the foreground labels.

2.2.2.5 Other dataset specific implementation details

Brain-3T-T2 and Brain-3T-T1: 10 atlases were selected in each patch sampling (Section 

2.2.2.3). Each model converged after 20 epochs. We used a step decay learning rate 

scheduler with initial learning rate set to 0.0005 and was reduced by a factor of 0.2 at 

epochs 10, 15, and 18.

Lumbar-Healthy: 5 atlases were selected in each patch sampling. We trained the model for 

35 epochs. The initial learning rate was set to 0.0005. It was reduced by a factor of 0.2 at the 

end of epochs 20 and 30.

2.3 Alternative methods for comparisons

2.3.1 Conventional MAS algorithms—The first set of algorithms we compared with 

are the conventional MAS methods, including MV, SVWV, and JLF with a neighborhood 

search scheme (Wang et al., 2011b). In addition, a learning-based corrective algorithm 

(CL) (Wang et al., 2011a), commonly used together with JLF, is applied to the JLF output 

(JLF+CL) to get the benchmark performance of conventional MAS algorithms. For each 

method, the optimal set of hyper-parameters (e.g., patch radius, search radius, and so on) 

are determined in the parameter tuning stage (using the first fold of the cross-validation 

experiment as the validation set, described in Section 2.2.2.1) by performing a grid search 

for the best the GDSC of gray matter labels in the MRI MTL datasets or the DSC of the 

lumbar vertebrae in the CT datasets.

2.3.2 nnU-Net—State-of-the-art in DCNN segmentation is represented by nnU-Net 

(Isensee et al., 2020), a self-adapting U-Net approach. nnU-Net has been optimized to 

achieve top performance in various medical imaging segmentation tasks (github.com/MIC-

DKFZ/nnUNet), making it well-suited to serve as the high-performing comparison method 

for DLF. The algorithm is designed to be used out-of-the-box without the need for the user 

to choose parameters (the automatic chosen parameters of each experiment are reported 

in the Supplementary Material S2), to perform cross-validation experiments and to run 
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inference. As recommended by the authors, the “3d_fullres” mode is used to generate 

the results. The patch sizes automatically determined by the algorithm are 208×238×196 

voxels for Brain-3T-T2, 205×196×189 voxels for Brain-3T-T1 and 178×289×200 voxels for 

Lumbar-Healthy.

2.3.2 Standard U-Net with the comparable settings in DLF (StandU-Net)
—Although nnU-Net provides state-of-the-art performance of DCNN algorithms, it 

has a different architecture and is trained with significantly different parameters and 

implementations compared to the U-Net backbone in DLF. To have a fair comparison and 

provide insight in whether incorporating MAS provides value in DCNN in a similar setting, 

we also report results of a standard 3D U-Net (Çiçek et al., 2016) with the same architecture 

as the fine-tuning subnet that is trained with the same set of key training parameters as DLF 

(i.e., augmentation methods, patch size, learning rate, optimizer, deep-super vision training, 

loss function and so on). This method is named StandU-Net in this paper. The StandU-Net 

is trained over 60 epochs with a batch size of 7 for the MRI datasets and 45 epochs with 

a batch size of 5 for the CT dataset. Inference and postprocessing follow the same steps as 

DLF described in Section 2.2.2.4.

2.3.3 Oracle experiment to evaluate label fusion performance upper bound
—An ideal label fusion strategy, named oracle label fusion [inspired by Ding et al. 

(2019a, 2019b)], is able to find the correct label from a set of registered atlases. Such 

strategy provides an upper bound of label fusion method, which informs possible room for 

improvement and reflects the quality of registration. Therefore, segmentation accuracy using 

this strategy is evaluated and the results are reported in Tables 1 and 2. Specifically, for each 

voxel, the oracle label fusion assigns the correct label if at least 10% of the registered atlases 

vote for it, or otherwise the background label (0).

2.4 Statistical analysis

The evaluation metrics are GDSC for all the labels of interests (e.g., gray matter labels in 

the MRI MTL datasets) and DSC for the other labels (individual labels and the compound 

label of hippocampus in MRI MTL datasets). In addition, we adopt the mean surface 

distance (MSD) metric to evaluate the segmentation quality. Compared to DSC, which 

is used in the loss function, MSD evaluates the accuracy of the segmentation boundaries 

and thus will provide a more comprehensive evaluation. Two-sided Wilcoxon signed rank 

test is performed to evaluate whether the segmentation accuracy (DSC/GDSC or MSD) 

of alternative methods (except for the oracle strategy) is significantly different from that 

of DLF in each experiment of each dataset. For the MRI MTL datasets with bilateral 

segmentations, segmentation accuracy of both sides is first averaged before being tested for 

significance to maintain the independence between samples.

3. Evaluation experiments and results

Cross-validation experiments (described in Section 2.2.2.1) and generalizability experiments 

are performed to evaluate the segmentation accuracy of the proposed DLF both in data with 

similar characteristics as the training set and in data without. Ablation experiments are also 
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included to investigate the contribution of individual components of DLF and the modality 

augmentation strategy to segmentation accuracy and generalizability. To visualize the spatial 

error distribution of each algorithm, we generate the mean error map of each method in 

each dataset by warping the error maps of all the test subjects (binary maps indicating 

locations of disagreement between the automatic and manual segmentations) to the unbiased 

population template, built using manual segmentations of the corresponding training set 

the same as in (Xie et al., 2017). Results are shown in Figure 3. In addition, examples of 

typical segmentation errors of the T2-based MRI datasets (Brain-3T-T2 and Brain-7T-T2) 

and lumbar vertebrae datasets (Lumbar-Healthy and Lumbar-Disease) are shown in Figure 

4 and Figure 5. Example segmentations errors of the Brain-3T-T1 dataset are shown in 

Supplementary Figure S1.

3.1 Cross-validation experiments

Table 1 shows the results of cross-validation experiments with the optimal parameters of the 

MAS methods in the notes. Since the ModAug strategy only helps improve the segmentation 

accuracy for StandU-Net rather than DLF when complete data is available, which will be 

discussed in Section 3.3, results of StandU-Net with ModAug and DLF without ModAug are 

compared in this section.

• Comparison with conventional MAS methods: Consistent with prior literature, 

JLF+CL outperforms the other conventional MAS algorithms. DLF significantly 

outperforms JLF+CL in almost all the tasks (except for SUB in Brain-3T-T2). 

We observe the biggest improvements are in CA1–3, ERC and BA35, which are 

subregions of early Alzheimer’s disease research because they are affected by 

the earliest neurofibrillary tangle pathology. Spatially, the biggest improvements 

(yellow arrows in the Brain-3T-T2 dataset row in Figure 3) are located at the 

small stripe of BA35 between ERC and PHC as well as the boundary of BA35 

and BA36.

• Comparison with StandU-Net: DLF significantly improves the segmentation 

accuracy for most of the tasks compared to StandU-Net. In the remaining tasks, 

although not significant, DLF consistently produces better results. Interestingly, 

as shown in Figure 3, the improvements are spatially uniform in the Brain-3T-T2 

and Brain-3T-T1 datasets.

• Comparison with nnU-Net: Overall, the performance of DLF and nnU-Net are 

comparable with nnU-Net performing better in some tasks (significant better 

DSC/MSD in hippocampus, DG and PHC in Brain-3T-T2) and DLF in other 

tasks (significant better DSC in anterior hippocampus in Brain-3T-T1). From the 

error maps of the Brain-3T-T2 dataset, we can see the biggest difference is in 

locating the anterior boundary of the TAIL (white arrows), which is important 

for the accurate segmentation of other hippocampal subfields and PHC (in 

the manual segmentation protocol, the posterior border of PHC is one slice 

anterior to the anterior border of the TAIL). Interestingly, the improvement is less 

obvious when compared to StandU-Net trained with similar parameters as DLF. 

The bigger patch size of nnU-Net could potentially contribute to this difference.
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To further compare the segmentation accuracy of the Lumbar-Healthy dataset with state-of-

the-art algorithms in the literature, we summarize the averaged DSC scores of various 

methods reported in the corresponding publications in Supplementary Table S2. From 

this indirect comparison, we can see that the proposed DLF achieves comparable high 

segmentation accuracy.

3.2 Generalization to unseen datasets with different characteristics

To test the generalizability of JLF+CL (one of the best conventional label fusion methods in 

Table 1), StandU-Net, nnU-Net and DLF, we trained these methods on the entire Brain-3T-

T2 (the 4 overlapping subjects were excluded from the training) and Lumbar-Healthy 

datasets and directly applied the models to the Brain-7T-T2 and Lumbar-Disease datasets 

respectively. Segmentation accuracy is evaluated in terms of DSC/GDSC and MSD between 

the automatic and manual segmentations.

The results, shown in Table 2, demonstrate the significantly better generalizability of 

DLF compared to all the alternative methods. nnU-Net, which has similar performance to 

DLF in the cross-validation experiments, produces significantly poorer segmentation results 

in segmenting both Brain-7T-T2 and Lumbar-Disease datasets. Compared with JFL+CL 

and StandU-Net, DLF significantly outperforms in most of the tasks (except for TAIL 

compared to JLF+CL and BA36 compared to StandU-Net). Overall, segmentation accuracy 

in these generalizability experiments is lower than in the cross-validation experiments. This 

is expected due to differences in image contrast, field of view, and diagnosis (the CT 

dataset). Indeed, in the Brain-3T-T2 dataset, we can see from Figure 3 that the segmentation 

errors are mostly located at boundaries between neighboring MTL subregions, where we 

expect the highest inter-rater variability, rather than gray/white matter or gray matter/CSF 

boundaries in the center of each label.

3.3 The effect of the modality augmentation

In this section, we evaluate the effect of the proposed modality augmentation strategy in 

the multimodal MRI datasets. Both StandU-Net and DLF were trained with and without the 

ModAug strategy in the cross-validation (Section 3.1) and applied to experiments testing 

generalizability (Section 3.2). At the test time, in addition to making prediction with both 

modalities, inputs with only one modality (either T1w MRI or T2w MRI, the other channel 

was replaced with random white noise) were passed to the model to make prediction to test 

its ability in handling missing data.

As shown in Table 3, in both StandU-Net and DLF, the ModAug strategy improves the 

segmentation accuracy when only one modality is available in the test time compared 

to the models that are trained without ModAug in both the cross-validation and the 

generalizability experiments (the columns for experiments with “Primary Modality Missing” 

and “Secondary Modality Missing”). The improvements are very large for StandU-Net 

models when the primary modality in a given experiment is missing (i.e., missing T2 in the 

T2-based MRI datasets and missing T1 in the T1-based MRI dataset).

When the complete data (both modalities are available, last two columns in Table 3) is input 

to the model, the ModAug strategy helps improve the segmentation accuracy of StandU-
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Net in the cross-validation experiments and even to a larger extent in the generalizability 

experiments (columns with “Both Modalities Present” in the top part of Table 3). However, 

DLF does not benefit from the ModAug strategy in both experiments when using complete 

data (last two columns of the bottom part of Table 3). Therefore, we include StandU-Net 

with ModAug and DLF without ModAug in Sections 3.1 and 3.2.

3.4 Ablation analysis of main DLF components

To investigate the contribution of the main DLF components (i.e., weighted voting subnet, 

fine-tuning subnet and atlas mask) to the segmentation accuracy within the cross-validation 

datasets, an ablation analysis is performed in the parameter tuning fold of each dataset 

(the one using the first fold as the validation fold and the rest as training folds). All the 

models are trained with the ModAug strategy to be consistent. As reported in Table 4, 

the fine-tuning subnet is the most important contributor to DLF, and the weighted voting 

subnet also makes a significant contribution. The atlas mask brings marginal improvement 

to the final segmentation in both Brain-3T-T2 and Lumbar-Healthy datasets but not in the 

Brain-3T-T1 dataset. Since this component benefits two out of three datasets, it is utilized in 

the final model.

In addition, we applied the models from the ablation experiments directly to the 

corresponding out-of-sample datasets (Brain-T2–7T and Lumbar-Disease) to investigate the 

importance of different DLF components to the generalizability of DLF. The results show 

that the generalizability of the individual fine-tuning subnet and weighted voting subnet 

is inferior to the DLF algorithm, indicating the effectiveness of the proposed two-stage 

network architecture (Table 5).

4 Discussion

In this paper, we propose deep label fusion, or DLF, a 3D end-to-end segmentation pipeline 

that combines multi-atlas segmentation and deep convolutional neural network. Experiments 

on five diverse datasets demonstrate that, compared to U-Net based and conventional 

label fusion algorithms, DLF matches the state-of-the-art segmentation accuracy in cross-

validation experiments while achieving significantly better generalizability in unseen data 

that have different image characteristics or comes from a different population.

4.1 DLF takes advantage of the high segmentation accuracy of DCNN-based methods

From the cross-validation experiments in Section 3.1, we can see that DLF outperforms 

conventional MAS methods by a large margin in segmenting MTL subregions. One potential 

reason may be because the U-Net architecture, both in the weighted voting subnet and the 

fine-tuning subnet, provides more flexibility to learn the optimal way in fusing the candidate 

segmentations. Also, the fact that the main improvements are located in the ERC/BA35/PHC 

boundaries and the anterior extent of the MTL cortex, highlighted by yellow arrows in 

Figure 3 indicates that the DCNN-based method is able to learn geometric rules better than 

conventional MAS methods, which are not aware of global shape.

Compared to the state-of-the-art DCNN-based method, the nnU-Net, DLF achieves 

comparably high segmentation accuracy when the test and training datasets match. However, 
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it may not be a fully fair comparison as the patch size of DLF is much smaller than 

that in nnU-Net (Table 1). Bigger patch size, i.e., larger special coverage, allows better 

awareness of global shape that is crucial in localizing subregion boundaries. Indeed, better 

localization of the anterior border of the TAIL (white arrows in Figure 3) and posterior 

extent of PHC in the Brain-3T-T2 dataset, which depends heavily on the location of the 

uncus that is not adjacent to these boundaries (Berron et al., 2017), can be better captured 

when using larger patch size. Limited by the fact that DLF requires more GPU memory 

to train and the limitation of GPU hardware, we are not able to set patch size the same 

as nnU-Net. Fair comparisons using the same patch size can be done in the future with 

the advancement of GPU technology. As an alternative, we evaluated the StandU-Net that 

has the same architecture of fine-tuning subnet and was trained with the same parameters 

as DLF, including the same patch size, for a fair comparison. The significantly better 

performance compared to the StandU-Net in all three datasets in Table 1 supports that 

incorporating MAS improves the performance of pure U-Net based methods.

4.2 DLF achieves better generalizability

Although DLF performs comparably well compared to nnU-Net tested on data with the 

same characteristics as the training data (cross-validation experiments), it generalizes 

significantly better to out-of-sample datasets (shown in Table 2). nnU-Net, on the other 

hand, is potentially overfitted to the training set and thus does a worse job when applied 

to datasets that have different intensity distributions (Brain-7T-T2) or from a different 

population (Lumbar-Disease). Surprisingly, its generalizability is even worse than the 

StandU-Net, which is less engineered compared to nnU-Net, indicating there may be 

a trade-off between in-sample accuracy and out-of-sample generalizability of the U-Net 

architecture. Using additional samples with manual segmentations, U-Net or similar DCNN 

methods can be fine-tuned to a specific dataset using few-shot learning (Snell et al., 2017). 

However, DLF maintains the good performance in unseen data without this additional step, 

which is desirable and may enable broader utility and impact. Nonetheless, if necessary, 

the few-shot learning strategy can also be incorporated with DLF to further improve 

generalizability, which will be interesting to explore in future studies.

The registration and weighted voting subnet, the two additional steps of DLF compared to 

StandU-Net (the fine-tuning subnet is the same as StandU-Net), could be the key to the 

“out-of-box” generalizability of DLF. These two components may serve as preprocessing 

steps to generate initial label probabilities maps that are more robust to the change of data 

characteristics potentially due to two reasons. First, the general-purpose registration is not 

trained on specific data distribution to align the atlases to the target. Second, with the per-

image random histogram augmentation, the weighted voting subnet is trained to be sensitive 

to atlas-target structural similarity rather than the appearance of the target image. It would be 

interesting to investigate in future studies whether the generalizability can be maintained if 

the conventional registration component in MAS is replaced by a learning-based deformable 

registration method (Balakrishnan et al., 2019). Interestingly, despite the importance of the 

two sub-networks, using them in isolation is not enough to achieve good generalizability 

as shown in Table 5. The ablation experiments indicate that all the components of the DLF 

network are crucial to the better generalizability performance.

Xie et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3 Modality augmentation improves robustness to missing data and interpretability to 
the contribution of each individual modality

The ModAug strategy improves the segmentation accuracy when one of the modalities is 

not available (either T1w MRI or T2w MRI) compared to that predicted by models trained 

without ModAug, indicating the models based its prediction on every single modality as 

much as possible rather than relying on some/all of them. Interestingly, this improvement 

is large for StandU-Net, which shows the importance of handling correlated features in the 

training. On the other hand, the improvement in missing data scenarios is consistent but a lot 

smaller when it comes to DLF, indicating DLF is more efficient in integrating information 

from multiple MRI modalities.

In addition to boosting the performance of StandU-Net when we have incomplete data, 

ModAug also improves the accuracy (in Brain-3T-T2 and in Brain-3T-T1 datasets) and 

generalizability (better performance in Brain-7T-T2) of StandU-Net when both modalities 

are available, probably due to more efficient learning multimodal information. However, 

DLF trained with ModAug performs almost the same with a slight decrease in accuracy 

when complete data is available in test time. The reason could be that DLF is already 

efficient in handling multimodal information and the simple ModAug strategy proposed in 

this study is not sufficient to further improve this performance. This may leave opportunity 

for improvement with more tailored designed algorithms to further make full use the 

multimodal data, such as meta-learning (Khandelwal and Yushkevich, 2020) and privileged 

knowledge distill (Chen et al., 2021) strategies.

ModAug also helps improve the interpretability of the relative contribution of individual 

modalities to the task of interests. For example, if we compare the StandU-Net results 

with only T2w MRI (primary modality missing, GDSC=6.1), only T1w MRI (secondary 

modality missing, GDSC=75.2) and both T1w and T2w MRIs (both modalities are present, 

GDSC=79.5) in Brain-3T-T2, one may conclude that T1w and T2w MRI can only contribute 

7.7% and 94.6% respectively to the segmentation. However, this is not accurate as can 

be seen in results trained with ModAug, T1w and T2w MRI can contribute up to 95.4% 

and 99.5% respectively. When trained without ModAug, the interpretation may be greatly 

influenced by initialization, training parameters and so on, resulting in uncertainty of 

interpretation. On the other hand, the design of the ModAug strategy forces the model 

to maximize information extracted from individual modalities, yielding more accurate and 

certain interpretations.

An important limitation of the ModAug analysis is that the performance with single 

modality reported in Table 3 only represents the situation where the other modality is 

missing in the model prediction stage of DLF. However, both modalities are used in 

the registration phase. Therefore, the DLF results with single modality should not be 

interpreted as the other modality being completely unavailable. Future work will investigate 

the performance of the proposed method when single modality is used in both registration 

and label fusion.
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4.4 Limitations

The proposed DLF technique has limitations. First, as in all MAS methods, registration 

quality greatly impacts the segmentation results with DLF. Therefore, DLF is not applicable 

to problems in which reasonable correspondence cannot be reliably established using 

deformable registration. The oracle experiment (Section 2.3.3) provides a good measure 

of whether DLF/MAS is suitable for a specific application. Second, processing time needed 

to train and test the DLF model is longer than standard U-Net or similar methods because 

it requires additional registration, patch sampling with atlases, and has a more complicated 

model. The registration speed can, in principle, be increased by incorporating learning-based 

registration methods, such as VoxelMorph (Balakrishnan et al., 2019) into the DLF model. 

However, it is possible that this approach would lower generalizability. Third, although 

DLF improves the segmentation accuracy in terms of DSC/GDSC and MSD, the clinical 

significance, such as whether the improvement results in better clinical disease diagnosis 

and so on, is not tested in this work. Future studies applying DLF to various applications to 

evaluate its clinical utility are necessary.

5 Conclusions

Deep Label Fusion (DLF) is a medical image segmentation approach that combines the 

strengths of deformable image registration, multi-atlas label fusion, and deep-learning 

based segmentation using the U-Net architecture. Across multiple challenging segmentation 

problems, DLF matches the segmentation accuracy of the state-of-the-art nnU-Net algorithm 

when the characteristics of training and test datasets are similar. However, achieves 

significantly better generalizability than nnU-Net and multiple other algorithms in datasets 

that have different characteristics from the training data. In addition, we demonstrate that a 

modality augmentation strategy applied during model training can improve the performance 

of DL-based methods, including DLF, in incomplete test data scenarios and boost the 

interpretability of the relative contributions of individual modalities. Future work will focus 

on increasing the speed of DLF by replacing conventional deformable registration with 

learning-based ones, further evaluating DLF in a greater variety of datasets to identify 

its strengths and limitations, more in-depth investigation on understanding the better 

generalization by looking at the learnt features in latent space and applying DLF to clinical 

populations to demonstrate its clinical significance. We hope that this publicly available 

software (github.com/LongXie/DeepLabelFusion) will serve the scientific community in 

advancing research of generalizability of learning-based methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations.

1

DCNN deep convolutional neural networks

MAS multi-atlas segmentation

DLF deep label fusion

CT computational tomography

MV majority voting

SVWV spatially varying weighted voting

JLF joint label fusion

CL corrective learning

Hippo hippocampus

AHippo/PHippo anterior/posterior hippocampus

CA1–3 cornu ammonis 1 to 3

DG dentate gyrus

SUB subiculum

TAIL the tail of hippocampus

ERC entorhinal cortex

BA35/36 Brodmann areas 35/36

PHC parahippocampal cortex

ModAug modality augmentation

w/ and w/o with and without

MTL medial temporal lobe

CS collateral sulcus

OTS occipitotemporal sulcus

MISC miscellaneous label

UPENN University of Pennsylvania

MPRAGE Magnetization Prepared RApid Gradient Echo

TSE turble spine echo

T1w T1-weighted
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T2w T2-weighted

DSC Dice similarity coefficient

GDSC generalized Dice similarity coefficient
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Highlights

• Deep label fusion is the first 3D end-to-end hybrid multi-atlas and deep 

learning method

• Similar accuracy to state-of-the-art nnU-Net in single-dataset cross-validation 

experiments

• Significantly improved generalizability on unseen datasets with different 

characteristics

• Novel augmentation strategy to account for missing data in multimodality 

applications
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Figure 1 (color figure). 
Example images and manual segmentations of the five datasets included in this study. 

Abbreviations: CT = computational tomography; AHippo/PHippo = anterior/posterior 

hippocampus; CA1–3 = cornu ammonis 1 to 3; dentate gyrus = DG; subiculum = SUB; 

TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 

35/36; PHC = parahippocampal cortex; CS = collateral sulcus; OTS = occipitotemporal 

sulcus; MISC = miscellaneous label.
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Figure 2 (color figure). 
Network architecture of the proposed deep label fusion network.
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Figure 3 (color figure). 
Visualization of mean spatial error distribution of all methods. Anatomical labels and mean 

error map of DLF are shown on the left. Difference in mean error maps between alternative 

methods and DLF are shown on the right with red or blue indicating the alternative methods 

having more or less mean errors respectively. Abbreviations: MV = majority voting; 

SVWV = spatially varying weighted voting; JLF+CL = joint label fusion plus corrective 

learning; DLF = deep label fusion; CT = computational tomography; AHippo/PHippo = 

anterior/posterior hippocampus; CA1–3 = cornu ammonis 1 to 3; dentate gyrus = DG; 
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subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 

= Brodmann areas 35/36; PHC = parahippocampal cortex; CS = collateral sulcus; OTS = 

occipitotemporal sulcus; MISC = miscellaneous label; MTL = medial temporal lobe; U-Net: 

StandU-Net..
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Figure 4 (color figure). 
Examples of typical segmentation errors (bottom section) compared to manual segmentation 

(Manual Seg, top section) of different algorithms of the T2-based MRI datasets (Brain-3T-

T2 and Brain-7T-T2). Example segmentations of all the methods can be found in 

Supplementary Figure S2. Abbreviations: MV = majority voting; SVWV = spatially varying 

weighted voting; JLF+CL = joint label fusion plus corrective learning; DLF = deep label 

fusion; CA1–3 = cornu ammonis 1 to 3; dentate gyrus = DG; subiculum = SUB; TAIL = the 

tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = 

parahippocampal cortex; U-Net: StandU-Net.
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Figure 5 (color figure). 
Examples of typical segmentation errors (bottom section) compared to manual segmentation 

(Manual Seg, top section) of the CT datasets (Lumbar-Healthy and Lumbar-Disease). 

Example segmentations of all the methods can be found in Supplementary Figure S3. 

Abbreviations: MV = majority voting; SVWV = spatially varying weighted voting; JLF+CL 

= joint label fusion plus corrective learning; DLF = deep label fusion.
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Table 1.

Mean (±standard deviation) Dice similarity coefficient (DSC) [or generalized DSC (GDSC) of all labels] and 

mean surface distance (MSD) between automatic and manual segmentations in cross-validation experiments. 

Volume of each label is provided for better interpretation of the DSC scores. For better interpretation, 

background color of each cell indicates the relative performance compared to the best (darkest red) and 

worst (darkest blue) performance in each row (the darker red/blue, the closer to the best/worst performance 

respectively, oracle experiment excluded).

Volume 
(cm3)

Oracle 
(10%) MV SVWV JLF+CL

StandU-
Net (w/ 

ModAug)
nnU-Net DLF (w/o 

ModAug)

Dice 
similarity 
coefficient

Brain-3T-T2 dataset

GDSC - 97.5±1.4 70.8±4.3* 75.8±3.8* 78.2±3.7* 80.1±3.7* 81.6±3.3 81.1± 3.4

Hippo 2.8±0.5 97.9±1.0 88.5±2.1* 91.5±1.2* 93.1±1.3* 93.4±1.1* 94.2±1.1* 93.9±1.0

CA1 0.7±0.1 97.5±1.5 68.4±6.0* 73.3±3.9* 75.8±4.2* 78.6±3.0 79.3±3.8 79.2±3.5

CA2 0.1±0.0 93.1±4.6 54.2±9.6* 61.3±7.4* 69.7±5.2* 72.3±3.5 74.1±4.8 72.6±4.6

CA3 0.2±0.0 96.6±1.8 63.5±5.2* 68.1±4.5* 71.8±3.3* 74.7±4.6* 76.3±3.7 76.5±4.4

DG 0.5±0.1 97.7±1.3 75.1±4.1* 79.9±2.8* 82.5±2.4* 82.5±1.7* 85.1±2.0* 83.8±2.1

SUB 1.0±0.2 98.8±1.8 75.2±7.7* 78.3±7.1* 80.4±7.2 78.2±7.2 80.9±6.5 79.3±7.7

TAIL 0.4±0.1 98.5±0.9 79.9±3.2* 81.8±3.0* 83.3±2.9* 84.2±2.2* 84.6±2.5 84.8±2.5

ERC 0.9±0.2 97.5±1.4 75.0±3.9* 78.6±3.7* 81.1±3.7* 84.6±4.0* 85.4±3.9 85.5±3.2

BA35 0.6±0.1 95.4±3.3 56.8±10.1* 64.4±9.4* 66.7±8.9* 72.8±9.6 73.7±8.5 74.0±6.6

BA36 1.7±0.6 98.3±1.0 68.7±6.4* 76.3±5.6* 78.5±5.1* 80.0±5.6* 82.0±5.6 81.7±5.3

PHC 0.6±0.2 96.1±6.9 67.8±9.1* 71.2±7.9* 75.1±7.9* 76.5±6.9 79.3±6.8* 77.0±7.1

Brain-3T-T1 dataset

GDSC - 98.8±0.5 80.8±2.8* 82.6±2.3* 83.6±2.3* 84.7±2.1* 86.0±2.0 86.1±1.8

Hippo 3.2±0.6 99.4±0.3 90.1±2.5* 91.9±1.5* 92.5±1.3* 91.6±2.2* 92.9±1.4 92.7±1.3

AHippo 1.6±0.4 99.5±0.3 89.6±3.1* 91.1±2.3* 91.8±2.1* 91.2±3.0* 92.0±1.9* 92.5±1.8

PHippo 1.5±0.2 99.3±0.4 87.2±2.7* 89.2±1.8* 90.0±1.7* 89.9±2.0* 90.8±1.6 90.8±1.4

ERC 0.5±0.1 98.3±1.1 73.3±4.2* 74.8±3.2* 75.9±3.6* 79.7±4.1* 80.6±3.3 81.2±3.0

BA35 0.5±0.1 97.4±2.0 66.2±9.0* 69.2±7.6* 70.6±7.1* 75.2±5.6* 75.8±6.5 76.2±5.9

BA36 1.8±0.3 98.7±0.9 74.7±5.0* 76.8±4.8* 78.1±4.3* 79.7±3.7* 81.8±3.8 81.8±3.4

PHC 0.9±0.2 98.3±1.5 78.0±3.8* 79.5±3.8* 80.2±4.0* 82.0±2.8* 84.4±3.2 83.8±2.8

Lumbar-Healthy dataset

Lumbar 269±64 99.6±0.3 86.9±2.7* 95.6±0.6* 96.0±1.9 91.1±8.0 97.1±0.8 96.4±0.9

Mean 
surface 
distance 

(mm)

Brain-3T-T2 dataset

Hippo 2.8±0.5 0.21±0.06 0.45±0.09* 0.35±0.04* 0.31±0.04* 0.29±0.04 0.27±0.04 0.28±0.03

CA1 0.7±0.1 0.13±0.06 0.71±0.15* 0.65±0.14* 0.59±0.14 0.56±0.12 0.56±0.13 0.56±0.14
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Volume 
(cm3)

Oracle 
(10%) MV SVWV JLF+CL

StandU-
Net (w/ 

ModAug)
nnU-Net DLF (w/o 

ModAug)

CA2 0.1±0.0 0.16±0.10 0.72±0.27* 0.61±0.23* 0.49±0.19 0.47±0.14 0.48±0.17 0.49±0.22

CA3 0.2±0.0 0.13±0.07 0.65±0.17* 0.58±0.15* 0.51±0.11 0.48±0.11 0.45±0.09 0.47±0.18

DG 0.5±0.1 0.13±0.07 0.60±0.12* 0.53±0.11 0.47±0.09 0.49±0.09 0.42±0.07* 0.49±0.12

SUB 1.0±0.2 0.09±0.09 0.78±0.24* 0.72±0.21 0.65±0.20 0.71±0.21 0.63±0.19 0.68±0.23

TAIL 0.4±0.1 0.10±0.05 0.52±0.09* 0.50±0.09* 0.48±0.09 0.46±0.08 0.47±0.07 0.45±0.07

ERC 0.9±0.2 0.18±0.10 0.85±0.23* 0.74±0.19* 0.68±0.20 0.55±0.19 0.56±0.22 0.54±0.21

BA35 0.6±0.1 0.23±0.14 1.17±0.28* 1.02±0.29* 0.95±0.31* 0.79±0.26 0.79±0.26 0.81±0.25

BA36 1.7±0.6 0.15±0.06 1.04±0.21* 0.90±0.20* 0.83±0.18* 0.79±0.17 0.74±0.24 0.74±0.19

PHC 0.6±0.2 0.19±0.24 0.99±0.36* 0.92±0.36 0.79±0.35 0.79±0.26 0.68±0.24* 0.81±0.34

Brain-3T-T1 dataset

Hippo 3.2±0.6 0.09±0.04 0.48±0.08* 0.38±0.04* 0.36±0.03 0.40±0.06* 0.34±0.03 0.35±0.04

AHippo 1.6±0.4 0.07±0.04 0.53±0.08* 0.43±0.06* 0.41±0.06* 0.41±0.07* 0.37±0.05 0.35±0.05

PHippo 1.5±0.2 0.08±0.04 0.50±0.10* 0.43±0.07* 0.41±0.06 0.41±0.07 0.38±0.06 0.39±0.06

ERC 0.5±0.1 0.11±0.04 0.66±0.14* 0.64±0.14* 0.62±0.12* 0.50±0.08 0.53±0.12 0.51±0.10

BA35 0.5±0.1 0.15±0.07 0.85±0.24* 0.79±0.20* 0.77±0.21* 0.63±0.16 0.64±0.17 0.63±0.18

BA36 1.8±0.3 0.12±0.07 0.95±0.24* 0.91±0.23* 0.86±0.21* 0.76±0.15* 0.72±0.17 0.71±0.16

PHC 0.9±0.2 0.13±0.07 0.65±0.18* 0.63±0.17* 0.62±0.19* 0.51±0.09* 0.47±0.12 0.48±0.09

Lumbar-Healthy dataset

Lumbar 269±64 0.19±0.11 1.69±0.44* 1.02±0.23* 0.84±0.24 1.34±0.42* 0.66±0.31 0.74±0.32

Note:

*:
p < 0.05 compared to DLF, tested with two-sided Wilcoxon signed rank test.

Hyper-parameters: SVWV: β = 0.05; JLF+CL: β = 2.0. The optimal patch size is 3×3×1 voxels for both SVWV and JLF+CL. The optimal 
search radius is 4×4×1 voxels for SVWV and 3×3×1 voxels for JLF+CL. The patch sizes of DLF and StandU-Net are 72×72×72 voxels 
for Brain-3T-T2 and Brain-3T-T1 and 104×104×104x voxels for Lumbar-Healthy. The patch sizes of nnU-net are 208×238×196 voxels for 
Brain-3T-T2, 205×196×189 voxels for Brain-3T-T1 and 178×289×200 voxels for Lumbar-Healthy, determined automatically by the nnU-Net 
package.

Abbreviations: MV = majority voting; SVWV = spatially varying weighted voting; JLF+CL = joint label fusion plus corrective learning; DLF = 
deep label fusion; Hippo = hippocampus; AHippo/PHippo = anterior/posterior hippocampus; CA1–3 = cornu ammonis 1 to 3; dentate gyrus = DG; 
subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = parahippocampal cortex; 
ModAug = modality augmentation; w/ and w/o = with and without.
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Table 2.

Mean (±standard deviation) Dice similarity coefficient (DSC) [or generalized DSC (GDSC) of all labels] 

and mean surface distance (MSD) between automatic and manual segmentations in experiments testing for 

generalizability. Volume of each label is provided for better interpretation of the DSC scores. For better 

interpretation, background color of each cell indicates the relative performance compared to the best (darkest 

red) and worst (darkest blue) performance in each row (the darker red/blue, the closer to the best/worst 

performance respectively, oracle experiment excluded).

Volume 
(cm3)

Oracle (10%) JLF + CL StandU-Net (w/ 
ModAug) nnU-Net DLF (w/o 

ModAug)

Dice similarity 
coefficient

Brain-7T-T2 dataset

GDSC - 95.2±2.0 68.6±4.8* 69.9±5.6* 57.5±9.4* 74.5±4.0

Hippo 2.7±0.4 96.9±1.4 89.3±1.9* 87.9±3.4* 79.1±10.6* 91.1±1.5

CA1 0.6±0.2 96.8±2.4 72.5±3.2* 70.8±5.4* 58.1±15.1* 77.2±3.0

CA2 0.1±0.0 92.1±4.8 60.5±7.2* 61.2±9.3* 45.3±23.6* 70.7±5.7

CA3 0.1±0.0 94.8±2.6 61.6±7.9* 61.0±7.7* 58.2±11.9* 70.9±5.2

DG 0.5±0.1 97.6±2.1 77.8±4.6* 75.5±4.9* 73.8±11.8* 81.6±2.4

SUB 1.0±0.1 96.4±3.7 77.0±5.3* 69.4±6.1* 49.7±17.8* 74.2±4.4

TAIL 0.5±0.2 97.1±1.7 79.5±2.8* 75.8±5.9* 67.9±8.5 * 80.8±3.3

ERC 0.7±0.1 96.2±1.7 72.6±6.4* 69.1±11.4* 69.9±10.6* 80.8±4.9

BA35 0.5±0.1 92.9±3.8 53.9±10.9* 62.0±8.3* 49.4±13.9* 66.6±8.6

BA36 1.4±0.4 92.4±3.8 57.1±11.6* 66.5±7.2 47.7±14.0* 66.4±9.5

PHC 0.5±0.2 95.8±3.8 67.5±9.3* 70.9±8.5* 65.7±11.5* 75.0±7.0

Lumbar-Disease dataset

Lumbar 394±84 96.9±1.4 83.1±4.1 79.7±5.4* 78.8±5.6* 83.9±4.6

Mean surface distance 
(mm)

Brain-7T-T2 dataset

Hippo 2.7±0.4 0.24±0.06 0.45±0.07* 0.48±0.12* 1.08±0.69* 0.37±0.06

CA1 0.6±0.2 0.14±0.06 0.62±0.07 0.71±0.15* 1.42±1.09* 0.60±0.11

CA2 0.1±0.0 0.16±0.07 0.55±0.10* 0.60±0.19* 1.82±1.93* 0.51±0.11

CA3 0.1±0.0 0.14±0.04 0.63±0.22* 0.65±0.17* 1.23±1.49* 0.51±0.09

DG 0.5±0.1 0.12±0.06 0.56±0.11 0.64±0.13* 0.88±0.80* 0.55±0.11

SUB 1.0±0.1 0.19±0.12 0.71±0.15* 0.90±0.24* 1.73±0.76* 0.78±0.14

TAIL 0.5±0.2 0.15±0.05 0.56±0.10 0.69±0.16* 1.08±0.58* 0.55±0.10

ERC 0.7±0.1 0.19±0.07 0.81±0.19* 0.82±0.31* 0.96±0.33* 0.57±0.18

BA35 0.5±0.1 0.29±0.12 1.19±0.35* 0.93±0.21 1.54±0.78* 0.90±0.23

BA36 1.4±0.4 0.33±0.12 1.33±0.37* 1.04±0.21 2.09±1.16* 1.05±0.24

PHC 0.5±0.2 0.20±0.14 0.94±0.39* 0.78±0.22 1.07±0.37* 0.76±0.25
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Volume 
(cm3)

Oracle (10%) JLF + CL StandU-Net (w/ 
ModAug) nnU-Net DLF (w/o 

ModAug)

Lumbar-Disease dataset

Lumbar 394±84 0.71±0.28 2.57±0.61* 2.16±0.33 3.39±0.82* 2.05±0.49

Note:

*:
p < 0.05 compared to DLF, tested with two-sided Wilcoxon signed rank test. Hyper-parameters and patch sizes are the same as that in Table 1.

Abbreviations: JLF+CL = joint label fusion plus corrective learning; DLF = deep label fusion; Hippo = hippocampus; CA1–3 = cornu ammonis 1 
to 3; dentate gyrus = DG; subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = 
parahippocampal cortex; ModAug = modality augmentation; w/ and w/o = with and without.
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Table 3.

Mean (±standard deviation) generalized Dice similarity coefficient (GDSC) of all gray matter labels in the 

MRI datasets between automatic and manual segmentations in experiments testing the effect of modality 

augmentation (ModAug) in standard U-Net (StandU-Net) and deep label fusion (DLF). Cells with better 

segmentation accuracy between models trained with and without ModAug in the same situation (applying 

to primary modality missing, secondary modality missing and both modalities present respectively) are 

highlighted with light red background. Supplementary Table S1 reports complete Dice similarity coefficient 

scores of individual labels.

StandU-Net

Test-time modalities Primary Modality Missing Secondary Modality Missing Both Modalities Present

w/ ModAug w/o ModAug w/ ModAug w/o ModAug w/ ModAug w/o ModAug

Brain-3T-T2 (cross-validation experiment)

GDSC 79.9±3.5 75.2±3.6 76.6±3.6 6.1±5.1 80.3±3.4 79.5±3.8

Brain-7T-T2 (generalizability experiment)

GDSC 56.8±11.8 51.3±14.2 56.4±7.3 0.0±0.0 67.2±4.6 66.1±8.6

Brain-3T-T1 (cross-validation experiment)

GDSC 83.7±2.7 37.4±13.5 81.7±2.7 2.5±1.2 84.7±2.1 84.7±2.2

DLF

Test-time modalities Primary Modality Missing Secondary Modality Missing Both Modalities Present

w/ ModAug w/o ModAug w/ ModAug w/o ModAug w/ ModAug w/o ModAug

Brain-3T-T2 (cross-validation experiment)

GDSC 80.7±3.5 80.1±3.4 78.6±3.5 74.9±4.1 80.9±3.6 81.1± 3.4

Brain-7T-T2 (generalizability experiment)

GDSC 66.4±4.5 64.9±4.7 71.5±3.9 71.2±4.0 71.4±3.9 71.8±3.7

Brain-3T-T1 (cross-validation experiment)

GDSC 85.6±1.9 85.0±2.3 85.2±1.7 84.0±2.5 85.9±1.7 86.1±1.8

Abbreviations: Hippo = hippocampus; AHippo/PHippo = anterior/posterior hippocampus; CA1–3 = cornu ammonis 1 to 3; dentate gyrus = DG; 
subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = parahippocampal cortex; 
w/ and w/o = with and without.
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Table 4.

Mean (±standard deviation) Dice similarity coefficient (DSC) [or generalized DSC (GDSC) of all labels] and 

mean surface distance (MSD) between automatic and manual segmentations of the ablation experiments in the 

training fold of cross-validation experiment. For better interpretation, background color of each cell indicates 

the relative performance compared to the best (darkest red) and darkest (most blue) performance in each row 

(the darker red/blue, the closer to the best/worst performance respectively).

w/o fine-tuning subnet w/o weighted voting subnet w/o atlas mask DLF

Dice similarity coefficient

Brain-3T-T2 dataset

GDSC 73.4±6.0 78.1±4.3 79.4±4.0 79.9±4.2

Hippo 88.0±4.0 93.9±1.1 94.0±1.1 93.9±1.1

CA1 67.4±8.1 76.9±4.7 75.9±4.5 75.8±4.9

CA2 56.0±17.4 74.2±3.4 72.1±4.9 72.8±5.2

CA3 66.8±8.2 75.1±4.6 75.6±5.1 76.5±5.4

DG 82.1±2.9 82.9±1.9 83.2±2.4 83.0±3.3

SUB 72.1±9.5 79.2±2.9 78.6±4.3 81.4±4.7

TAIL 80.7±2.9 83.4±3.0 82.7±2.8 83.1±3.1

ERC 78.4±4.4 84.7±3.6 85.9±3.0 85.4±4.0

BA35 65.6±12.9 72.9±9.2 74.7±10.2 74.4±8.6

BA36 70.8±11.2 74.5±7.8 80.7±5.6 80.4±5.2

PHC 69.5±9.8 72.9±9.0 70.4±8.6 73.8±8.8

Brain-3T-T1 dataset

GDSC 81.3±3.1 84.8±1.8 85.9±2.2 85.3±2.1

Hippo 90.2±2.5 92.7±0.7 92.8±0.9 92.5±0.9

AHippo 89.2±1.8 90.8±1.9 91.7±1.8 91.7±1.7

PHippo 84.8±4.7 89.3±2.1 89.2±2.1 89.2±2.2

ERC 77.1±4.3 78.7±1.3 81.2±2.6 80.7±2.5

BA35 73.3±3.6 74.8±2.9 76.8±3.8 75.9±3.9

BA36 74.1±5.9 81.5±3.6 82.5±2.9 81.6±2.9

PHC 80.8±3.0 82.2±1.6 84.2±3.0 82.6±3.2

Lumbar-Disease dataset

Lumbar 91.6±3.5 96.2±0.6 97.0±0.6 97.1±0.7

Mean surface distance (mm)

Brain-3T-T2 dataset

Hippo 0.46±0.11 0.27±0.03 0.29±0.03 0.28±0.03

CA1 0.78±0.24 0.65±0.15 0.68±0.15 0.67±0.16

CA2 0.72±0.31 0.51±0.07 0.57±0.12 0.55±0.14

CA3 0.50±0.11 0.49±0.08 0.53±0.08 0.46±0.13

DG 0.51±0.09 0.54±0.06 0.54±0.09 0.50±0.12

SUB 0.81±0.21 0.68±0.12 0.73±0.19 0.65±0.15

TAIL 0.63±0.14 0.56±0.12 0.59±0.11 0.56±0.11

ERC 0.67±0.14 0.47±0.11 0.47±0.12 0.49±0.15
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w/o fine-tuning subnet w/o weighted voting subnet w/o atlas mask DLF

BA35 0.96±0.39 0.81±0.26 0.77±0.32 0.77±0.25

BA36 0.99±0.32 0.97±0.29 0.76±0.19 0.76±0.20

PHC 0.93±0.30 0.94±0.30 1.00±0.26 0.92±0.28

Brain-3T-T1 dataset

Hippo 0.46±0.13 0.35±0.05 0.36±0.07 0.38±0.07

AHippo 0.54±0.11 0.46±0.09 0.42±0.09 0.42±0.08

PHippo 0.61±0.16 0.46±0.09 0.46±0.10 0.48±0.10

ERC 0.56±0.11 0.51±0.04 0.47±0.06 0.47±0.04

BA35 0.70±0.11 0.66±0.09 0.61±0.13 0.63±0.11

BA36 0.97±0.20 0.72±0.18 0.70±0.10 0.71±0.11

PHC 0.59±0.11 0.53±0.06 0.47±0.11 0.51±0.13

Lumbar-Disease dataset

Lumbar 1.66±0.09 0.96±0.04 0.63±0.02 0.47±0.09

Abbreviations: DLF = deep label fusion; Hippo = hippocampus; AHippo/PHippo = anterior/posterior hippocampus; CA1–3 = cornu ammonis 1 to 
3; dentate gyrus = DG; subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = 
parahippocampal cortex; w/ and w/o = with and without.
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Table 5.

Mean (±standard deviation) Dice similarity coefficient (DSC) [or generalized DSC (GDSC) of all labels] and 

mean surface distance (MSD) between automatic and manual segmentations of the ablation experiments in the 

unseen datasets, testing for generalizability. For better interpretation, background color of each cell indicates 

the relative performance compared to the best (darkest red) and worst (darkest blue) performance in each row 

(the darker red/blue, the closer to the best/worst performance respectively).

w/o fine-tuning subnet w/o weighted voting subnet w/o atlas mask DLF

Dice similarity coefficient

Brain-7T-T2 dataset

GDSC 61.3±6.9 61.4±10.5 70.7±3.8 71.2±4.3

Hippo 81.0±9.2 81.7±13.2 90.8±1.4 90.7±1.5

CA1 58.8±14.9 65.0±13.4 75.5±3.4 75.5±3.9

CA2 38.1±24.5 57.0±14.0 67.1±6.4 67.8±6.4

CA3 49.1±16.5 56.4±15.5 69.3±5.5 69.6±5.6

DG 67.2±18.4 70.3±15.0 80.9±2.0 80.6±2.6

SUB 71.9±6.7 67.8±9.7 72.0±5.4 73.4±5.7

TAIL 73.7±5.6 68.5±13.9 80.5±2.8 80.4±3.3

ERC 68.8±8.7 61.6±18.8 80.2±5.0 79.5±5.7

BA35 54.4±10.1 56.3±14.6 65.2±9.5 66.0±9.8

BA36 57.0±10.3 56.3±15.5 66.2±7.9 67.5±8.7

PHC 66.6±6.5 69.1±11.3 72.8±9.3 72.4±8.2

Lumbar-Healthy dataset

Lumbar 79.9±5.6 78.1±5.9 83.0±4.7 83.4±4.7

Mean surface distance (mm)

Brain-7T-T2 dataset

Hippo 0.65±0.26 0.70±0.58 0.38±0.06 0.38±0.06

CA1 0.91±0.38 1.16±1.36 0.63±0.11 0.61±0.09

CA2 1.73±1.91 0.88±0.87 0.56±0.14 0.54±0.13

CA3 1.17±0.93 1.05±1.13 0.55±0.11 0.54±0.11

DG 0.77±0.42 0.97±1.09 0.55±0.07 0.57±0.09

SUB 0.78±0.23 0.93±0.30 0.84±0.21 0.78±0.16

TAIL 0.69±0.12 0.94±0.67 0.57±0.09 0.57±0.09

ERC 0.82±0.20 1.13±0.88 0.61±0.18 0.60±0.19

BA35 1.10±0.28 1.15±0.68 0.95±0.27 0.94±0.28

BA36 1.31±0.33 1.38±0.69 1.09±0.21 1.05±0.22

PHC 0.92±0.28 0.78±0.26 0.83±0.31 0.87±0.32

Lumbar-Healthy dataset

Lumbar 2.63±0.46 2.44±0.37 2.16±0.50 2.12±0.50

Abbreviations: DLF = deep label fusion; Hippo = hippocampus; AHippo/PHippo = anterior/posterior hippocampus; CA1–3 = cornu ammonis 1 to 
3; dentate gyrus = DG; subiculum = SUB; TAIL = the tail of hippocampus; ERC = entorhinal cortex; BA35/36 = Brodmann areas 35/36; PHC = 
parahippocampal cortex; w/ and w/o = with and without.
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