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Abstract

Acute and chronic graft-versus-host disease (GVHD) continue to present a significant challenge to physicians, accounting for 
considerable haematopoietic stem cell transplant (HSCT)-related morbidity and mortality, particularly those patients with steroid-
refractory disease. 

In this review, we discuss recent advances in understanding the underlying pathophysiology, prevention and management of acute 
and chronic GVHD. Barriers to progress include the difficulty in obtaining high-quality evidence with sufficient patient numbers 
to identify optimal preventative and treatment strategies, with the heterogeneity of multiple patient, donor, graft and transplant-
related factors, in addition to limited availability of human tissue to study the underlying pathophysiology, particularly in steroid-
refractory disease. Continued collaborative efforts to improve our understanding of the pathophysiology involved, particularly in 
steroid-refractory disease, identification of biomarkers to permit risk stratification, and further well-designed randomised clinical 
trials are essential to help physicians determine optimal GVHD preventative and treatment strategies for each individual patient.
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Introduction
Despite significant advances in many areas of haematopoietic 
stem cell transplant (HSCT) over the last few decades, graft- 
versus-host disease (GVHD) continues to account for consid-
erable morbidity and mortality. Acute (aGVHD) and chronic 
(cGVHD) GVHD encompass two different entities with distinct  
underlying pathophysiologies. However, strategies to prevent 
and treat aGVHD and cGVHD often overlap. aGVHD typi-
cally manifests in the first 3 months post-HSCT as a character-
istic rash, secretory diarrhoea, cholestatic liver dysfunction or  
a combination of these. In addition to the skin, gastrointestinal 
tract and liver, targets in aGVHD include the thymus gland 
and endothelium; however, how to clinically stage/grade their 
involvement has not yet been established1,2. cGVHD typically  
manifests after HSCT and can affect almost any organ system. 
An overlap syndrome between the two is well recognised, as 
is late presentation of aGVHD. In this review, we discuss recent 
advances in understanding the underlying pathophysiology,  
prevention and management of aGVHD and cGVHD.

Pathophysiology
Multiple clinical risk factors for aGVHD, including donor- 
recipient human leukocyte antigen (HLA) disparity, older patient 
age, conditioning with total body irradiation or high-intensity  
chemotherapy, and female donor-to-male recipient, have been 
identified. The pathophysiology underlying aGVHD involves a 
sequential inflammatory cascade precipitated by initial inflam-
matory stimuli, including pre-transplant infection and chemo-  
and/or radio-therapy conditioning with subsequent activation of 
the immune system by damage-associated molecular patterns  
(DAMPs) and pathogen-associated molecular patterns (PAMPs) 
causing a ‘cytokine storm’ and providing an environment that 
promotes T-lymphocyte migration to sites of tissue damage,  
activation and proliferation. Alloreactive T-lymphocyte inter-
action with antigen-presenting cells (APCs) expressing host 
peptides leads to the initial activation of the T-lymphocyte 
(cell) receptor (TCR). In addition to cytokine stimulation and  
APC interaction, TCR co-stimulation is required; positive and 
negative co-stimulatory mediators studied in aGVHD models 
include CD28, ICOS, CD40L, CTLA4 and PD1/PD-L13.  
T-lymphocyte interaction with APCs and subsequent TCR stimu-
lation triggers the activation of tyrosine kinases and a series 
of intra-cytoplasmic events culminating in the activation of  
transcription factors, including NF-kB, NFAT and JNK, lead-
ing to T-lymphocyte activation and proliferation. This generates 
an effector T-lymphocyte response leading to tissue damage 
directly by cellular cytotoxicity and indirectly via the release of  
further pro-inflammatory mediators, including tumour necro-
sis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and inter-
leukin 1 (IL-1). Recent studies have investigated intrinsic players 
that attempt to counteract this inflammatory response, including 
the role of regulatory T-lymphocytes (Tregs), innate lymphoid 
cells and invariant natural killer T-lymphocytes (iNKTs)4–6,  
as well as identifying new areas involved in promoting the  
inflammatory response, including the NOTCH pathway, Janus 
kinase (JAK) signalling and Th17 cells7–9. Advances in under-
standing the role of these cell populations and pathways offer 
potential for clinical translation. The metabolomics employed  

in this dysregulated immune process has been the subject of 
recent investigation. Pathways shown to contribute to aGVHD 
include aerobic glycolysis, oxidative phosphorylation, glutami-
nolysis and fatty acid oxidation, and understanding these  
pathways may provide new therapeutic targets10. Involve-
ment of the gut microbiome in the pathogenesis of aGVHD has 
also been the subject of recent investigation. Gut dysbiosis is 
associated with an increased risk of aGVHD due to disrup-
tion of normal gut immune cells and reduction in bacteria which  
produce short-chain fatty acids, an important nutritional 
source for intestinal epithelial cells11. In addition, microbial 
metabolites play an important role in maintaining the integ-
rity of the epithelial barrier, and their deficiency contributes 
to epithelial leakiness, pathogen translocation and immune  
system activation12.

Previously, steroid-refractory aGVHD (SR-aGVHD) has been 
assumed to reflect continued T-lymphocyte alloreactivity unre-
strained by corticosteroids, but more recent studies suggest that 
specific pathophysiological mechanisms, including endothe-
lial dysfunction, impaired recipient tissue repair and immune 
tolerance responses, are at play13,14. Elevated endothelial stress  
markers observed in SR-aGVHD include angiopoietin-2, IL-8, 
soluble thrombomodulin and hepatocyte growth factor15,16.  
Novel transcriptomic findings include increased CHI3L1 and 
decreased AQP8 gene expression in the gut mucosa of patients 
with gastrointestinal SR-aGVHD13, and further studies are  
needed to understand the role of these genes.

The pathophysiology of cGVHD is less well understood.  
Contributing factors thought to be involved include thymic  
damage with disruption to central tolerance causing dysregulated 
T-lymphocyte development, along with dysregulated peripheral  
tolerance mechanisms, including dysregulated B-lymphocyte 
immunity, and chronic inflammation and tissue damage with 
aberrant tissue repair mechanisms (e.g., due to the release 
of growth factors such as transforming growth factor-beta  
[TGFβ] by macrophages leading to activated fibroblasts, collagen 
deposition and fibrosis).

Prevention of graft-versus-host disease
Calcineurin inhibitor (CNI)-based GVHD prophylaxis has been 
the longstanding standard of care in matched sibling and unre-
lated donor HSCT, in combination with either methotrexate  
(MTX) or mycophenolate mofetil (MMF) (Table 1). Previous 
studies have not demonstrated a significant superiority in combi-
nations of ciclosporin/tacrolimus (CSA/TAC) and MTX/MMF,  
although less toxicity is seen with MMF17,18. Sirolimus, a  
mammalian target of rapamycin (mTOR) inhibitor, is thought 
to target effector T-lymphocytes whilst sparing Tregs. A recent  
single-centre randomised control trial demonstrated that the  
addition of sirolimus to standard GVHD prophylaxis of CSA and 
MMF led to significantly reduced rates of grade 2 to 4 aGVHD, 
associated with improved overall survival and non-relapse mor-
tality but no difference in rates of cGVHD in non-myeloablative  
matched unrelated donor HSCT19. The absence of nephrotox-
icity in comparison with CNIs makes it an attractive option in  
patients with renal dysfunction, but there are concerns that 
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sirolimus may increase the risk of endothelial injury and associ-
ated thrombotic microangiopathy and veno-occlusive disease20.  
Abatacept, a recombinant CTLA4 fusion protein which inter-
feres with T-lymphocyte co-stimulatory signalling, in addition to 
standard CNI/MTX-based GVHD prophylaxis, has been shown 
to be safe and improve rates of aGVHD without increasing  
the risk of infection or relapse21. Similar success with adding 
abatacept to standard GVHD prophylaxis has been demon-
strated in other studies involving patients with non-malignant  
conditions22,23.

Prophylaxis with post-transplant cyclophosphamide (PTCy) 
has revolutionised the use of haploidentical HSCT in recent 
years. This strategy has demonstrated low rates of severe 
aGVHD and cGVHD in haploidentical HSCT with both reduced  
intensity24, and myeloablative conditioning25,26, and more recent 
studies have demonstrated its effectiveness in matched donor 
HSCT27,28. The mechanisms underlying PTCy continue to be 
investigated but are thought to involve suppression of prolifer-
ating alloreactive T-lymphocytes and deletion of intrathymic 
clonal alloreactive T-lymphocyte precursors whilst sparing  
Tregs29.

In vivo T-lymphocyte (cell) depletion (TCD) is another method 
of reducing GVHD risk, most commonly with anti-thymocyte  
globulin (ATG), a purified polyclonal immunoglobulin G frac-
tion harvested from sera collected from horses or rabbits immu-
nised with human thymocytes or T-lymphocyte lines. ATG has  
been shown in several prospective randomised trials to par-
ticularly reduce the incidence of cGVHD, although it does not  
confer improved survival in most studies and is associated with 
viral reactivation30–33. A better understanding of pharmacoki-
netics and utilisation of therapeutic drug monitoring to allow  
individualised dosing regimens, particularly for paediatric 
patients, presents a potential strategy to reduce GVHD risk 
whilst optimising immune reconstitution34. Alemtuzumab, an  

anti-CD52 monoclonal antibody, is a newer approach to 
in vivo TCD compared with ATG, and comparatively less  
evidence is available from prospective randomised trials. Its  
effectiveness in reducing GVHD has been demonstrated, but  
at the expense of increased infection and relapse risk35.

Graft engineering with different ex vivo methods of TCD has  
evolved significantly in recent years. Previous methods include 
CD34+-positive selection and CD3+/CD19+-negative selection. 
More recent advances include the successful use of HLA- 
mismatched grafts in which CD3+ T-lymphocytes bearing the  
TCRαβ receptor and CD19+ cells have been selectively removed, 
and TCRγδ receptor-bearing T-lymphocytes and natural 
killer (NK) cells have been preserved36–39. Other ex vivo TCD  
methods include removal of naïve T-lymphocytes from the 
graft whilst keeping memory T-lymphocytes, which was shown 
to reduce cGVHD (though not aGVHD) without impairing 
engraftment or increasing infection risk40, and CD34+ selection  
with an infusion of Tregs and conventional T-lymphocytes on 
day -4 and D0 of transplant respectively41. Another approach 
under investigation to exploit the potential benefit of Tregs  
in reducing GVHD is the use of iNKT cells, a population which 
expresses both T and NK cell markers and possesses immu-
nomodulatory effects via the production of IL-4 and IL-10  
and promotes Treg activation and expansion. A 2017 trial using 
a synthetic derivative of alpha-galactosylceramide, which binds 
to CD1 leading to iNKT cell activation and expansion, infused 
on day 0 was well tolerated and was associated with Treg 
expansion in a subset of patients who had a lower incidence  
of aGVHD42.

Management
Immunosuppression/immunomodulation
Corticosteroids remain the first-line treatment option for aGVHD, 
but only about 50% of patients will respond43. The group 
with non-responsive, progressive or corticosteroid-dependent  

Table 1. Summary graft-versus-host disease (GVHD) preventative strategies.

GVHD prophylaxis Outcome

Calcineurin inhibitor (CSA/TAC) plus MTX/MMF (standard 
GVHD prophylaxis) Reduces aGVHD and cGVHD

Addition of sirolimus to standard GVHD prophylaxis Reduces aGVHD but no difference in cGVHD 

Addition of abatacept to standard GVHD prophylaxis Reduces aGVHD

Post-transplant cyclophosphamide Reduces aGVHD and cGVHD

In vivo TCD using ATG Reduces aGVHD and cGVHD

In vivo TCD using alemtuzumab Reduces aGVHD and cGVHD (increased 
infection and relapse risk compared with ATG)

Ex vivo TCD - CD3+TCRαβ+/CD19+ lymphocyte removal Reduces aGVHD and cGVHD

Ex vivo TCD - removal of naïve T-lymphocytes Reduces cGVHD but not aGVHD

Ex vivo TCD - CD34+ selection with infusion of Tregs 
(regulatory T-lymphocytes) and conventional T-lymphocytes Reduces aGVHD and cGVHD

aGVHD, acute graft-versus-host disease; ATG, anti-thymocyte globulin; cGVHD, chronic graft-versus-host disease; CSA, 
ciclosporin; MMF, mycophenolate mofetil; MTX, methotrexate; TAC, tacrolimus; TCD, T-cell depletion.
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disease is particularly associated with a poor prognosis44,45. 
The underlying pathophysiology of steroid-refractory GVHD 
(SR-GVHD) is complex and incompletely understood but may 
involve a less important ongoing role of donor alloreactive  
T-lymphocytes than in the initiation of aGVHD14. Interfer-
ence of corticosteroids with Treg-mediated peripheral tolerance, 
especially when used in combination with agents that disrupt  
IL-2 pathways46,47 and the negative impact of corticosteroids on 
tissue repair and regeneration leading to ongoing mucosal barrier 
dysfunction and alterations in the intestinal microbiome11,  
may be more critical. Corticosteroids, along with aGVHD-related 
thymic damage, impair thymopoiesis, disrupting normal 
thymic function and delaying the restoration of adaptive  
T-lymphocyte immunity48.

An increasing number of therapeutic options have been inves-
tigated for patients with SR-GVHD, although no clear front-
runner has emerged. Extracorporeal photopheresis (ECP) is an  
apheresis-based therapy involving exposure of mononuclear 
blood cells to 8-methoxypsoralen and ultraviolet-A radiation, 
followed by re-infusion of photoactivated cells into the patient. 
There are no systemic immunosuppressive effects, and ECP  
facilitates weaning of immunosuppressive medications49; there-
fore, ECP does not increase infection or disease relapse risk. 
The mechanisms behind ECP have not yet been fully elucidated; 
it is thought that the ECP procedure induces preferential apop-
tosis of alloreactive T-lymphocytes, and uptake of apoptotic  
antigen by APCs precedes multiple processes leading to increased 
immune tolerance involving dendritic cells, Tregs and changes 
in cytokine profiles. A small number of ECP-responding patients 
were shown to display a distinct T-lymphocyte transcriptomic 
signature with decreased expression of genes important in  
T-lymphocyte activation, including ERRα and GαS signal-
ling pathways50. Recent studies have also reported the possible  
contribution of immunomodulatory NK cells to the mechanisms 
behind ECP51,52. Confirmation of these findings in additional 
patients is needed. ECP has repeatedly demonstrated safety and 
efficacy in SR-aGVHD/cGVHD49,53,54 but has often been utilised  
late in the disease course, and data are limited mainly to small 
non-randomised studies55. A multi-centre phase 3 trial involv-
ing paediatric patients with SR-aGVHD demonstrated an overall  
response rate of 55% at day 28, increasing to 79% by week 
1256. Previous studies suggested better outcomes with earlier  
adoption of ECP54, and this was observed in a recent phase 2 
randomised trial where aGVHD patients who received upfront 
ECP alongside corticosteroids were more likely to respond  
compared with those receiving corticosteroids alone,  
particularly for skin-only aGVHD57. However, use of ECP as 
part of GVHD prophylaxis did not show a benefit in another  
randomised trial58.

Mesenchymal stem cells (MSCs) are another type of cellu-
lar therapy with immunomodulatory effects through a diverse 
range of actions used in both the prevention and treatment of  
GVHD59. Recent meta-analyses evaluating both prevention 
and treatment of GVHD with MSCs suggest that they may 
reduce the incidence of cGVHD but not aGVHD. Some studies 

have shown that MSCs are effective in aGVHD treatment, but  
the quality of available evidence is low60,61. Studies do indi-
cate that MSCs are safe and well tolerated. There are ongoing 
questions regarding the optimal timing of MSC infusion, and 
more robust data in the form of well-designed clinical trials are  
required to confirm their efficacy.

JAK signalling plays an integral role in the pathogenesis of 
aGVHD, including the production of inflammatory cytokines 
leading to activation of APCs and subsequent activation and  
migration of alloreactive T-lymphocytes. The use of ruxolitinib, 
a JAK1/2 inhibitor, demonstrated an overall response rate 
of 62% in patients with SR-aGVHD in the REACH2 trial, a  
multi-centre randomised trial comparing ruxolitinib with the 
best available therapy62. Side effects include cytopaenias and 
increased infection risk, but there does not appear to be a  
negative impact on the graft-versus-leukaemia effect9. In the 
REACH3 randomised trial evaluating ruxolitinib compared 
with best available therapy for SR-cGVHD, the 6-month over-
all response rate was superior in the ruxolitinib group (49.7%  
vs. 25.6%), although complete response rates were low in both 
groups (6.7% vs. 3.0% respectively), highlighting the difficulty 
in successfully treating these conditions63. Other early prom-
ising data are emerging on selective targeting of JAK1 with  
itacitinib64 and inhibition of spleen tyrosine kinase65.

Evidence implicating the role of dysregulated B-lymphocyte 
immunity in cGVHD has prompted the development of  
B-lymphocyte-directed therapies such as the anti-CD20  
monoclonal antibody rituximab, which has shown efficacy in  
corticosteroid-refractory disease66 and as first-line therapy67. 
Tyrosine kinase inhibitors (TKIs) are another group of emerging 
therapies in cGVHD. Ibrutinib is a TKI with inhibitory effects 
on Bruton’s tyrosine kinase and interleukin-2 inducible T-cell 
kinase (ITK), consequently blocking B- and T-lymphocyte  
signalling and activation, respectively, and significant promise 
has been observed in preclinical studies68,69. Initial clinical data 
include a study in which 71% of patients demonstrated a sustained 
response at a median follow-up of 13.9 months70. Further clinical  
studies include the iNTEGRATE phase 3 clinical trial inves-
tigating upfront ibrutinib in combination with corticosteroids 
in moderate to severe cGVHD (ClinicalTrials.gov identifier:  
NCT02959944) and an ongoing clinical trial investigating  
ibrutinib as a first-line solo therapy in cGVHD (ClinicalTrials.gov 
identifier: NCT04294641).

Other new strategies for cGVHD include targeting the ROCK2  
(rho-associated coiled-coil–containing protein kinase-2) signal-
ling pathway, which regulates Th17/regulatory T-lymphocytes. 
Inhibition of ROCK2 signalling reduces Th17 lymphocytes, 
promotes Tregs and has an anti-fibrotic effect71. In a phase 2  
clinical trial, belumosudil, an oral ROCK2 inhibitor, demon-
strated an overall response rate of 62% to 69% depending on 
the dose used, was associated with improved quality of life and 
weaning of corticosteroids and was well tolerated72. Another 
randomised multi-centre trial demonstrated an overall response 
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rate of 77%, a sustained (median of 54 weeks) response, and  
improvement in all organ systems affected73.

Novel approaches on the horizon for managing SR-GVHD 
include a combination of anti-CD3 and anti-CD7 antibodies  
conjugated to recombinant ricin A, which induces in vivo T- 
and NK cell depletion and suppresses T-lymphocyte receptor  
activation. A phase 1/2 trial involving 20 patients with SR-
aGVHD demonstrated a day 28 overall response rate of 60% and a  
complete response rate of 50%74, and further investigation in a 
phase 3 trial is in progress (CTN 1802). Other new T-lymphocyte-
directed therapies include brentuximab vedotin (targeting CD30 
expression on activated CD8+ T-lymphocytes in aGVHD)75 and 
vedolizumab (anti-α4β7 integrin that inhibits T-lymphocyte  
migration)76. CD6 is predominantly expressed on T-lymphocytes 
and binds to activated leukocyte cell adhesion molecule  
(ALCAM) expressed on APCs and various host tissues and 
plays an integral role in T-lymphocyte activation, prolifera-
tion, differentiation and migration. A phase 1/2 clinical trial  
(ClinicalTrials.gov identifier: NCT03763318) is evaluating  
itolizumab, a humanized anti-CD6 monoclonal antibody, as  
first-line treatment for aGVHD alongside corticosteroids.  
Finally, another novel intervention for GVHD undergoing  
investigation is faecal transplantation. Disruption of the intestinal 
microbiome is associated with an increased risk of aGVHD, 
and restoration of the gut with normal diverse gut flora has been  
shown to be safe and effective in gastrointestinal SR-aGVHD in 
some early studies77–79.

Tissue protection/regeneration
Based on recent studies suggesting impaired tissue repair 
mechanisms in SR-aGVHD, alternative approaches in develop-
ment target tissue protection and promote recovery following  
insult. Alpha-1 antitrypsin is a protease inhibitor that protects 
tissues from proteolytic degradation but, in aGVHD murine 
models, has also been shown to reduce pro-inflammatory 
cytokines and increase Tregs and, in a clinical trial, was demon-
strated to be safe and effective in SR-aGVHD (overall response  
rate of 65% at day 28) and have low rates of infection80. Other 
tissue-supportive strategies include epidermal growth factor 
derived from urinary-derived human chorionic gonadotropin81,  
lithium82, glucagon-like-peptide-283 and interleukin-2284.

Risk-adapted approach and biomarkers
A challenge to physicians is predicting the trajectory of the 
GVHD course to allow a risk-stratified management approach  
and pre-emptive therapy for individual patients to improve out-
comes. This would allow the reduction of treatment in those 
with mild disease to lessen the risk of treatment-associated  
adverse effects and early intensification of treatment in patients 
projected to have high-risk disease. A risk-adapted approach 

can utilise clinical factors such as the Minnesota Risk Score  
for aGVHD85 and the Hematopoietic Cell Transplantation-
specific Comorbidity Index (HCT-CI)86 or blood biomarkers. 
Identification of reliable biomarkers in aGVHD and cGVHD  
would be instrumental in allowing risk stratification. Many can-
didate biomarkers have been investigated to date, but at present, 
none is widely used in clinical practice, and this is due mainly 
to a lack of validation in large prospective clinical trials87.  
Promising biomarkers evaluated in recent studies include sup-
pressor of tumorigenicity-2 (ST2) and regenerating islet-derived 
protein 3-α (REG3α) in aGVHD88,89. The Mount Sinai Acute  
GVHD International Consortium (MAGIC) algorithm uses 
these two biomarkers to predict mortality in aGVHD and has 
the potential to implement early risk-stratified therapies90. Read-
ily available markers indicating endothelial injury (lactate  
dehydrogenase, serum creatinine and platelet count) have shown 
promise in predicting GVHD outcomes (Endothelial Activation 
and Stress Index, EASIX)91. Serum albumin at GVHD onset 
has been shown to identify those with severe disease as well as  
correlate with prognosis in those with SR-aGVHD92,93. Amphireg-
ulin, an epidermal growth factor receptor ligand, has also been 
used to stratify patients into high-risk subgroups in aGVHD94.  
Promising biomarkers in cGVHD include CXCL9, CXCL10, 
sBAFF, ST2 MMP3, osteopontin, CD163, IL-17A and  
IL-2195. Significant morbidity and mortality are associated with 
long-term high-dose corticosteroids, and future biomarker- 
guided clinical trials must aim to substitute or reduce corticos-
teroids by, for example, identifying those who would benefit 
from alternative upfront therapies or patients who would  
tolerate a rapid corticosteroid tapering approach.

Summary
Despite significant advances, aGVHD and cGVHD continue to 
be significant challenges and causes of HSCT-related morbidity 
and mortality, particularly for patients with corticosteroid- 
refractory disease. Even when GVHD is controlled by  
corticosteroids, many patients have adverse side effects and die  
from infections related to immunosuppression. Barriers to pro-
gression in managing patients with SR-GVHD include the 
inability to accurately risk-stratify, an incomplete understand-
ing of the pathophysiology behind corticosteroid resistance, a  
deficiency of high-quality evidence to determine optimal treat-
ment strategies, and the difficulties in comparing strategies 
because of heterogeneity in many factors, including patients,  
donors and conditioning regimens. Ongoing efforts to improve 
our understanding of GVHD pathophysiology, development 
of targeted therapies, further prospective randomised trials 
to provide more robust data and validated biomarkers, and  
collaboration between centres will help to inform physicians 
of optimal GVHD prophylactic and therapeutic strategies and 
ultimately allow an individualised precision-prevention and  
treatment approach.
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