
Liu et al. Human Genomics           (2023) 17:22  
https://doi.org/10.1186/s40246-023-00469-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Human Genomics

Comprehensive analysis 
of cuproptosis‑related long noncoding RNA 
for predicting prognostic and diagnostic 
value and immune landscape in colorectal 
adenocarcinoma
Shichao Liu1,2, Shoucai Zhang1,2, Yingjie Liu1,3, XiaoRong Yang4 and Guixi Zheng1,3* 

Abstract 

Background  Cuproptosis, as a copper-induced mitochondrial cell death, has attracted extensive attention recently, 
especially in cancer. Although some key regulatory genes have been identified in cuproptosis, the related lncR-
NAs have not been further studied. Exploring the prognostic and diagnostic value of cuproptosis-related lncRNAs 
(CRLs) in colon adenocarcinoma and providing guidance for individualized immunotherapy for patients are of great 
significance.

Results  A total of 2003 lncRNAs were correlated with cuproptosis genes and considered as CRLs. We screened 33 
survival-associated CRLs and established a prognostic signature base on 7 CRLs in the training group. The patients in 
the low-risk group had better outcomes in both training group (P < 0.001) and test group (P = 0.016). More exciting, 
our model showed good prognosis prediction in both stage I–II (P = 0.020) and stage III–IV (P = 0.001). The nomogram 
model could further improve the accuracy of prognosis prediction. Interestingly, glucose-related metabolic pathways, 
which were closely related to cuproptosis, were enriched in the low-risk group. Meanwhile, the immune infiltration 
scores were lower in the high-risk group. The high-risk group was more sensitive to OSI.906 and ABT.888, while low-
risk group was more sensitive to Sorafenib. Three lncRNAs, FALEC, AC083967.1 and AC010997.4, were highly expressed 
in serum of COAD patients, and the AUC was 0.772, 0.726 and 0.714, respectively, indicating their valuable diagnostic 
value.

Conclusions  Our research constructed a prognostic signature based on 7 CRLs and found three promising diagnos-
tic markers for COAD patients. Our results provided a reference to the personalized immunotherapy strategies.
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Introduction
As one of the most common malignancies, colorec-
tal cancer (CRC) is the second leading cause of cancer-
related death [1]. According to the analysis of global 
cancer statistics in 2020, there were 1.9 million new 
cases and 935,000 deaths of CRC, accounting for about 
one-tenth of all malignant tumors [2]. CRC includes 
colon cancer (CC) and rectal cancer (RC), among which 
colorectal adenocarcinoma (COAD) is the main type. 
In addition to surgery, targeted therapy, chemotherapy 
and immunotherapy are common treatments for COAD, 
and approximately two-thirds of patients with stage III 
that receive adjuvant chemotherapy can reduce the risk 
of recurrence [3]. In recent years, targeted therapy and 
immunotherapy for COAD have also made great pro-
gress [4–9]. Therefore, it is particularly important to 
provide viable biomarkers for prognosis prediction and 
personalized treatment for COAD patients.

Cuproptosis, a novel cell death type, which is caused 
by the accumulation of intracellular copper triggering 
the aggregation of mitochondrial lipoylated proteins and 
the destabilization of Fe–S cluster proteins [10]. Because 
mitochondria are the main place of glycolysis, which 
is very important for the proliferation of cancer cells. 
Therefore, the malignant potential of tumor cells can 
be reduced by regulating cuproptosis to inhibit glucose 
metabolism [11]. Besides, the therapeutic effect of copper 
and its complex has also been confirmed in cancer [12–
14], which includes inducing autophagic cell death by 
targeting ULK1 in colorectal cancer [15], causing immu-
nogenic cell death of breast cancer stem cells [16] and 
leading to caspase-independent cell death about diffuse 
large B cell lymphoma [17]. Thus, it may be meaningful to 
explore the impact of cuproptosis on tumor microenvi-
ronment (TME) and cancer therapy.

Long noncoding RNAs (lncRNAs) with transcription 
length of more than 200 nucleotides are transcribed by 
RNA polymerase II [18]. Although there is no potential 
to encode proteins, lncRNAs play vital roles in tumo-
rigenesis and metastasis through gene transcription and 
post transcriptional modification [19–21]. LncRNAs 
are considered as promising biomarkers for early-stage 
detection, diagnosis, prognosis and prediction of drug 
therapy response in cancers [22, 23], such as lung cancer 
[24], gastric cancer [25], liver cancer [26], breast cancer 
[27], colorectal cancer [28] and so on. In addition, stud-
ies have shown that the extraction of lncRNAs is related 
to glucose metabolism tumors [29]. However, whether 
cuproptosis-related lncRNAs (CRLs) play important 
roles in COAD has not been explored.

In our study, we analyzed the expression of 18 cuprop-
tosis-related genes (CRGs) to screen the related lncR-
NAs. The differentially expressed CRLs between COAD 

tumors and normal tissues were analyzed. All samples 
were randomly divided into training and test groups at 
the ratio of 7:3. By univariate Cox regression analysis, 
33 survival-associated CRLs were identified in training 
group. Following, we enrolled 7 CRLs to establish a prog-
nostic model by multivariate Cox regression analysis. 
The COAD patients were divided into high-risk and low-
risk groups according to risk score. The Kaplan–Meier 
(K–M) survival curves of training and test groups both 
showed the low-risk group had better outcomes. The 1-, 
2-, 3-year ROC curves also verified its accuracy of prog-
nostic prediction. Besides, we constructed a nomogram 
model based on independent risk factors, including risk 
score, age and T stage which had more excellent prog-
nosis prediction ability. We also performed functional 
enrichment analysis of high-risk and low-risk groups by 
Gene Set Enrichment Analysis (GSEA) software. The cor-
relation of risk score with clinical parameters was also 
analyzed. Furthermore, the differences of immune cells 
scores, immune functions scores, immune checkpoints 
and drug treatment response between two risk groups 
were explored. Finally, we explored the diagnostic value 
of CRLs in serum. Our results provided a promising 
direction for the study of cuproptosis-related lncRNAs in 
COAD and contributed to the development of personal-
ized immunotherapy for COAD patients.

Materials and methods
Data acquisition and analysis
The transcriptomic data of 473 COAD tumors and 41 
normal samples were downloaded from the TCGA data-
base [30]. Then, we separated the expression of 14,056 
lncRNAs and 19,573 mRNAs in COAD samples by 
Strawberry Perl. The clinical information of 421 COAD 
patients was also obtained from TCGA database after 
excluding samples with short-term survival (less than 
30  days) or missing follow-up days (Table  1). By data 
merging, 417 COAD patients were finally included in 
the present analysis. We collected 18 cuproptosis-related 
mRNAs from previous literature [31–36], including 
FDX1, DLD, PDHA1, PDHB, MTF1, GLS, CDKN2A, 
DLAT, LIAS, LIPT1, LIPT2, ATP7A, ATP7B, SLC31A1, 
SLC31A2, DLST, NFE2L2, NLRP3 and extracted 
the expression of those CRGs from COAD samples 
accordingly.

Serum of 150 COAD patients and 135 healthy controls 
was collected. The diagnosis of COAD patients was con-
firmed by histopathology or biopsy and recruited from 
the Department of General Surgery, Qilu Hospital of 
Shandong University, from April 2018 to October 2020. 
The healthy controls were enrolled from the Depart-
ment of Physical Examination Center, Qilu Hospital of 
Shandong University. Serum samples were separated by 
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centrifugation at 6000 g for 10 min followed by another 
centrifugation at 12,000  g for 10  min and then stored 
at − 80 °C for further analysis.

Identification of differentially expressed 
cuproptosis‑related LncRNAs
After the Pearson correlation algorithm with the filter of 
|coefficient|> 0.3 and P < 0.001, we selected lncRNAs that 
were related with cuproptosis genes and considered as 
CRLs. Next, we identified differentially expressed lncR-
NAs (|Log2 fold change (FC)|> 1, false discovery rate 
(FDR) < 0.05) in COAD tumor tissues comparing with 
normal tissue using differential analysis by R package 
“limma” [37].

Establishment and evaluation of CRLs prognostic signature
After the COAD patients were randomly divided into 
training and test groups, we first performed univariate 
Cox analysis (P < 0.01) to screen CRLs associated with 
prognosis. Next, we established a prognostic signature 
by multivariate Cox regression analysis in the train-
ing group. Hence, the risk score of each COAD patient 
could be calculated according to the coefficient and CRLs 

expression in our prognostic signature. And the COAD 
patients were divided into the high-risk and low-risk 
groups by the median value of the risk score.

We used the Kaplan–Meier (K–M) and receiver operat-
ing characteristic (ROC) curves to evaluate the value of 
the prognostic signature in both training and test groups 
by R packages “survival,” “survminer” and “timeROC” 
[38]. Besides, the relationship between the risk score and 
prognosis of COAD patients was also displayed by heat-
map jointly, risk score curve, and survival status diagram. 
Moreover, whether the risk score was related with clinical 
parameters was also examined.

Independent prognostic analysis and development 
of nomogram model
The univariate and multivariate Cox regression analyses 
were performed to identify the independent risk factors 
of COAD, including risk score and clinical characteris-
tics. Subsequently, the nomogram model was constructed 
based on independent risk factors using the R package 
“rms.” Then, we used calibration curves to estimate the 
prediction power of the model.

Gene enrichment analysis by GSEA
To identify pathway enrichment in two risk groups, 
we used GSEA software (4.2.2) to perform the enrich-
ment analysis of the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (c2.cp.kegg.v7.5.1.symbols.gmt) [39]. 
The random sample permutation number was set as 
1,000, and the significance threshold was P < 0.05.

Immune infiltration analysis by single sample gene set 
enrichment analysis (ssGSEA)
The enrichment score of infiltration estimation and 
immune function of different immune cells between two 
risk groups was compared using ssGSEA analysis [40] by 
R packages “GSVA,” “GSEABase” and “Limma.” So, we 
could easily explore the association between risk score, 
immune infiltration and immune function. And the sig-
nificance threshold was FDR < 0.05.

The value of risk score in predicting response of patients 
to immunotherapy and chemotherapy
We also analyzed the differential expression of 47 
immune checkpoint genes, including IDO1, LAG3, 
CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2, TIGIT, 
CD70, TNFSF9, ICOSLG, KIR3DL1, CD86, PDCD1 
(PD1), LAIR1, TNFRSF8, TNFSF15, TNFRSF14, 
IDO2, CD276, CD40, TNFRSF4, TNFSF14, HHLA2, 
CD244, CD274 (PD-L1), HAVCR2, CD27, BTLA, 
LGALS9, TMIGD2, CD28, CD48, TNFRSF25, CD40LG, 
ADORA2A, VTCN1, CD160, CD44, TNFSF18, 
TNFRSF18, BTNL2, C10orf54, CD200R1, TNFSF4, 

Table 1  The clinical characteristics of COAD patients

Characteristics Samples Percent (%)

Gender Female 179 45.3

Male 216 54.7

Age  ≤ 60y 119 30.1

 > 60y 276 69.9

Clinical stages Stage I 67 17

Stage II 153 38.7

Stage III 113 28.6

Stage IV 51 12.9

Unknown 11 2.8

T stages T0/Tis 1 0.3

T1 9 2.3

T2 68 17.2

T3 269 68.1

T4 48 12.2

N stages N0 233 59

N1 95 24

N2 67 17

M stages M0 297 75.2

M1 51 12.9

Unknown 47 11.9

Survival status Alive 323 81.8

Dead 72 18.2

Treatment or therapy Yes 67 17

No 296 74.9

Unknown 32 8.1
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CD200, NRP1 between two risk groups. Besides, we col-
lected 15 commonly used drugs for the clinical treat-
ment of gastrointestinal tumors, including Epothilone B, 
Sorafenib, Cisplatin, Doxorubicin, Etoposide, Imatinib, 
Lapatinib, OSI.906, PHA.665752, ABT.888, Camp-
tothecin, Docetaxel, Mitomycin C, Paclitaxel, and Suni-
tinib. The half-maximal inhibitory concentration (IC50) 
of drugs was used to evaluate the therapy response of 
patients in two risk groups by R package “pRRophetic.” 
The significance threshold of all the above analyses 
results was P < 0.05 except for the multiple hypothesis 
test which used FDR to adjust.

RNA extraction and RT‑qPCR
The total RNA was extracted from serum samples using 
TRIzol LS Reagent (Invitrogen, Eugene, OR, USA). The 
concentration of RNA was measured using a NanoDrop 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA). RNA was reverse transcription into cDNA 
using SureScript RTase Mix and RT Reaction Buffer, and 
qPCR was performed using Blaze Taq qPCR Mix (Gene-
Copoeia, Guangzhou, China). The relative expression of 
target lncRNAs was normalized to the glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and calculated 
2 − ΔΔCt. The primer sequences are shown in Additional 
file 1: Table S1.

Results
Identification of CRLs and differentially expressed CRLs 
in COAD
A total of 2003 lncRNAs were identified as CRLs accord-
ing to the filters mentioned in the method section (Addi-
tional file 2: Table S2). The correlationship between CRGs 
and lncRNAs in COAD is shown in Additional file  3: 
Fig. S1. Then, the differential expression of CRLs between 
473 COAD tumor and 41 normal tissues was compared 
and 1042 differentially expressed CRLs were obtained 
as shown in volcano plot (Fig.  1A, Additional file  4: 
Table S3). The top 100 CRLs were displayed by heatmap 
which could successfully separate tumor and non-tumor 
tissues (Fig. 1B).

Establishment of the prognostic signature based on CRLs
We obtained 33 prognosis-related CRLs as shown in 
Additional file 5: Table S4. The Sankey diagram of CRGs 
and CRLs was plotted to display their correlationship in 
Fig.  1C. Then, we selected 7 CRLs to construct a prog-
nostic signature by multivariate Cox regression analysis. 
The risk score was derived as follows: risk score = (1.817 
× AC010997.4) + (0.727 × AP003555.1) + (1.03 × FALEC
) + (0.908 × AC083967.1) + (0.822 × AC005841.1) + (1.36
6 × AP001619.1)—(0.767 × ZKSCAN2-DT). The patients 
were divided into high-risk and low-risk groups based on 

Fig. 1  CRLs in COAD patients. A The volcano plot of CRLs, in which the red dots indicated upregulated lncRNAs in COAD tumors, the green dots 
indicated down-regulated lncRNAs, and black dots indicated lncRNAs that were no significant difference. B The heatmap of top 100 differentially 
expressed CRLs. C The Sankey diagram displayed the regulation of CRGs and CRLs
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the median risk score. K–M curve showed that patients in 
the low-risk group had better outcomes than those in the 
high-risk group in both training and test groups (P < 0.05, 
Fig.  2A, B). Figure  2C–H illustrates the heatmap of the 
prognostic signature, distribution of risk score and sur-
vival status diagrams, respectively. The 1-, 2-, and 3-year 
AUC of the ROC curves in the training group was 0.73, 
0.737, and 0.761, and that in the test group was 0.707, 
0.775, and 0.766, respectively (Fig.  3A, B). The above 
results implied that the risk score performed well in pre-
dicting the prognosis of COAD patients. Besides, we also 
noticed that there was significant difference in both stage 
I–II (P = 0.002) and stage III–IV (P = 0.001) (Fig. 3C, D). 
So, our prognostic model was effective in predicting out-
comes not only for advanced patients, but also for early 
patients in COAD.

The correlation between the risk score and clinical 
characteristics was analyzed. Our results demonstrated 
that the risk score was associated with survival status 
(P < 0.001), clinical stages (P = 0.042), T stage (P = 0.002) 
and N stage (P = 0.011) (Fig. 4C–F).

Independent prognostic analysis and construction 
of a nomogram model
By univariate and multivariate Cox regression analy-
ses, we evaluated the independent predictors of COAD. 
The results showed that age (P = 0.045), clinical stage 
(P < 0.001), T stage (P < 0.001), N stage (P < 0.001), M stage 
(P < 0.001) and risk score (P < 0.001) were prognostic indi-
cators (Fig.  5A). Furthermore, we found that only age 
(P = 0.009), T stage (P = 0.002) and risk score (P = 0.004) 
were independent prognostic indicators (Fig.  5B). Then, 
a nomogram model was constructed based on inde-
pendent prognostic indicators which had excellent prog-
nosis prediction ability (Fig.  5C). The accuracy of the 

nomogram model was estimated by the calibration plots 
which showed good consistency with the actual observa-
tion (Fig. 5D).

KEGG pathways enrichment analysis by GSEA
The results showed that enriched KEGG pathways had 
significant difference between high-risk group (Addi-
tional file  6: Table  S5) and low-risk group (Additional 
file  7: Table  S6). Interestingly, pathways of citrate cycle 
TCA cycle, glycolysis gluconeogenesis, oxidative phos-
phorylation, glutathione metabolism and so on were 
enriched in the low-risk group which might be the reason 
of different survival outcomes of two groups (Fig. 6).

The difference of immune infiltration between two risk 
groups
The immune scores of immune cells (aDCs, B cells, iDCs, 
Mast cells, pDCs, and so on.) and immune functions 
(APC co-stimulation, CCR, checkpoint, cytolytic activity, 
parainflammation, and so on) were higher in the low-risk 
group (Fig. 7A, B). The results showed that the risk score 
was negatively correlated with the infiltration of most 
anti-tumor immune cells.

The relationship of risk score with immune checkpoints 
expression and drug treatment response
The expression of 4 immune checkpoints (HHLA2, 
CD160, TNFRSF14 and TNFRSF25) was different 
between two risk groups (Fig.  7C). Among them, the 
expression of HHLA2 was higher in the low-risk group. 
However, the expression of CD160, TNFRSF14 and 
TNFRSF25 was on the contrary. In the term of IC50 of 15 
common drugs for gastrointestinal cancer, patients in the 
high-risk group were more sensitive to OSI.906, ABT.888 
(Fig.  7D, E), while patients in the low-risk group were 

Fig. 2  Establishment of prognostic signature based on CRLs in COAD. K–M curve for OS in training group (A) and test group (B), heatmap of 7 CRLs 
enrolled in the prognostic signature (C, D), the risk score curve (E, F) and survival status diagrams (G, H) of COAD patients in training group and test 
group
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Fig. 3  Evaluation of prognostic signature. The 1-, 2-, and 3-year ROC curves of prognostic signature in the training (A) and test (B) groups. K–M 
curve for OS of two risk groups in stage I–II patients (C) and stage III–IV patients (D)

Fig. 4  The relationship between the risk score and clinical parameters
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more sensitive to Sorafenib (Fig. 7F). The 95% CI of drug 
sensitivity analysis is shown in Additional file 8: Table S7.

Differential expression of serum CRLs between COAD 
patients and healthy controls
To further explore the possible diagnostic values of 
CRLs, the expression of above 7 CRLs in serum between 
COAD patients and healthy controls was analyzed. Our 
results showed that three lncRNAs including FALEC, 
AC083967.1 and AC010997.4 were significantly increased 
in serum of COAD patients (Fig. 8A–C) which were con-
sistent with RNA sequencing data of tissues. The AUC of 
FALEC, AC083967.1 and AC010997.4 was 0.772, 0.726 
and 0.714, respectively, which indicated that they might 
be used as diagnostic markers (Fig. 8D–F). However, the 
other 4 CRLs were really low expressed in serum of both 
COAD patients and healthy controls which were hardly 
to accurately detected by RT-qPCR.

Discussion
An appropriate amount of copper in cells is essential for 
life. It will impact the function of important metal bind-
ing enzymes if the content is too little, while too much of 
copper may lead to cell death [41]. Cuproptosis is a form 
of cell death caused by excessive copper that induces the 
aggregation of lipoylated dihydrolipoamide S-acetyl-
transferase (DLAT) and results in protein toxic stress [31, 
42]. As critical regulators of gene expression, lncRNAs 
have the ability to affects the occurrence and develop-
ment of cancers through multiple mechanisms includ-
ing regulating gene–environment interaction of diseases 
[43, 44]. Studies have shown that epigallocatechin-
3-gallate (EGCG) can regulate SLC31A1 (CTR1, copper 
transporter 1) expression through upregulated lncRNA 
nuclear, which effects cisplatin  sensitivity for the treat-
ment of non-small cell lung cancer cells [45]. Therefore, 
it is not surprising to speculate that related lncRNAs can 

Fig. 5  The nomogram model based on independent prognostic factors. Independent prognostic analysis by univariate Cox (A) and multivariate 
Cox regression (B). The nomogram model that integrated the risk score, age and T stage predicted the probability of the 1-, 2-, and 3-year OS (C) and 
the calibration plots (D)
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regulate the process of cuproptosis to affect prognosis 
and treatment of COAD patients.

In the present study, we select 7 CRLs (AC010997.4, 
AP003555.1, FALEC, AC083967.1, AC005841.1, 
AP001619.1 and ZKSCAN2-DT) to establish a prognos-
tic signature. Then, the K–M and ROC curves confirmed 
that the model had good predictive value for the progno-
sis of COAD patients. In fact, many lncRNAs in the sig-
nature have been proved to play the role in the prognosis 
of cancers. For example, FALEC can promote colorectal 
cancer progression via regulating miR-2116-3p-targeted 
PIWIL1 [46]. AC083967.1, AP001619.1 and AP003555.1 
can be used as the prognostic marker for colorectal 

cancer [47–50]. The above studies are consistent with 
our results. Meanwhile, we also found that our prognos-
tic signature was equally effective for stage I-II and stage 
III-IV of patients, which avoided the poor prediction of 
the prognosis for early COAD patients and increased the 
practicability of the signature. Besides, the risk score, age 
and T stage were identified as independent prognostic 
factors. So, we also built a nomogram model to compre-
hensively predict 1-year, 2-year, and 3-year OS of COAD 
patients based on independent factors. This is of great 
significance to evaluate the condition of COAD patients 
more accurately by combining risk score and clinical 
characteristics.

Fig. 6  The KEGG signal pathway enriched analysis of high- and low-risk groups by GSEA
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Tumor microenvironment (TME) that tumor cells 
depend on for growth and survival plays an important 
role in tumor progression. With the further understand-
ing of the diversity and complexity of TME, its role in 
tumor progression, immune escape and immunotherapy 
response has been paid more and more attention [51]. By 
GSEA and ssGSEA analyses, we found that patients in the 
high-risk group had a significant low degree of immune 
infiltration. We believed that these patients had obvious 
immunosuppression and belonged to immune-desert 
phenotype which was characterized by immune toler-
ance, immune ignorance and associated with poor clini-
cal outcomes [52]. Interestingly, patients in the low-risk 
group were enriched in glucose-related metabolic path-
ways, which were closely related to cuproptosis and had 
high level of immune cell infiltration and immune func-
tion. Therefore, we speculated that these patients were 
immune-inflamed phenotype which was characterized 
by adaptive immune cell infiltration and immune activa-
tion [53–55]. Also, cuproptosis might inhibit the progres-
sion of COAD partly, which requires further research to 
explore the potential mechanism.

Immunotherapy represented by immune checkpoint 
blockade (ICB) has shown amazing clinical efficacy and 
durable responses. But it is only for a small number of 
cancer patients, and most patients have little benefit, far 
from a met clinical need [56]. Analyzing the expression of 
immune checkpoint genes in COAD patients will help to 

improve the effect of immunotherapy. We found that the 
expression of CD160, TNFRSF14, TNFRSF25 was higher 
in high-risk group, yet the expression of HHLA2 was 
higher in low-risk group. Therefore, ICBs for the above 
genes could implement more accurate treatment for dif-
ferent patients. Besides, we also collected 15 commonly 
used drugs for gastrointestinal tumors and analyzed 
the sensitivity differences between two risk groups. We 
found that patients in the high-risk group were more sen-
sitive to OSI.906 and ABT.888, while patients in the low-
risk group were more sensitive to Sorafenib. These results 
could provide further guidance for the personalized drug 
treatment of patients with COAD based on our signature.

To further explore whether the above 7 CRLs also have 
diagnostic value, we detected the expression of CRLs 
in serum by RT-qPCR. Compared with healthy con-
trols, FALEC, AC083967.1 and AC010997.4 were highly 
expressed in serum of COAD patients and ROC curves 
also verified their good diagnostic value. Interestingly, 
the diagnostic value of plasma FALEC in cervical cancer 
has been reported and considered as a promising diag-
nostic marker [57].

Conclusions
Overall, although our prognostic signature performed 
well in predicting the diagnosis, prognosis and treat-
ment responses of COAD, our current study inevitably 
had some limitations. On the one hand, it is hard for 

Fig. 7  The investigation of tumor immune factors and drug sensitivity between two risk groups. The difference of immune cells (A), immune 
functions scores (B) and expression of immune checkpoints genes (C) between high- and low-risk groups. The drug sensitivity of two risk groups to 
OSI.906 (D), ABT.888 (E), Sorafenib (F). FDR: 0.05 > * > 0.01 > ** > 0.001 > ***
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our team to follow-up large amount of COAD patients 
to acquire survival information and verify the signa-
ture. On the other hand, the research on cuproptosis is 
still in the early stage at present, and the fewer CRGs 
limit the scope of research. Our results provided new 

insights into understanding the relationship of COAD 
tumorigenesis mechanism and cuproptosis, and fur-
ther molecular and clinical trials are still needed to 
confirm our findings. We believe that with the further 
research on cuproptosis in the future, it will have more 

Fig. 8  The expression of FALEC (A), AC083967.1 (B) and AC010997.4 (C) in serum of COAD patients and healthy controls by RT-qPCR. The ROC 
curves of FALEC (D), AC083967.1 (E) and AC010997.4 (F) to diagnosis COAD patients



Page 11 of 12Liu et al. Human Genomics           (2023) 17:22 	

comprehensive and in-depth understanding to improve 
relevant research.
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lncRNAs	� Long noncoding RNAs
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TCGA​	� The Cancer Genome Atlas
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