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Abstract

Transformer, one of the latest technological advances of deep learning, has gained prevalence in 

natural language processing or computer vision. Since medical imaging bear some resemblance to 

computer vision, it is natural to inquire about the status quo of Transformers in medical imaging 

and ask the question: can the Transformer models transform medical imaging? In this paper, 

we attempt to make a response to the inquiry. After a brief introduction of the fundamentals 

of Transformers, especially in comparison with convolutional neural networks (CNNs), and 

highlighting key defining properties that characterize the Transformers, we offer a comprehensive 

review of the state-of-the-art Transformer-based approaches for medical imaging and exhibit 

current research progresses made in the areas of medical image segmentation, recognition, 

detection, registration, reconstruction, enhancement, etc. In particular, what distinguishes our 

review lies in its organization based on the Transformer’s key defining properties, which are 

mostly derived from comparing the Transformer and CNN, and its type of architecture, which 

specifies the manner in which the Transformer and CNN are combined, all helping the readers to 

best understand the rationale behind the reviewed approaches. We conclude with discussions of 

future perspectives.
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1. Introduction

Medical imaging (Beutel et al., 2000) is a non-invasive technology that acquires signals by 

leveraging the physical principles of sound, light, electromagnetic wave, etc., from which 

visual images of internal tissues of the human body are generated. There are many widely 

used medical imaging modalities, including ultrasound, digital radiography, computed 

tomography (CT), magnetic resonance imaging (MRI), and optical coherent tomography 

(OCT). According to a report published by EMC2, about 90% of all healthcare data 

are medical images, which undoubtedly become a critical source of evidence for clinical 

decision making, such as diagnosis and intervention.

Artificial intelligence (AI) technologies that process and analyze medical images have 

gained prevalence in scientific research and clinical practices in recent years (Zhou et al., 

2019). This is mainly due to the surge of deep learning (DL) (LeCun et al., 2015), which 

has achieved superb performances in a multitude of tasks, including classification (He et 

al., 2016; Hu et al., 2018; Huang et al., 2017), object detection (Girshick et al., 2014; 

Wang et al., 2017b), and semantic segmentation (Zhao et al., 2017; Chen et al., 2017). The 

convolutional neural networks (CNNs or ConvNets) are DL methods customarily designed 

for image data. The earliest applications of CNNs in medical imaging go back to the 

1990s (Lo et al., 1995b,a; Sahiner et al., 1996). Though they showed encouraging results, 

it was not until the last decade that CNNs began to exhibit state-of-the-art performances 

and widespread deployment in medical image analysis. Ever since U-Net (Ronneberger et 

al., 2015) won the 2015 ISBI cell tracking challenge, CNNs have taken the medical image 

analysis research by storm. Up till today, U-Net and its variants continue to demonstrate 

outstanding performance in many fields of medical imaging (Isensee et al., 2021; Zhou 

et al., 2022a; Cui et al., 2019). Other deep learning techniques, such as recurrent neural 

networks (RNNs) (Zhou et al., 2019) and deep reinforcement learning (DRL) (Zhou et al., 

2021d), have been developed and built on top of CNNs for medical image analysis.

More recently, Transformer (Vaswani et al., 2017) has shown great potential in medical 

imaging applications as it has flourished in natural language processing and is flourishing in 

computer vision. Regarding homogeneity and heterogeneity of natural and medical images 

representations, it is motivated to investigate the status quo of Vision Transformer for 

medical imaging. It remains unclear whether Vision Transformers are better than CNNs for 

understanding medical images, and whether Transformers can transform medical imaging. 

Like any other machine learning techniques, Transformers have both advantages and 

disadvantages. For example, one of the benefits of Transformers is that they tend to have 

large effective receptive fields, which means they are better at understanding contextual 

information than CNNs. This is particularly useful in medical imaging, where it is important 

to take into account not only the area of concern but also the surrounding tissue and organs 

when diagnosing a medical condition. On the downside, Transformers tend to be more 

computationally intensive and require more data. This can be a challenge in the field of 

medical imaging, where resources may be limited due to factors such as patient privacy 

concerns. At the present stage, it is uncertain whether Transformers will revolutionize 

2"The Digital Universe Driving Data Growth in Healthcare," published by EMC with research and analysis from IDC (12/13).
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the field of medical imaging, but current research has shown their potential in achieving 

improved performance on various medical imaging tasks. In this paper, we highlight the 

properties of Vision Transformers and present a comparative review for Transformer-based 

medical image analysis. Given that, the survey is confined to Vision Transformer, Unless 

stated otherwise, "Transformer" and "Transformer-based" referred in this paper represents 

"Vision Transformer", models with vanilla Language Transformer base blocks integrated, 

and applied in image analysis tasks.

We organize the rest of paper to include the following: (i) a brief introduction to CNN 

for medical image analysis; (Section 2) (ii) an introduction to Transformer with its general 

principle, key properties, and its main differences from a CNN (Section 3); (iii) current 

progresses of state-of-the-art Transformer methods for solving medical imaging tasks, 

including medical image segmentation, recognition, classification, detection, registration, 

reconstruction, and enhancement, which is the main part (Section 4); (iv) yet-to-solve 

challenges and future potential of Transformer in medical imaging (Section 5).

2. CNN for Medical Image Analysis

2.1. CNNs for medical imaging

We begin by briefly outlining the applications of CNNs in medical imaging and discussing 

their potential limitations. CNNs are specialized in analyzing data with a known grid-like 

topology (e.g., images). This is due to the fact that the convolution operation imposes a 

strong prior on the weights, compelling the same weights to be shared across all pixels. 

As the exploration of deep CNN architectures has intensified since the development of 

AlexNet for image classification in 2012 (Krizhevsky et al., 2012), the first few successful 

efforts at deploying CNNs for medical imaging lay in the application of medical image 

classifications. These network architectures often begin with a stack of convolutional layers, 

pooling operations, and follow by a fully connected layer for producing a vector reflecting 

the probability of belonging to a certain class (Roth et al., 2014, 2015; Cireşan et al., 2013; 

Brosch et al., 2013; Xu et al., 2014; Malon and Cosatto, 2013; Cruz-Roa et al., 2013; 

Li et al., 2014). In the meantime, similar architectures have been used for medical image 

segmentation (Ciresan et al., 2012; Prasoon et al., 2013; Zhang et al., 2015a; Xing et al., 

2015; Vivanti et al., 2015) and registration (Wu et al., 2013; Miao et al., 2016; Simonovsky 

et al., 2016) by performing the classification task on a pixel-by-pixel basis.

In 2015, Ronneberger et al. introduced U-Net (Ronneberger et al., 2015), which is built 

based on the concept of the fully convolutional network (FCN) (Long et al., 2015). 

In contrast to previous encoder-only networks, U-Net employs a decoder composed of 

successive blocks of convolutional layers and upsampling layers. Each block upsamples 

the previous feature maps such that the final output has the same resolution as the input. 

U-Net represents a substantial advance over previous networks. First, it eliminated the need 

for laborious sliding-patch inferences by having the input and output be full-sized images. 

Moreover, because the input to the network is a full-sized image as opposed to a small 

patch, U-Net has a better understanding of contextual information presented in the input. 

Although many other CNN architectures have demonstrated superior performances (e.g., 

HyperDense-Net (Dolz et al., 2018) and DnCNN (Zhang et al., 2017; Cheng et al., 2019; 
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Kim et al., 2018)), the U-Net-like encoder-decoder paradigm has remained the de facto 
choice when it comes to CNNs for pixel-level tasks in medical imaging. Many variants of 

such a kind have been proposed and demonstrated promising results on various applications, 

including segmentation (Isensee et al., 2021; Zhou et al., 2018; Oktay et al., 2018; Gu et 

al., 2020; Zhang et al., 2020), registration (Balakrishnan et al., 2019; Dalca et al., 2019; 

Zhao et al., 2019b,a), and reconstruction (Han and Ye, 2018; Cui et al., 2019). Attempts 

have been made to improve CNNs by incorporating RNNs or LSTMs for medical image 

analysis. For instance, Alom et al. proposed a combination of ResUNet with RNN (Alom et 

al., 2018), which includes a feature accumulation module to enhance feature representations 

for image segmentation. Gao et al. proposed Distance-LSTM (Gao et al., 2019a), which is 

capable of modeling the time differences between longitudinal scans. This model is efficient 

at learning the intra-scan feature variabilities. Similarly, (Gao et al., 2018) merged CNNs 

with LSTM to learn spatial-temporal representations of brain MRI slices for segmentation. 

In general, RNNs have a unique ability to model medical images that can advance CNNs. By 

integrating CNNs with RNNs, it becomes feasible to capture global spatial-temporal feature 

relationships. Nevertheless, due to the resource-intensive nature of RNNs, they are mostly 

used for particular tasks, such as comprehending sequential data (e.g., longitudinal data).

Despite the widespread success of CNNs in medical imaging applications over the last 

decade, there are still inherent limitations within the architecture that prevent CNNs from 

reaching even greater performance. The vast majority of current CNNs deploy rather small 

convolution kernels (e.g., 3 × 3 or 5 × 5). Such a locality of convolution operations results 

in the CNNs being biased toward local spatial structures (Zhou et al., 2021b; Naseer et al., 

2021; Dosovitskiy et al., 2020), which makes them less effective at modeling the long-range 

dependencies required to better comprehend the contextual information presented in the 

image. Extensive efforts have been made to address such limitations by expanding the 

theoretical receptive fields (RFs) of CNNs, with the most common methods including 

increasing the depth of the network (Simonyan and Zisserman, 2015), introducing recurrent- 

(Liang and Hu, 2015) or skip-/residual-connections (He et al., 2016), introducing dilated 

convolution operations (Yu and Koltun, 2016; Devalla et al., 2018), deploying pooling and 

up-sampling layers (Ronneberger et al., 2015; Zhou et al., 2018), as well as performing 

cascaded or two-stage framework (Isensee et al., 2021; Gao et al., 2019b, 2021a). Despite 

these attempts, the first few layers of CNNs still have limited RFs, making them unable to 

explicitly model the long-range spatial dependencies. Only at the deeper layers can such 

dependencies be modeled implicitly. However, it was revealed that as the CNNs deepen, the 

influence of faraway voxels diminishes rapidly (Luo et al., 2016). The effective receptive 

fields (ERFs) of these CNNs are, in fact, much smaller than their theoretical RFs, even 

though their theoretical RFs encompass the entire input image.

2.2. Motivations behind using Transformers

Transformers, as alternative network architecture to CNNs, has recently demonstrated 

superior performances in many computer vision tasks (Dosovitskiy et al., 2020; Liu et 

al., 2021b; Wu et al., 2021a; Zhu et al., 2020; Wang et al., 2021f; Chu et al., 2021; Yuan 

et al., 2021b; Dong et al., 2022). The core element of Transformers is the self-attention 

mechanism, which is not subject to the same limitations as convolution operations, making 
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them better at capturing explicit long-range dependencies(Wang et al., 2022c). Transformers 

have other appealing features, such as they scale up more easily (Liu et al., 2022e) and 

are more robust to corruption (Naseer et al., 2021). Additionally, their weak inductive bias 

enables them to achieve better performance than CNNs with the aid of large-scale model 

sizes and datasets (Liu et al., 2022e; Zhai et al., 2022; Dosovitskiy et al., 2020; Raghu et 

al., 2021). Existing Transformer-based models have shown encouraging results in several 

medical imaging applications (Chen et al., 2021d; Hatamizadeh et al., 2022b; Chen et 

al., 2022b; Zhang et al., 2021e), prompting a surge of interest in further developing such 

models (Shamshad et al., 2022; Liu and Shen, 2022; Parvaiz et al., 2022; Matsoukas et al., 

2021). This paper provides an overview of Transformer-based models developed for medical 

imaging applications and highlights their key properties, advantages, shortcomings, and 

future directions. In the next section, we briefly review the fundamentals of Transformers.

3. Fundamentals of Transformer

Language Transformer (Vaswani et al., 2017) is a neural network based on self-attention 

mechanisms and feed-forward module to compute representations and global dependencies. 

Recently, large Language Transformer models employed self-supervised pre-training has 

demonstrated improved efficiency and scalability, such as BERT (Devlin et al., 2018) and 

GPT (Radford et al., 2018; Radford et al.; Brown et al., 2020) in natural language processing 

(NLP). In addition, Vision Transformer (ViT) (Dosovitskiy et al., 2020) partition and flatten 

images to sequences and implement Transformer for modeling visual features in a sequence-

to-sequence paradigm. Below, we first give a detailed introduction to Vision Transformer, 

focusing on self-attention and its general pipeline. Next, we summarize the characteristics of 

convolution and self-attention and how the two interact. Lastly, we include key properties of 

Transformer from manifold perspectives.

3.1. Self-attention in Transformer

Humans choose and pay attention to part of the information unintentionally when observing, 

learning and thinking. The attention mechanism in neural networks is a mimic to this 

physiological signal processing process (Bahdanau et al., 2014). A typical attention function 

computes a weighted aggregation of features, filtering and emphasizing the most significant 

components or regions (Bahdanau et al., 2014; Xu et al., 2015; Dai et al., 2017; Hu et al., 

2018).

3.1.1. Self-attention—Self-attention (SA) (Bahdanau et al., 2014) is a variant of 

attention mechanism (Figure 1 (left)), which is designed for capturing the internal 

correlation in data or features. The standard SA (Vaswani et al., 2017) first maps the input 

X ∈ ℝn × c into a query Q ∈ ℝn × d, a key K ∈ ℝn × d, and a value V ∈ ℝn × d, using three learnable 

parameters Wq, Wk, and Wv, respectively:

Q = X × W q, W q ∈ ℝc × d,
K = X × W k, W k ∈ ℝc × d,
V = X × W v, W v ∈ ℝc × d .

(1)
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Then, the similarity and correlation between query Q and key K is normalized, attaining an 

attention distribution A ∈ ℝn × n:

A(Q, K) = Softmax(Q × KT

d ) . (2)

The attention weight is applied to value V, giving the output Z ∈ ℝn × d of a self-attention 

block:

Z = SA(Q, K, V ) = A(Q, K) × V . (3)

In general, the key K acts as an embedding matrix that "memorizes" data, and the query Q 
is a look-up vector. The affinity between the query Q and the corresponding key K defines 

the attention matrix A. The output Z of a self-attention layer is computed as a sum of value 

V, weighted by A. The matrix A calculated in (2) connects all elements, thereby leading to a 

good capability of handling long-range dependencies in both NLP and CV tasks.

3.1.2. Multi-head self-attention (MSA)—Multiple self-attention blocks, namely multi-

head self-attention (Figure 1 (right)), are performed in parallel to produce multiple output 

maps. The final output is typically a concatenation and projection of all outputs of SA 

blocks, which can be given by:

Zi = SA(X × W i
q, X × W i

k, X × W i
v),

MSA(Q, K, V ) = Concat[Z1, …, Zℎ] × W o . (4)

where h denotes the total number of heads and W o ∈ ℝℎd × c is a linear projection matrix, 

aggregating the outputs from all attention heads. W i
q, W i

k and W i
v are parameters of the ith 

attention head. MSA projects Q, K and V into multiple sub-spaces that compute similarities 

of context features. Note that it is not necessarily true that a larger number of heads 

accompanies with better performance (Voita et al., 2019).

3.2. Vision Transformer pipeline

3.2.1. Overview—A typical design of a Vision Transformer consists of a Transformer 

encoder and a task-specific decoder, depicted in Figure 2 (left). Take the processing of 

2D images for instance. Firstly, the image X ∈ ℝC × H × W  is split into a sequence of N non-

overlapping patches {X1, X2, …, XN}; Xi ∈ ℝC × P × P, where C is the number of channels, 

[H, W] denotes the image size, and [P, P] is the resolution of a patch. Next, each patch is 

vectorized and then linearly projected into tokens:

x = {X1E, X2E, …, XNE}, E ∈ ℝCP2 × D, (5)

where D is the embedding dimension. Then, a positional embedding, Epos, is added so that 

the patches can retain their positional information:

x = x + Epos, Epos ∈ ℝN × D . (6)

Li et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The resulting tokens are fed into a Transformer encoder as shown in Figure 2 (right), which 

consists of L stacked base blocks. Each base block consists of a multi-head self-attention 

and a multi-layer perceptron (MLP), with Layer-Norm (LN). The feature can be formulated 

as:

Zl
′ = MSA(LN(Zl − 1)) + Zl − 1, l ∈ [1, …, L],

Zl = MLP(LN(Zl
′)) + Zl

′, l ∈ [1, …, L] . (7)

3.2.2. Non-overlapping patch generation—ViT adapts a standard Transformer in 

vision tasks, with the fewest modifications as possible. Therefore, the patches {X1, …, 

Xn} are generated in a non-overlapping style. On one hand, non-overlapping patches 

partially break the internal structure of an image (Han et al., 2021a). MSA blocks integrate 

information from various patches, alleviating this problem. On the other hand, there is no 

computational redundancy when feeding non-overlapping patches into Transformer.

3.2.3. Positional embedding—Transformers tokenize and analyze each patch 

individually, resulting in the loss of positional information on each patch in relation to 

the whole image, which is undesired given that the position of each patch is imperative 

for comprehending the context in the image. Positional embeddings are proposed to 

encode such information into each patch such that the positional information is preserved 

throughout the network. Moreover, positional embeddings serve as the manually introduced 

inductive bias in Transformers. In general, there are three types of positional embedding: 

sinusoidal, learnable, and relative. The first two encode absolute positions from 1 to the 

number of patches, while the last encodes relative positions/distances between patches. In 

the following subsections, we briefly introduce each of the positional embeddings.

Sinusoidal positional embedding.: To encode the position of each patch, we might 

intuitively assign an index value between 1 and the total number of patches to each patch. 

Yet, an obvious issue arises: if the number of patches is large, there may be a significant 

discrepancy in the index values, which hinders network training. Here, the key idea is 

to represent different positions using sinusoids of different wavelengths. For each patch 

position n, the sinusoidal positional embedding is defined as (Vaswani et al., 2017):

Esin(n, 2d) = sin( n
100002d ∕ D )

Esin(n, 2d + 1) = cos( n
100002d ∕ D ),

(8)

where d = 1, …, D
2 .

Learnable positional embedding.: Instead of encoding the exact positional information 

onto the patches, a more straightforward way is to deploy a learnable matrix, Elrn, and let 

the network learn the positional information on its own. This is known as the learnable 

positional embedding.
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Relative positional embedding.: Contrary to using a fixed embedding for each location, 

as is done in sinusoidal and learnable positional embeddings, relative positional embedding 

encodes the relative information according to the offset between the elements in Q and 

K being compared in the self-attention mechanism (Raffel et al., 2020). Many relative 

positional embedding approaches have been developed, and this is still an active field of 

research (Shaw et al., 2018; Raffel et al., 2020; Dai et al., 2019; Huang et al., 2020; Wang 

et al., 2020a; Wu et al., 2021b). However, the basic principle stays the same, in which 

they encode information about the relative position of Q, K, and V through a learnable or 

hard-coded additive bias during the self-attention computation.

3.2.4. Multi-layer perceptrons—In the conventional Transformer design (e.g., the 

original ViT (Dosovitskiy et al., 2020) and Transformer (Vaswani et al., 2017)), the 

MLP comes after each self-attention module. MLP is a crucial component since it injects 

inductive bias into Transformer, while the self-attention operation lacks inductive bias. This 

is because MLP is local and translation-equivariant, but self-attention computation is a 

global operation. The MLP is comprised of two feed-forward networks with an activation 

(typically a GeLU) in between:

MLP(x) = ϕ(xW 1 + b1)W 2 + b2, (9)

where x denotes the input, and W and b denote, respectively, the weight matrix and the bias 

of the corresponding linear layer. The dimensions of the weight matrices, W1 and W2, are 

typically set as D × 4D and 4D × D (Dosovitskiy et al., 2020; Vaswani et al., 2017). Since 

the input is a matrix of flattened and tokenized patches (i.e., Eqn. (6)), applying W to x is 

analogous to applying a convolutional layer with a kernel size of 1 × 1. Consequently, the 

MLPs in the Transformer are highly localized and and equivariant to translation.

3.3. Transformer vs. CNNs

CNNs provide promising results for image analysis, while Vision Transformer has shown 

comparable even superior performance when pre-training or scaled datasets are available 

(Dosovitskiy et al., 2020). This raises a question on the differences about how Transformers 

and CNNs understand images. The receptive field of CNNs gradually expands when the 

nets go deeper, therefore the features extracted in lower stages are quite different from 

those in higher stages (Raghu et al., 2021). Features are analyzed and represented layer-by-

layer, with global information injected. Besides, the expanding receptive field of neurons 

and the use of pooling operations result in equivalence and local invariance in terms of 

translation (Jaderberg et al., 2015; Kauderer-Abrams, 2017), which empowers CNNs to 

exploit samples and parameters more effectively (see Appendix Appendix .1 for further 

details). Beyond that, the locality and weight sharing confers CNNs the advantages in 

capturing local structures. Considering the limited receptive field, CNNs are limited in 

catching long-distance relationships among image regions. In Transformer model, the MSA 

provides a global receptive field even with the lowest layer of ViT, resulting in similar 

representations in different number of blocks (Raghu et al., 2021). The MSA block of 

each layer is capable of aggregating features in a global perspective, reaching a good 

understanding of long-distance relationships. The 16 by 16 sequences length is in natural 
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large receptive field that can lead to better global feature modeling. In 3D transformers for 

volumetric data, this advantage is even obvious, the use of patch size 16×16×16 is intuitive 

and beneficial for high dimensional, high resolution medical images, as anatomical context 

are crucial for medical deep learning.

3.3.1. Combining Transformer and CNN—To embrace the benefits from 

conventional CNNs (e.g., ResNet (He et al., 2016) and U-Net (Ronneberger et al., 2015)) 

and conventional Transformers (e.g., the original ViT (Dosovitskiy et al., 2020) and DETR 

(Carion et al., 2020)), multiple works have been done in combining the strengths of CNNs 

and Transformer, which can be included into three types, and we illustrate them one by one 

in the following paragraphs. Additionally, Fig. 3 contains a taxonomy of typical methods 

that combine CNN and Transformer.

Conv-like Transformers:  This type of model introduces some convolutional properties 

into conventional Vision Transformer. The building blocks are still MLPs and MSAs, 

while arranged in a convolutional style. For example, in Swin Transformer (Liu et al., 

2021b), HaloNets (Vaswani et al., 2021), and DAT (Xia et al., 2022b), the self-attention 

is performed within a local window hierarchically and neighboring windows are merged 

in subsequent layers. Hierarchical multi-scale framework in MViT (Fan et al., 2021) and 

pyramid structures in PVT (Wang et al., 2021f) guide a Transformer to increase the capacity 

of intermediate layers progressively.

Transformer-like CNNs:  This type of model introduces the traits of Vision Transformers 

into CNNs. The building blocks are convolutions, while arranged in a more Vision 

Transformer way. Thus, this type of models are excluded in the introduction about 

Transformer models in Section 4. Specifically, the self-attention mechanism is assembled 

to convolutions, like in CoT (Li et al., 2021e) and BoTNet (Srinivas et al., 2021), making a 

full exploration of neighboring context that compensates the CNNs’ weakness in capturing 

long-range dependencies. ConvNext (Liu et al., 2022e) modernizes a ResNet by exploiting 

a depth-wise convolution as a substitute of self-attention, and following the training tricks 

from Swin Transformer (Liu et al., 2021b).

Conv-Transformer hybrid:  A straightforward way of combining CNNs and Transformers 

is to employ them both in an attempt of leveraging both of their strengths. So the 

building blocks are convolutions, MLPs and MSAs. This is done by keeping self-attention 

modules to catch long-distance relationships, while utilizing the convolution to project patch 

embeddings in CvT (Wu et al., 2021a). Another type of methods is the multi-branch fusion, 

like Conformer (Peng et al., 2021) and Mobile-former (Chen et al., 2021g), which typically 

fuses the feature maps from two parallel branches, one from CNN and the other from 

Transformer, such that the information provided by both architectures is retained throughout 

the decoder. Analogously, convolutions and Transformer blocks are arranged sequentially 

in ConViT (dâĂŹAscoli et al., 2021) and CoAtNet (Dai et al., 2021c), and representations 

from convolutions are aggregated by MSAs in a global view.
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3.4. Key properties

From the basic theory and architecture design of Transformer, researchers are yet to figure 

out why Transformer works better than say CNN in many scenarios. Below are some key 

properties associated with Transformers from the perspectives of modeling and computation.

3.4.1. Modeling

M1: Long-range dependency.: The MSA module connects all patches with a constant 

distance, and it is proved in (Joshi, 2020) that a Transformer model is equivalent to a 

graph neural network (GNN). It promises Transformer with large theoretical and effective 

receptive fields (as shown in Fig. 4), and possibly brings better understanding of contextual 

information and long-range dependency than CNNs.

M2: Detail modeling.: Images are projected into embeddings by MLPs in Transformers. 

The embeddings of local patches are refined and adjusted progressively at the same scale. 

Features in CNNs, like ResNet and U-Net, are resized by pooling and strided-convolution 

operations. Features are at different detailing stages over scales. Dense modeling and 

trainable aggregation of features in Transformers can preserve contextual details along with 

more semantic information injected when deeper layers are reached (Li et al., 2022e).

M3: Inductive bias.: The convolutions in CNNs exploit the relations from the locality 

of pixels and apply the same weights across the entire image. This inherent inductive bias 

leads to faster convergence of CNNs and better performances in small datasets (dâĂŹAscoli 

et al., 2021). On the other hand, because computing self-attention is a global operation, 

Transformers in general have a weaker inductive bias than CNNs (Cordonnier et al., 2019). 

The only manually injected inductive bias in original ViT (Dosovitskiy et al., 2020) is the 

positional embedding. Therefore, Transformers lack the inherent properties of locality and 

scale-invariance, making them more data-demanding and harder to train (Dosovitskiy et 

al., 2020; Touvron et al., 2021b). However, the reduced inductive bias may improve the 

performance of Transformers when trained on a larger-scale dataset. See Appendix .2 for 

further details.

M4: Loss landscape.: The self-attention operation of Transformer tends to promote a 

flatter loss landscape (Park and Kim, 2022), even for hybrid CNN-Transformer models, as 

shown in Fig. 5. This results in improved performance and better generalizability compared 

to CNNs when trained under the same conditions. See Appendix .3 for further details.

M5: Noise robustness.: Transformers are more robust to common corruptions and 

perturbations, such as blurring, motion, contrast variation, and noise (Bhojanapalli et al., 

2021; Xie et al., 2021a).

3.4.2. Computation

C1: Scaling behavior.: Transformers show the same scaling properties in NLP and 

CV (Zhai et al., 2022). The Transformer models achieve higher performance when their 

computation, model capacity, and data size scale up together.
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C2: Easy integration.: It is easy to integrate Transformers and CNNs into one 

computational model. As shown in Section 3.C and future sections, there are multiple ways 

of integrating them, resulting in flexible architecture designs that are mainly grouped into 

Conv-like Transformers, Transformer-like CNNs, and Conv-Transformer hybrid.

C3: Computational intensiveness.: While promising results may be obtained with 

Transformers, typical Transformers (e.g., ViT (Dosovitskiy et al., 2020; Zhai et al., 2021)) 

require a significant amount of time and memory, particularly during training. See Appendix 

.4 for further details.

4. Current Progresses

As shown in Fig. 6(a), Vision Transformers has received intensive study in present. We 

introduce the criteria of inclusion/exclusion for selecting research papers in this review. 

Fig. 6(b) shows the graphic summary of Transformers in medical image analysis papers. 

In particular, we investigate articles on IEEE, PubMed, Xplore, Springer, Science direct, 

proceedings of conferences including medical imaging conferences such as MICCAI, IPMI, 

ISBI, RSNA, SPIE, etc. Finally, we search manuscripts and project references on google 

scholar. In the result of search queries, we have found over 2000 transformer related papers, 

most of these contributions are from language studies or natural image analysis. We build 

our survey concepts from the self-attention paper, and vision transformer, which are keys 

milestones for exploring transformer in medical studies. Finally, we set the criteria of 

legitimacy for this survey only about medical application with transformers. As shown in 

Fig. 6(b), we demonstrate categorization of our selected papers based on tasks in medical 

domain. In the figure, we show percentage of article sources from conferences, journals, 

and pre-print platforms. The list of our selected papers, covering a wide range of topics 

including medical image segmentation, recognition & classification, detection, registration, 

reconstruction, and enhancement, is by no means exhaustive. Fig. 7 gives an overview of the 

current applications of vision Transformers, and below we present a literature summary for 

each topic with the use of key properties indicated accordingly.

4.1. Medical image segmentation

In general, Transformer-based models outperform ConvNets for solving medical image 

segmentation tasks. The main reasons are as follows:

• The ability of modeling longer range dependencies of context in high 

dimensional and high resolution medical images. [Property M1]

• The scalability and robustness of ViT and Swin Transformer strengthen the dense 

prediction for pixel-wise segmentation (Liu et al., 2021b). [Property M2]

• The superior scaling behavior of Transformers over ConvNets and the lack of 

convolutional inductive bias in Transformers make them more advantageous to 

large-scale self-supervised pre-training on medical image datasets (Tang et al., 

2022; Zhai et al., 2022). [Property C1 and M3]

• Network architecture design is flexible by mixing Transformer and CNN 

modules. [Property C2]
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Though it has demonstrated superior performance, the use of Transformers for medical 

image segmentation has challenges in transferring the representation capability from 

language domain to image modalities. Compared to word tokens that are modeled as the 

basic embedding, visual features are at variant scales. This multi-scale problem can be 

significant in dense prediction tasks with higher resolution of voxels in medical images. 

However, for the current Transformer backbones, the learnt embedding is commonly at 

a fixed scale, which is intractable for segmentation tasks, especial on large-scale medical 

radiography, microscopy, fundus, endoscopy or other imaging modalities. To adapt the 

vanilla Transformer models for medical image segmentation, recent researchers proposed 

solutions that utilize the components of ViT into particular segmentation models. In 

the following, we summarize and discuss recent works on how Transformer blocks are 

used in the segmentation models. Table 1 provides a summary list of all reviewed 

segmentation approaches along with their information about associated architecture type, 

model size, dataset, method highlight, etc. As one of the most classical approaches in 

medical segmentation, U-Net (Ronneberger et al., 2015) is widely chosen for comparison 

by its followers. The U-shaped architecture and skip-connections in U-Net has proved its 

effectiveness in leveraging hierarchical features. Fig. 8 presents some typical Transformer-

based U-shaped segmentation model architectures.

ViT as main encoder: The Vision Transformers reformulate the segmentation problem 

as a 1D sequence-to-sequence inference task and to learn medical context from the 

embedded patches. A major advantage of the sequence-to-sequence modeling strategy 

is the larger receptive fields compared to CNNs (Dosovitskiy et al., 2020), resulting in 

stronger representation capability with longer range dependencies. By employing these 

properties, models that directly use Transformer for generating the input sequences and 

tokenized patches are proposed (Hatamizadeh et al., 2022b; Tang et al., 2022; Peiris 

et al., 2021; Yu et al., 2022c). (Hatamizadeh et al., 2022b) and (Peiris et al., 2021) 

introduce the volumetric model that utilizes the global attention-based Vision Transformer 

as the main encoder and then connects to the CNNs-based decoder or expand modules. 

(Tang et al., 2022; Hatamizadeh et al., 2022a) demonstrate the use of shifted-window 

(Swin) Transformer, which presents more powerful representation ability, as the major 

encoder into the ‘U-shaped’ segmentation architecture. The Swin UNETR model achieves 

state-of-the-art performance on the 10 tasks in Medical Segmentation Decathlon (MSD) 

(Simpson et al., 2019) and BTCV benchmarks. Similarly, (Yu et al., 2022c) propose a 

hierarchical Transformer-based segmentation model that utilizes the 3D block aggregation, 

which achieves the state-of-the-art results on the kidney sub-components segmentation with 

CT images.

ViT as additional encoder: The second widely-adopted structures for medical image 

segmentation are to use the Transformer as the secondary encoder after ConvNets. The 

rationale of this design is the lack of inductive bias such as locality and translation 

equivariance of Transformers. In addition, the use of CNN as the main encoder can bring 

the computational benefit as it is computationally expensive to calculate global self-attention 

among voxels in high-resolution medical images. One earlier adoption of 12 layers ViT for 

the bottleneck features is the TransUNet (Chen et al., 2021d), which follows the 2D UNet 
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(Ronneberger et al., 2015) design and incorporates the Transformer blocks in the middle 

structure. TransUNet++ (Wang et al., 2022a) and Ds-TransUNet (Lin et al., 2021) propose 

an improved version of the design that achieves promising results for CT segmentation tasks. 

For volumetric medical segmentation, TransBTS (Wang et al., 2021e) and TransBTSV2 (Li 

et al., 2022c) introduce the Transformer to model spatial patch embedding for the bottleneck 

feature. CoTr (Xie et al., 2021b), TransBridge (Deng et al., 2021), TransClaw (Chang et al., 

2021), and TransAttUNet (Chen et al., 2021a) study the variant of attention blocks in the 

Transformer, such as the deformable mechanism that enables attention on a small set of key 

positions. SegTrans (Li et al., 2021a) exploits the squeeze and expansion block for modeling 

contextual features with Transformers for hidden representations. MT-UNet (Wang et al., 

2021c) uses a mixed structure for learning inter- and intra- affinities among features. More 

recently, several studies such as AFTer-UNet (Yan et al., 2022), BAT (Wang et al., 2021d), 

GT-UNet (Li et al., 2021c), and Polyp-PVT (Dong et al., 2021a) focus on using grouping, 

boundary-aware or slice communication modules for improved robustness in ViT.

Fusion models with ViT and ConvNet: While Transformers show the superiority of 

modeling long-range dependencies, its lack of capability of capturing local feature remains 

a challenge. Instead of cascading the Conv and Transformer blocks, researchers propose to 

leverage ViT and ConvNet as encoders that both take medical image as inputs. Afterwards, 

the embedded features are fused to connect to the decoder. The multi-branch design benefits 

from the advantages of learning global/local information for ViT and Convnet in parallel 

and then stacking representations in a sequential manner. TransFuse (Zhang et al., 2021b) 

uses a bi-fusion paradigm, in which the features from the two branches are fused to jointly 

make inference. CrossTeaching (Luo et al., 2021) employs a semi-supervised learning with 

UNet and Swin Transformer for medical segmentation. TransFusionNet (Meng et al., 2021) 

uses the CNN as the decoder to bridge the fused featured learnt from Transformer and 

ConvNet. PMTrans (Zhang et al., 2021d) introduces a pyramid structure for a multi-branch 

encoder with Transformers. X-Net (Li et al., 2021d) demonstrates a dual encoding-decoding 

X-shape network structure for pathology images. MedT (Valanarasu et al., 2021) designs 

model encoders with a CNN global branch and a local branch with gated axial self-attention. 

DS-TransUNet (Lin et al., 2021) proposes to split the input image into non-overlapping 

patches and then use two branches of encoder that learn feature representations at different 

scales; the final output is fused by Transformer Interactive Fusion (TIF) module.

Pure Transformer: In addition to hybrid models, networks with pure Transformer blocks 

have been shown to be effective at modeling dense predictions such as segmentation. The 

nnFormer (Zhou et al., 2021a) proposes to use 3D Transformer that exploits the combination 

of interleaved convolutions and self-attention operations. The nnFormer also replaces the 

skip connection with a skip attention mechanism and it outperforms nnUNet significantly. 

MISSFormer (Huang et al., 2021) is a pure Transformer network with a feed-forward 

enhanced Transformer block with a context bridge. It models local features at different 

scales for leveraging long-range dependencies. D-Former (Wu et al., 2022b) envisions an 

architecture with a D-Former block, which contains the dynamic position encoding block 

(DPE), local scope modules (LSMs), and the global scope modules (GSMs). The design 

employs a dilated mechanism that directly processes 3D medical images and improves the 
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communication of information without increasing the tokens in self-attention. Swin-UNet 

(Cao et al., 2021) utilizes the advantages of shifted window self-attention Transformer 

blocks to construct a U-shaped segmentation network for 2D images. The pure Transformer 

architecture also uses the Transformer block as the expansion modules to upsample feature 

maps. However, current pure Transformer-based segmentation model are commonly of large 

model size, resulting in challenges of design robustness and scalability.

Pre-training framework for medical segmentation: Based on the empirical studies 

of Vision Transformer, the self-attention blocks commonly require pre-training data at 

a large scale to learn a more powerful backbone (Dosovitskiy et al., 2020). Compared 

to CNNs, Transformer models are more data-demanding at different scales (Zhai et al., 

2022), effective and efficient ViT models are typically pre-trained by appropriate scales of 

dataset. However, adapting from natural images to a medical domain remain a challenge 

as the context gap is large. In addition, generating expert annotation of medical images 

is nontrivial, expensive and time-consuming; therefore it is difficult to collect large-scale 

annotated data in medical image analysis. Compared to the fully supervised dataset, raw 

medical images without expert annotation are easier to obtain. Hence, transfer learning, 

which aims to reuse the features of already trained ViT on different but related tasks, 

can be employed. To further improve the robustness and efficiency of ViT in medical 

image segmentation, several works are proposed to learn in a self-supervised manner a 

model of feature representations without manual labels. Self-supervised Swin UNETR 

(Tang et al., 2022) collects a large-scale of CT images (5,000 subjects) for pre-training 

the Swin Transformer encoder, which derives significant improvement and state-of-the-art 

performance for BTCV (Landman et al., 2015) and Medical Segmentation Decathlon (MSD) 

(Antonelli et al., 2021). The pre-training framework employs multi-task self-supervised 

learning approaches including image inpainting, contrastive learning and rotation prediction. 

Self-supervised masked autoencoder (MAE) (Zhou et al., 2022c) investigates the MAE-

based self pre-training paradigm designed for Transformers, which enforces the network to 

predict masked targets by collecting information from the context. Furthermore, the unified 

2D/3D pre-training (Xie et al., 2021c) aims to construct a teacher-student framework to 

leverage unlabeled medical data. The approach designs a pyramid Transformer U-Net as 

the backbone, which takes either 2D or 3D patches as inputs depending on the embedding 

dimension.

Segmentation Transformers for different imaging modalities: Medical image 

modalities are of potential challenges with deep learning tools. The medical segmentation 

decathlon (Antonelli et al., 2021), a challenge dataset designed for general purpose 

segmentation tools, contains multiple radiological modalities including dynamic CTs, T1w, 

T2w, and FLAIR MRIs. In addition, pathology images, endoscopy intervention data, or 

videos are also challenging medical segmentation scenarios. Upon image modalities with 

Transformer model, for only CT studies, CoTr (Xie et al., 2021b), U-Transformer (Petit et 

al., 2021), TransClaw (Chang et al., 2021), COTRNet (Shen et al., 2021a), AFTerNet (Yan et 

al., 2022), TransFusionNet (Meng et al., 2021), T-AutoML (Yang et al., 2021), etc. conduct 

experiments on extensive evaluation. Among a large number of methods, researchers attempt 

to explore general segmentation approaches that can at least handle volumetric data both in 
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CT and MRI, for which UNETR (Hatamizadeh et al., 2022b), VT-UNet (Peiris et al., 2021), 

SwinUNETR (Tang et al., 2022), UNesT (Yu et al., 2022c), MT-UNet (Wang et al., 2021c), 

TransUNet (Chen et al., 2021d),, TransClaw (Chang et al., 2021), LeViT-UNet (Xu et al., 

2021a), nnFormer (Zhou et al., 2021a), MISSformer (Huang et al., 2021), D-Former (Wu et 

al., 2022b), Swin-UNet (Cao et al., 2021), and some pre-training workflows are proposed. 

Regarding pathology images, SpecTr (Yun et al., 2021), MBT-Net (Zhang et al., 2021a), 

MCTrans (Ji et al., 2021), MedT (Valanarasu et al., 2021), and X-Net (Li et al., 2021d) 

are some pioneering works. Finally, SegTrans (Li et al., 2021e), MCTrans (Ji et al., 2021), 

Polyp-PVT (Dong et al., 2021a), DS-TransUNet (Lin et al., 2021), and TransFuse (Zhang et 

al., 2021b) can model endoscopy images or video frames.

4.2. Medical image recognition and classification

Since the advent of ViT (Dosovitskiy et al., 2020), it has exhibited exceptional performances 

in natural image classification and recognition (Wang et al., 2021f; Liu et al., 2021b; 

Touvron et al., 2021b; Chu et al., 2021). The benefits of ViT over CNN to image 

classification tasks are likely due to the following properties:

• The ability of a single self-attention operation in ViT to globally characterize 

the contextual information in the image provided by its large theoretical and 

effective receptive field (Ding et al., 2022; Raghu et al., 2021). [Property M1]

• The self-attention operation tends to promote a more flat loss landscape, which 

results in improved performance and better generalizability (Park and Kim, 

2022). [Property M4]

• ViT is shown to be more resilient than CNN to distortions (e.g., noise, blur, and 

motion artifacts), semantic changes, and out-of-distribution samples (Cordonnier 

et al., 2019; Bhojanapalli et al., 2021; Xie et al., 2021a). [Property M5]

• ViT has a weaker inductive bias than CNN, whose convolutional inductive 

bias has been shown to be advantageous for learning from smaller datasets 

(Dosovitskiy et al., 2020). However, with the help of pre-training using a 

significant large amount of data, ViT is able to surpass convolutional inductive 

bias by learning the relevant patterns directly from data. [Property M3]

• Related to the previous property, the superior scaling behavior of ViT over CNN 

with the aid of a large model size and pre-training on large datasets (Liu et al., 

2022e; Zhai et al., 2022). [Property C1]

• It is flexible to design different network architectures by mixing Transformer and 

CNN modules to accommodate different modeling requirements. [Property C2]

These appealing properties have sparked an increasing interest in developing Transformer-

based models for medical image classification and recognition. The original ViT 

(Dosovitskiy et al., 2020) achieves superior classification performance with the help of pre-

training on large-scale datasets. Indeed, as a result of their weaker inductive bias, pure ViTs 

are more "data hungry" than CNNs (Park and Kim, 2022; Liu et al., 2021a; Bao et al., 2021). 

As a result of this discovery, many supervised and self-supervised pre-training schemes for 

Transformers have been proposed for applications like COVID-19 classification (Park et al., 
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2021; Xie et al., 2021c; Mondal et al., 2021), retinal disease classification (Yu et al., 2021a; 

Matsoukas et al., 2021), and histopathological image classification (Wang et al., 2021g). 

Despite the intriguing potential of these models, obtaining large-scale pre-training datasets 

is not always practicable for some applications. Therefore, there have been efforts devoted 

to developing hybrid Transformer-CNN classification models that are less data-demanding 

(Sriram et al., 2021; Park et al., 2021; Dai et al., 2021a; He et al., 2021a; Gao et al., 2021c). 

Next we briefly review and analyze these recent works for medical image classification and 

also list the reviewed works in Table 2.

Hybrid model: The earliest use of ViTs for medical image classification is on COVID-19 

classification from chest X-rays (Sriram et al., 2021; Park et al., 2021). Public datasets 

like CheXpert (Irvin et al., 2019), ChestXR (Akhloufi and Chetoui, 2021), and COVIDx 

CXR (Wang et al., 2020b) provide over 10,000 chest x-ray images. Due to the massive 

quantity of images in these datasets, they are suitable for network pre-training as well 

as for evaluating downstream classification tasks. (Sriram et al., 2021) introduce a hybrid 

CNN-Transformer model for COVID-19 prognosis by analyzing a series of chest X-ray 

images taken at various time points. Specifically, a MOCO (He et al., 2020a; Chen et al., 

2020) encoder (a CNN) pre-trained in a self-supervised manner is used to extract features 

from each X-ray image. The features extracted from multiple images of the same patient are 

then fed into a Transformer followed by a linear classifier for classification. In their model, 

only the CNN backbones (i.e., the MOCO encoders) are pre-trained and the Transformer 

is randomly initialized, whereas the overall network is fine-tuned for the classification 

task. Similarly, (Park et al., 2021) propose to bridge DenseNet-121 (Huang et al., 2017) 

with ViT. The DenseNet is pre-trained on the CheXpert dataset using the Probabilistic 

Class Activation Map (PCAM) pooling operations introduced in (Ye et al., 2020), whilst 

the ViT is randomly initialized. The overall network is subsequently trained and evaluated 

on several chest X-ray datasets for COVID-19 diagnosis, where their model outperforms 

ResNet (He et al., 2016) and vanilla ViT (Dosovitskiy et al., 2020) that are trained 

using the same training strategy. (Zhao et al., 2022) propose SETMIL for pathological 

image analysis. SETMIL begins by embedding the large-sized whole slide image (WSI) in 

low-resolution position-encoded embeddings via a pre-trained CNN. Then, low-resolution 

embeddings are subjected to a Transformer-based pyramid multi-scale fusion based on 

tokens-to-token ViT (Yuan et al., 2021b) to extract multi-scale context information. A novel 

spatial encoding Transformer that combines absolute and relative positional embedding 

is used for the final classification. To achieve a similar objective, (Zheng et al., 2022b) 

propose KAT, which focuses on establishing the correspondence between tokens and a 

set of kernels associated with a set of positional anchors on the WSI. A CNN that has 

been pre-trained is first used to extract features from the non-overlapping patches of the 

WSI. In the mean-while, a set of anchor points is extracted using K-means clustering 

on the feature patches. Then, a set of multi-scale weighting masks for each anchor point 

is defined and sent together with the feature patches and a set of trainable kernels to 

a Transformer. The Transformer uses cross-attention between tokens and kernels, and 

classification is achieved through kernel interaction with the classification token. This 

reduces the quadratic computational cost of the Transformer and reaches close to linear 

complexity in relation to the size of the WSI. In (Lv et al., 2022), Lv et al. introduce 
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RAMST for the classification of microsatellite instability. In particular, a feature weight 

uniform sampling method is presented to learn representative features of image regions, and 

a Transformer encoder is used to aggregate region-level features with patch-level features 

extracted by a pre-trained CNN. Meanwhile, Reisenbuchler et al. propose a local attention 

graph-based Transformer (LA-MIL) for microsatellite instability classification and genetic 

mutation prediction in whole slide pathological images (Reisenbüchler et al., 2022). The 

method starts by tessellating a gigapixel WSI into patches of identical size, removing 

patches containing background, artifacts, and non-tumor tissue using global thresholding 

and manual annotations. Then, a CNN that has been pre-trained on histopathological data 

compresses each patch into a feature vector, and a kNN graph matrix is constructed to 

describe the spatial relations between patches. A local attention Transformer computes 

the attention between each patch and its neighbors from the graph matrix. Not only does 

LA-MIL provide promising performance, but it also permits the visualization of local 

attention for interpreting the contribution of each patch to the classification prediction. 

In (Zheng et al., 2022a), Zheng et al. propose Multi-transSP for the survival prediction of 

nasopharyngeal carcinoma patients from CT and tabular data. Multi-transSP exploits the 

capabilities of CNNs to extract representative features and the capability of Transformers 

to fuse features. ResNet18 (He et al., 2016) first extracts features from the 2D CT slices, 

which are concatenated with the feature representation of the tabular data generated by a 

linear layer. The output features are fused by a Transformer, which is then followed by a 

fully-connected layer to generate a survival prediction.

Rather than pre-training the CNN backbone of the hybrid model, (Wang et al., 2021g) pre-

train the entire CNN-Transformer (designated as TransPath) using a self-supervised learning 

method, BYOL (Grill et al., 2020). In addition, the authors develop a token-aggregation 

and excitation (TAE) module for use with the MSA output in the ViT (Dosovitskiy et al., 

2020). Specifically, the TAE module first averages all token embeddings, then applies two 

sets of linear projection and activation functions to excite the averaged embeddings, which 

are then re-projected to the MSA output. According to (Wang et al., 2021g), combining 

MSA and TAE enables the Transformer to consider sufficient global information since each 

element in the output is the aggregated outcome of all input tokens. They conduct extensive 

experiments against several other Transformer-based networks on several benchmark 

histopathology image classification datasets and demonstrate superior performance.

Several studies suggest that even without pre-training, Transformer may be an effective 

complement to CNNs for feature extraction in a hybrid model. (Gao et al., 2021c) propose 

the instance-based ViT (i-ViT) for subtyping renal cell carcinoma in histopathological 

image. Their framework begins by extracting nuclei-containing image patches (regarded 

as instance-level patches) and the corresponding nuclei grades and sizes from an input 

histopathology image. The patches are sorted by nucleus grade and size, and a predefined 

number of patches is concatenated and then used as the input to a light CNN. The output 

embeddings, along with additional embeddings containing information on the nuclei grades 

and positions relative to the entire image, are sent into a ViT (Dosovitskiy et al., 2020). 

The ViT captures cellular level and cell-layer level features for subtyping. The authors train 

and assess the i-ViT using a dataset of 1,163 ROIs/pictures taken from 171 whole slide 

images, and the i-ViT achieves improved performance than the CNN-based baselines. In 
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(He et al., 2021a), He et al. propose a hybrid model for brain age estimation that does not 

require pre-training. Their model consists of two paths: a global path that extracts global 

contextual information from the whole brain MRI 2D slice, and a local path that extracts 

local features from image patches segmented from the 2D slice. Each path has a CNN 

backbone for generating high-level features from the input image/patches. Following that, a 

"global-local Transformer" (He et al., 2021a) is used to aggregate the features from the two 

paths for brain age estimation. With less than 8,000 training samples, their model trained-

from-scratch performs noticeably better in comparison to a range of CNN and Transformer 

baselines. Although the studies discussed in this paragraph are trained on datasets with 

limited samples, they still outperform the CNN-based baselines, revealing the promising 

potential of hybrid models for data-limited applications. Płotka et al. propose BabyNet 

(Płotka et al., 2022) that advances a 3D ResNet-based network with an MHSA module 

for fetal birth weight prediction. BabyNet is similar to BoT (Srinivas et al., 2021) in that 

it replaces the bottleneck convolution block with an MHSA to aggregate local and global 

feature representations more effectively. Unlike BoT, the MHSA module of BabyNet uses 

temporal positional embedding for temporal analysis between frames and relative positional 

embedding for encoding spatial correspondence within frames. BabyNet outperforms several 

comparative learning-based models with accuracy comparable to human experts.

Pure ViT: The aforementioned models bridge CNN backbones with Transformers. 

Nevertheless, pure Transformers have also been shown to be effective for medical image 

classification when pre-trained. (Mondal et al., 2021) develop a multi-stage transfer learning 

strategy for adapting the original ViT (Dosovitskiy et al., 2020) to COVID-19 classification 

tasks. Specifically, they adopt the ViT that is trained on ImageNet (Deng et al., 2009; 

Russakovsky et al., 2015) and fine-tune it using images from the target domain. Their 

method is tested on two publicly available datasets, namely the COVIDx-CT-2A (Gunraj, 

2021) and CheXpert (Irvin et al., 2019), and outperforms a variety of baseline methods 

in terms of classification accuracy. Likewise, (Yu et al., 2021a) propose MIL-VT that 

fine-tunes the ViT pre-trained on ImageNet for retinal disease classification. The pre-trained 

ViT is first fine-tuned on an in-house large-scale fundus image dataset (> 300, 000 fundus 

images), and subsequently on two publicly available datasets (APTOS (APTOS, 2019) and 

RFMiD2020 (RIADD, 2020)) for downstream classification tasks. In the original ViT, only 

the features corresponding to the "classification token" (Dosovitskiy et al., 2020) are sent 

to an MLP for final classification, with the features extracted from the image patches 

being neglected. Yu et al. hypothesize that the features from image patches might contain 

important complementary information. Thus, they introduce an additional Multiple Instance 

Learning module (referred to as a "MIL head" (Yu et al., 2021a)) that aggregates the features 

extracted from the patches and then performs prediction using the aggregated features. 

MIL-ViT backpropagates the loss into ViT during training through two paths: one via the 

MLP classifier in ViT and another via the added "MIL head". During inference, the final 

prediction is made by averaging the output logits from the two paths. (Matsoukas et al., 

2021) compare ResNet (He et al., 2016) and DeiT (Touvron et al., 2021b) side-by-side with 

three scenarios: training-from-scratch (i.e., without pre-training), supervised pre-training 

on ImageNet (Deng et al., 2009), and self-supervised pre-training on medical images in 

addition to the supervised pre-training. On three benchmark datasets, they empirically find 
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that ResNet outperforms DeiT when trained from scratch, and this performance gap could 

be closed with the supervised pre-training. Moreover, they show that DeiT performs slightly 

better than ResNet with the additional self-supervised pre-training on medical images, 

further demonstrating the potential of self-supervised pre-training of pure Transformers for 

medical image classification. In (Saeed et al., 2022), the authors propose TMSS for the 

joint prediction of a patient’s survival risk score and tumor segmentation using PET/CT 

and electronic health records (EHR). The input PET/CT is evenly divided into patches, 

linearly embedded, and then concatenated with the linear embedding of the patient’s EHR. 

The output is then fed into a ViT (Dosovitskiy et al., 2020) but without the class token. 

After that, The output of the ViT is sent to a multi-task logistic regression model that 

predicts survival risk scores and a CNN decoder that generates the segmentation mask. The 

model achieves superior performance on the HECKTOR dataset (Oreiller et al., 2022) when 

compared to competing models.

3D modeling: To date, the majority of Transformers for medical image classification 

has concentrated on 2D applications for various reasons, including reduced computational 

complexity and the ability to directly use models pre-trained on large-scale natural images 

(e.g., ImageNet). However, since most medical imaging modalities produce 3D images, 

developing efficient Transformers for 3D classification is anticipated to receive an increased 

attention in the near future. (Xie et al., 2021c) develop a Universal Self-supervised 

Transformer (USST) that can be pre-trained using both 2D and 3D images jointly. 

Specifically, the authors propose the switchable patch embedding (SPE) for use in the 

Pyramid Vision Transformer (PVT) (Wang et al., 2021f), which adapts to the dimensionality 

of the input image by switching between 2D and 3D patch embedding. The USST pre-

training framework is developed based on the student-teacher paradigm, in which both the 

student and teacher paths share the identical architecture, but the teacher path is updated 

using an exponential moving average of the weights of the student path. The authors use > 5, 

000 3D CT images and > 100, 000 2D chest X-rays to pre-train the USST framework. 

The pre-trained Transformers is then fine-tuned on multiple 2D and 3D classification 

tasks, with the USST framework considerably outperforming other widely used pre-training 

frameworks on downstream tasks. To achieve a similar objective on dimension-independent 

pre-training, (Cai et al., 2022) propose a self-supervised learning method to pre-train 

ViT (Dosovitskiy et al., 2020) on both 2D and 3D ophthalmic images for downstream 

ophthalmic disease classification tasks. A unified patch embedding module is developed to 

extract a fixed number of 2D/3D patches from the input based on random masking. The 

extracted patches are then passed to a ViT (Dosovitskiy et al., 2020) and two decoders for 

self-supervised learning to reconstruct the original and the gradient images by carrying out 

the masked image modeling task (He et al., 2022; Xie et al., 2022). This Transformer-based 

model is pre-trained, fine-tuned, and then evaluated on >95, 000 ophthalmic images with 

six different classification tasks, demonstrating state-of-the-art performance on all of the 

evaluated tasks.

Non-Euclidean imaging: Functional magnetic resonance imaging (fMRI) is widely used 

to capturing the temporal signal of neural activity. Estimation of brain activity can be 

measured by functional connectivity (FC), the degree of temporal correlation between 
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regions of the brain. Transformer also shows superiority and potential in analysis of 

brain connectome. (Kim et al., 2021a) propose a GNN and Transformer hybrid model 

in gender classification on resting-state fMRI and task decoding for task fMRI, with a 

dynamic GNN enhanced by an elaborate spatial attention learning the representation of 

the brain connectome from a single time-step fMRI, and a single-headed Transformer 

encoder integrating attended features temporally. Transformer together with dynamic GNN 

is capable to capturing characteristics of functional connectivity which fluctuates over 

time. BolT (Bedel et al., 2022) exploits a cascade of Transformer blocks to encode 

local representations of FC, which is performed on temporally-overlapping windows. 

BolT comprises a cross-window attention module, with the extent of window overlap 

progressively, to enhance sensitivity to the diverse time scales of FC features. The 

integration ability from cascaded Transformer promises BolT to achieve the state-of-the-art 

in HCP gender prediction and cognitive task classification (Van Essen et al., 2013), and 

autism spectrum disorder detection task (Di Martino et al., 2014). (Dai et al., 2022) take 

the point that FC feature suffers from the insufficient representation ability and coarse 

granularity. They proposed BrainFormer, a convolution-transformer hybrid architecture that 

employs a 3D CNN backbone modeling the detailed and informative features from fMRI 

volume. BrainFormer inserts CNN-based attention blocks into backbone in shallow layers, 

capturing the spatial correlation. And it exploits transformer-based attention blocks in deep 

layers to fuse the global information. The effectiveness and generalizability of this method 

is evaluated on ABIDE (Di Martino et al., 2014), ADNI (Petersen et al., 2010), MPILMBB 

(Mendes et al., 2019), ADHD-200 (Bellec et al., 2017), and ECHO, with diseases of autism, 

ALzheimer’s disease, depression, attention deficit hyperactivity disorder, and headache 

disorders. (Yu et al., 2022d) propose a Twin-Transformers to simultaneously capture 

temporal and spatial features from fMRI. With brain signal matrix as input, the spatial 

Transformer focuses on non-overlapping spatial patches and the temporal Transformer 

takes non-overlapping temporal patches as tokens. In other scenarios in neural imaging, 

(Dahan et al., 2022) extend ViTs to non-Euclidean manifolds cortical surface and propose 

the Surface Vision Transformer (SiT) for sequence-to-sequence modelling surfaces with 

projection to a regularly tessellated icosphere. SiT proves a certain level of transformation 

invariance without introducing strong inductive bias into framework. (Cheng et al., 2022) 

propose a spherical Transformer in quality assessment of cortical surface, represented by 

triangular meshes and mapped onto a spherical manifold. The spherical Transformer shows 

its potential in extracting the structural and contextual pattern among vertices.

In summary, Transformer-based medical image classification still relies heavily on pre-

training using large-scale datasets, either supervised or self-supervised. On the other hand, 

for applications with limited data availability, initializing Transformers with weights pre-

trained on natural images is found to be beneficial for improving performances. However, 

without pre-training and access to large-scale training data, Transformers may not be 

more effective than CNNs for medical image classification. Moreover, the majority of the 

existing Transformer-based models focuses on 2D applications. With a growing research 

interest in Transformers, we anticipate that further efforts will be directed toward developing 

Transformer-based models for 3D classification applications.
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4.3. Medical image detection

The use of Transformers for object detection in natural images is pioneered by Carion 

et al. in DETR (Carion et al., 2020). DETR makes use of both the encoder and decoder 

from the original Language Transformer used in NLP (Vaswani et al., 2017), whereas 

ViT (Dosovitskiy et al., 2020) borrows only the encoder. In computer vision, efforts have 

been made to augment both Transformer encoder-decoder (i.e., DETR) (Zhu et al., 2020; 

Zheng et al., 2020; Sun et al., 2021b) and Transformer encoder-only (i.e., ViT) (Beal et al., 

2020; Li et al., 2022e) designs for object detection, all of which have shown demonstrable 

performances. On the one hand, DETR’s Transformer decoder learns to make direct set 

predictions such that duplicate bounding box predictions are suppressed, eliminating the 

post-processing procedures for the predictions (e.g., non-maximal suppression). In the field 

of medical imaging, a few Transformer-based object detection methods have been developed 

based on DETR (Shen et al., 2021a; Mathai et al., 2022). However, it has been discovered 

that DETR takes much longer training epochs for convergence than ConvNet-based models 

(Zhu et al., 2020; Fang et al., 2021; Beal et al., 2020). On the other hand, using only the 

Transformer encoder may benefit from the transferability of the encoders pre-trained on 

large-scale datasets (e.g., ImageNet (Deng et al., 2009; Russakovsky et al., 2015), thereby 

accelerating convergence. Furthermore, combining these encoders with ConvNets introduces 

additional inductive bias, reducing the amount of data needed to construct an effective 

model. Several attempts have been made in medical imaging that uses Transformer encoders 

as a component of the feature extractor in conjunction with ConvNets for bounding box 

prediction (Jiang et al., 2021; Li et al., 2022b) and for applications where the bounding 

boxes are not needed (Ma et al., 2021a; Zhu et al., 2022). While the advantages of 

Transformers for image classification remain relevant to object detection (i.e., properties 

M1, M4, M3, M5, C1, and C2), the main advantage is that:

• The self-attention mechanism computes globally or with a very large kernel, 

making Transformer more ideal for comprehending contextual information 

contained in an image, which is crucial for object detection. [Property M1]

Transformer as encoder and decoder: (Shen et al., 2021a) propose a convolution-

in-Transformer (COTR) network for polyp detection in colonoscopy. COTR is built on 

top of DETR with an aim to address the slow convergence issue with DETR. Because 

the Transformer encoder in DETR operates on flattened image features (i.e., vectors), it 

may lead the image feature structures to become disorganized. The authors thus embed 

convolution layers between the Transformer encoder and decoder to reconstruct the flattened 

vectors into high-level image features. This preserves the feature structures within the 

network and increases convergence speed. Additionally, DETR is shown to effectively detect 

lymph nodes in T2 MRI. (Mathai et al., 2022) demonstrate using a publicly available dataset 

that DETR, with a little tweaking to the loss functions, could surpass multiple state-of-the-

art lymph node detection methods by a large margin.

Hybrid CNN and Transformer-encoder: (Jiang et al., 2021) augment YOLO (Redmon 

et al., 2016) with a Transformer encoder for dental caries detection. Specifically, a 

sequence of convolution and pooling operations was followed by a Transformer to extract 
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deep features at a lower resolution. In an identical manner to YOLO, the features at 

all resolutions are sent into the neck module and subsequently the detection head for 

bounding box prediction. Their model exhibits improved accuracy and average precision 

compared with the ConvNet-based baselines. In (Ma et al., 2021a), Ma et al. propose 

TR-Net, a Transformer-based network for detecting coronary artery stenosis in Coronary CT 

angiography. The authors begin by reconstructing multiplanar reformatted (MPR) images 

from coronary artery centerlines. The MPR images are then divided into equal-sized cubic 

volumes, with each volume centered on the coronary artery’s centerline. After extracting 

semantic features from each volume using a shallow ConvNet, the features from all 

volumes are combined with learnable positional embeddings to preserve the volumes’ 

ordering information. Then, the features are sent to a Transformer encoder to analyze 

relationships within the volume sequence. The output of the TR-Net is not a bounding box 

but a probability of each cubic volume having significant stenosis. Similarly, (Zhu et al., 

2022) use a Transformer as the encoder for multi-anatomy landmark detection Liu et al. 

(2010). The authors propose a domain-adaptive Transformer (DATR), an anatomy-aware 

Transformer that is invariant of the Transformer architecture and capable of operating on a 

variety of anatomical features. DATR is built on the basis of a pre-trained Swin Transformer 

(Liu et al., 2021b), which extracts four scales of features and passes them to a ConvNet 

decoder. The network produces a heatmap with the highest-intensity locations corresponding 

to the landmarks. Last but not least, (Li et al., 2022b) propose a slice attention Transformer 

(SATr) that can be plugged into existing three-slice-input ConvNet backbones to improve 

the accuracy of universal lesion detection (ULD) in CT. The SATr blocks are introduced 

between the ConvNet backbone and the feature collector to better model long-distance 

feature dependencies. Each SATr block calculates self-attention between and within the 

features of the slices. The authors demonstrate that by simply integrating the SATr into 

existing three-slice-input ULD models, detection accuracy could be greatly improved and 

reach the state-of-the-art. (Tian et al., 2022) propose a weakly-supervised framework to 

identify polyps from colonoscopy video frames. The authors begin by extracting features 

from each video frame using a pre-trained I3D network (Carreira and Zisserman, 2017) to 

produce a feature token. The tokens are then sent to a Transformer for the detection of polyp 

frames. The authors augment the original ViT (Dosovitskiy et al., 2020) by replacing its 

linear embedding layers with depth-wise convolutional operations to capture local temporal 

relationships more effectively. In addition, a novel contrastive snippet mining strategy is 

proposed to extract hard and easy, normal and abnormal video frames during training for 

enhanced robustness in detecting subtle polyp tissues. (Windsor et al., 2022) propose a 

context-aware Transformer for spinal cancer detection in multi-sequence spinal MRI. A 

pre-trained ResNet (He et al., 2016) is fed using 2D slices from multiple MRI sequences 

(e.g., T1, T2, STIR, FLAIR, etc.) of multiple spinal columns to extract representative 

features. The feature vectors for each slice are then aggregated using a lightweight two-layer 

Transformer, along with additional embedding vectors specifying the level of each input 

vertebra and the MRI sequence employed. An attention operation is used at the end of the 

network to merge the features of the same vertebra. Then, the output is converted by a linear 

layer to produce the prediction for the corresponding vertebra. The authors demonstrate 

that their method leads to improved accuracy compared with a well-established method, 

SpineNet (Jamaludin et al., 2017).
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In summary, the existing works (also as listed in Table 3, the top part) have demonstrated 

the potential for Transformer-based networks to be used for medical image detection. For 

applications that require generating bounding boxes, the Transformer encoder and decoder 

designs (e.g., DETR (Carion et al., 2020)) may be adopted to alleviate the need for 

expensive post-processing processes (e.g., non-maximal suppression). Transformers have 

shown promise for detection applications, but since medical datasets are often modest in 

size, it may be necessary to tweak the network architecture or training strategy to accelerate 

convergence and reduce the amount of training data needed to develop an effective model. 

In other applications, pre-trained Transformer encoders on natural images may be viable for 

enhancing a neural network’s ability to model long-distance feature dependencies without 

sacrificing the speed of convergence. In comparison with training from scratch, recent 

breakthroughs in self-supervised pre-training of Transformers for object recognition have 

shown significant performance improvements (Dai et al., 2021b; Dong et al., 2021b). In 

addition, studies have revealed that self-supervised pre-training strategies are useful for 

medical image segmentation and classification (Matsoukas et al., 2021; Xie et al., 2021c; 

Tang et al., 2022; Karimi et al., 2021), thus we expect to witness more contributions on 

self-supervised learning for medical image detection.

4.4. Medical image registration

Transformer is a viable choice for medical image registration since it has a better 

understanding of the spatial correspondence between and within images, and image 

registration is a process of establishing such correspondence between the moving and fixed 

images. The main advantages of applying Transformers over ConvNets to image registration 

are:

• The self-attention mechanism in a Transformer has a large effective receptive 

field that encompasses the entire image (as shown in Fig. 4), enabling the 

Transformer to explicitly capture the long-range spatial relationships between 

points in the image (Raghu et al., 2021; Ding et al., 2022). [Property M1]

• The majority of the learning-based deformable registration models adopt the 

spatial transformer network design (Jaderberg et al., 2015), which generates 

high-dimensional vector field mapping (i.e., one transformation for each spatial 

coordinate) with several million transformations per 3D volume. However, the 

commonly used CNN-based registration models are often of small parameters 

(e.g., VoxelMorph-1 (Balakrishnan et al., 2019) has about 0.3M parameters). 

Therefore, the Transformer’s superior scaling behavior of a large-scale model 

size over that of ConvNets may contribute to the establishment of a more precise 

spatial correspondence [Property C1].

Whereas with ConvNets, due to the limited receptive fields of convolution operations, these 

long-range spatial relationships can only be implicitly modeled in the deeper layers. As 

a result, Transformers is a more compelling contender than ConvNets for serving as the 

backbone for deep-learning-based image registration.

Transformers have been used predominantly for 3D registration applications such as inter-

patient and atlas-to-patient brain MRI registration (Chen et al., 2021c, 2022b; Zhang 
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et al., 2021c; Liu et al., 2022a), as well as phantom-to-CT registration (Chen et al., 

2022b). As shown in Fig. 11, Transformer-based registration networks primarily employ 

hybrid architectures, with Transformers used in the encoding stage to capture the spatial 

correspondence between the input moving and fixed images, and ConvNet encoders used 

to generate and refine the deformation fields. In the next subsection, we briefly summarize 

recent works on Transformer-based medical image registration (as listed in Table 3, the 

bottom part) and Fig. 11 provides a schematic illustration of these approaches.

The use of Transformers for 3D medical image registration is first investigated by (Chen 

et al., 2021c). The authors propose a hybrid model, ViT-V-Net, in which the encoder 

is composed of convolutional layers, down-samplings, and a ViT (Dosovitskiy et al., 

2020), while the decoder is composed of consecutive convolutional layers and up-sampling 

operations. Long skip connections similar to those used in V-Net (Milletari et al., 2016) 

are used to maximize the flow of information between the encoding and decoding stages. 

This model first extracts high-level features from the concatenated image pair using the 

convolutional layers and down-samplings. Then, ViT is applied to capture the long-range 

spatial correspondence between the high-level features. The decoder then uses the ViT’s 

output to generate a dense displacement field that warps the moving image. This model 

outperforms the widely used learning-based model VoxelMorph (Balakrishnan et al., 2019) 

for inter-patient registration on an in-house brain MRI dataset, while using identical training 

procedures and having a comparable computational cost. Later, (Chen et al., 2022b) extend 

this model and propose TransMorph by substituting a Swin Transformer (Liu et al., 2021b) 

for the encoder, resulting in more direct and explicit modeling of the spatial correspondences 

within the input image pairs. Additionally, the authors present the diffeomorphic and 

Bayesian variants of TransMorph, the latter of which integrates Monte-Carlo dropout layers 

(Gal and Ghahramani, 2016) into the Swin Transformer encoder to enable registration 

uncertainty estimates. TransMorph is rigorously evaluated against a variety of baseline 

methods, including the traditional and ConvNet-based registration methods. Additionally, 

TransMorph is compared against several hybrid Transformer-ConvNet and pure Transformer 

network designs that demonstrate superior performances in other tasks (e.g., image 

segmentation). TransMorph outperforms the baseline methods in terms of Dice scores on 

two in-house datasets and the IXI3 brain MR dataset. (Shi et al., 2022) propose XMorpher, 

in which a Swin-like Transformer is separately applied to moving and fixed images. 

Unlike Swin, XMorpher uses cross-attention to enable the exchange of information between 

a pair of features from moving and fixed images. Encoder and decoder of XMorpher 

are both Transformer-based, with the decoder being symmetric to the encoder while the 

patch merging layer being replaced by transposed convolution to increase the resolution 

of the features in the decoder. In a similar fashion, (Zhu and Lu, 2022) propose Swin-

VoxelMorph, a pure Tranformer-based encoder and decoder network for inverse-consistent 

image registration. In contrast to XMorpher, Swin-VoxelMorph takes concatenated fixed 

and moving images as inputs and outputs two deformation fields for inverse and forward 

registration. In addition, the decoder of Swin-VoxelMorph uses patch expanding as opposed 

to transposed convolution to increase feature resolution. Meanwhile, (Zhang et al., 2021c) 

3 http://brain-development.org/ixidataset/ 
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propose a dual Transformer network (DTN) for 3D medical image registration. DTN is 

similar to ViT-V-Net in that the Transformer is applied to the high-level features extracted by 

convolutional layers and down-sampling operations. However, in addition to the encoder that 

extracts inter-image dependencies from the concatenated moving and fixed images, DTN 

employs two additional encoders with shared weights to extract intra-image dependencies 

from each image. Each encoder of DTN is composed of a U-Net encoder and an Image 

Processing Transformer (IPT) (Chen et al., 2021b). The output features from the three 

encoders are concatenated and sent to a ConvNet decoder to produce a dense displacement 

field. The authors evaluate DTN for the inter-patient registration task on the OASIS brain 

MRI dataset (Marcus et al., 2007), for which it outperforms baseline methods in terms 

of Dice and deformation regularity. Taking a different route, Transformer is also used to 

refine deformation fields. In (Liu et al., 2022a), Liu et al. propose PC-SwinMorph, which 

is a patch-based image registration framework that uses contrastive learning on features 

extracted from the fixed and moving patches, followed by a ConvNet decoder that decodes 

the features and generates deformation field for the associated patch. The authors then 

employ two consecutive Swin Transformer blocks that learn to fuse and stitch patch-wise 

deformation fields together. (Mok and Chung, 2022) propose C2FViT to tackle affine 

registration for brain MRI. C2FViT employs a multi-resolution strategy in which affine 

transformation parameters are estimated by a set of ViTs from low resolution input to high 

resolution. Comprehensive experiments reveal that C2FViT outperforms the comparative 

learning-based affine registration methods while being more robust to unseen datasets.

Despite the promising potential demonstrated by the aforementioned Transformer-based 

registration methods, the application of Transformers to medical image registration is 

still in its infancy. Advanced Transformer training strategies and more complicated self-

attention designs, both of which have been found to improve classification and segmentation 

performance (Xie et al., 2021c; Tang et al., 2022), have not yet been evaluated for 

registration.

4.5. Medical image reconstruction

As the fundamental precursor to downstream medical image analysis tasks, image 

reconstruction aims to generate high-quality structural representations or images of external 

or internal tissues of the human body. However, the practical MRI and CT imaging 

systems suffer from either a long acquisition time or an induced radiation in the imaging 

process, which causes an additional stress for patients. To alleviate the above problems, 

downsampling the acquired signals is commonly used; however it induces a very ill-posed 

problem and challenges the reconstruction algorithms. With the recent development of 

Transformer architectures and their capability of effectively characterizing global features, 

as well as the dense modeling of local patches that preserves more context details, Vision 

Transformer have attracted researchers and shown remarkable performances in medical 

image reconstruction.

While the under-sampling procedure alleviates the aforementioned problems, the 

accompanying artifacts prevent accurate clinical diagnosis; therefore, various iterative and 

convolutional models are proposed to suppress the artifacts. Although CNN-based post-
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processing and deep-unrolling methods show satisfactory performance, the global context in 

the structural representation is not fully captured by the spatial-split kernels, especially when 

context details are absent in the under-sampling scenarios. This motivates the exploration of 

the following key Transformer properties available for reconstruction:

• The long-range dependency modeling ability of Transformer is rather valuable. 

As is well known, medical images, different from natural images, consist of 

organ anatomies and represent 2D/3D information of a human body. The global 

correlation is much higher than that of natural images and is thus critical to be 

captured. [Property M1]

• As the fundamental procedure for diagnosis, reconstruction needs clearer 

anatomies. Towards this purpose, the dense modeling property and attention 

mechanism in Transformers assist in locating the most valuable features within 

the context of the whole image. [Property M2]

• Towards combining the dense modeling of Transformer and the local context 

modeling of CNN, mixing them as sub-modules in a hybrid model to 

accommodate different modeling requirements is flexible. [Property C2]

Under-sampled MRI reconstruction: Recently, motivated by a lack of attention paid 

to the intrinsic multi-scale information of MRI, ReconFormer (Guo et al., 2022d) designs 

a Pyramid Transformer Layer (PTL), which introduces a locally pyramidal but globally 

columnar structure. Then, via recurrently stacking the basic layer, the ReconFormer is 

capable of scaling the model and exploiting deep feature correlation through recurrent 

states in the model. Due to the use of recurrent structure, ReconFormer is lightweight 

and parameter-efficient, which alleviates the bottleneck that exists in previous Vision 

Transformer methods. To facilitate the exploration of the relative information between 

multi-contrast images in MRI reconstruction, DSFormer (Zhou et al., 2022b) proposes 

a novel Swin Transformer Reconstruction Network, which is based on the lightweight 

Swin Transformer (Liu et al., 2021b) with the backbone structure in a self-supervised 

reconstruction process. They use hybrid operations with both the convolutional layers and 

the involved Swin Transformer blocks, and condition the model with information from 

the reference contrast image, achieving a performance comparable to that of supervised 

reconstruction methods. SLATER (Korkmaz et al., 2022) pioneers the unsupervised MRI 

reconstruction using the long-range dependency of Transformers. It decouples the traditional 

imaging process into a phase of deep-image-prior learning and a subsequent phase of 

zero-shot inference. In the former phase, the proposed adversarial Transformer model 

is trained to capture a prior on coil-combined, complex MR images obtained from fully-

sampled acquisitions since the previously equipped CNNs prevent capturing the long-range 

relationship prior (Zhang et al., 2019a; Chen et al., 2021d). In the later phase, they 

reconstruct the target MRI via an iterative procedure to ensure the consistency between 

the reconstruction and the acquisition. The method renders the potential of Transformers in 

purely unsupervised reconstruction setting. For efficiently reconstructing the under-sampled 

target-contrast MR images, DuDoCAF (Lyu et al., 2022) takes advantage of the long-range 

dependency modeling capability of transformers to fuse features of a reference contrast 

MR image. Specifically, they propose the CAF and RRT modules composed of transformer 
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structures to first bridge the cross-modality relationship between reference and target k-

space data. Then, with recurrent dual-domain learning, they gain remarkable performances 

and fast imaging speed. As known, the high-computational cost of self-attention in 

Transformer hinders its further development in medical imaging. To tackle the issue, 

SDAUT (Huang et al., 2022a) proposes a U-Net-based Transformer that combines dense 

and sparse deformable attention in separate stages. These two involved deformable attention 

works together to efficiently model long-range dependencies. Further, they achieve state-of-

the-art performances and fast imaging speed, while still revealing model explainability.

Under-sampled CT reconstruction: MIST-net (Pan et al., 2021) proposes the multi-

domain integrative Swin Transformer network for improved sparse-view CT reconstruction. 

Considering the information loss in the projection domain and data inconsistency between 

image and projection domains, it begins by using an encoder-decoder structure to give 

an initial estimation. Then, a carefully designed High-definition Reconstruction Module 

is proposed, which is realized through the combination of Swin Transformer (Liu et 

al., 2021b) and convolutional layers. The post-processing Transformer structure indeed 

helps in reducing artifacts caused by the aforementioned problems. With an aim to 

further investigate the relationship between the sampling nature of projections and the 

global modeling capability of Transformers, DuDoTrans (Wang et al., 2021a) proposes a 

Sinogram Restoration Transformer (SRT) Module for projection domain enhancement. The 

model achieves satisfactory sparse-view reconstruction performance when combined with 

a similarly designed post-processing module in the image domain. Targeting to explore a 

more general prior with the local & nonlocal regularizations, RegFormer (Xia et al., 2022a) 

unrolls the gradient descent algorithm, followed by the designed iterative blocks composed 

of ConvNet and Transformer structures to model local and nonlocal characteristics, 

respectively. With such a hybrid architecture embedded into the iterative reconstruction 

scheme, the model reduces artifacts and preserves image details successfully. FIT (Buchholz 

and Jug, 2021) instead proposes to process the sinogram and the low-quality reconstruction, 

realized with Filtered Backprojection (Wang et al., 2019a), in the Fourier domain with the 

proposed Fourier Domain Encodings (FDEs). Then the two FDE representations are fed into 

the Fourier Image Transformer, an encoder-decoder Transformer structure, for predicting all 

Fourier coefficients. Following that, the inverse Fourier transformation is applied to restore 

the high-quality reconstruction. The carefully designed FDE representations are shown to 

reduce the computational burden on conventional Transformer structures.

As illustrated in Fig. 12 (a) and (b), these model designs benifit from the combination 

of ConvNet encoding and ViT media-processing, and achieves image context recovery. 

Besides, we compare the visualizations of Transformer-based method and pure ConvNet 

method in Fig. 13. ConvNets gives sharper soft tissue reconstructions and Transformer-

based methods recover the whole image better. Although the aforementioned sparse-view 

CT reconstruction methods (also listed in Table 4, the top part) have been proposed to 

explore the capability of Transformer versus CNNs in both image and projection domains, 

few works combines the dense modeling property of Transformer, which helps preserve 

clinical patterns from input low-quality images and down-sampled projections. Additionally, 

the limited-angle scenario is overlooked, but the relative consistency between in- and out-
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of-range projections may be modeled using the Transformer’s powerful global-modeling 

capability.

4.6. Medical image enhancement

Image enhancement is generally utilized as the subsequent procedure after reconstruction, 

aiming to remove noise artifacts and enhance medically concerned patterns. Different from 

high-level vision tasks (e.g., classification), the enhancement process requires maintaining 

details for the final pixel-level image. For this purpose, the commonly used pooling and 

strided-convolutional operations in the popular CNN architectures are undesired because of 

the loss of details. Additionally, the locality nature of convolutional operation constrains its 

potential to recover with more global contexts. In contrast, Transformer has shown the two 

attractive key properties:

• Transformers facilitate the modeling of global features by promoting a wider 

reception fields (as shown in Fig. 4), which establishes the intra-relationships 

throughout the whole image and provides abundant information for restoration. 

[Property M1]

• Within a whole image, enhancement targets to alleviate artifacts and blur for 

latter tasks while keeping else context. The involved self-attention mechanism 

guides the models to focus on the enhancement-related features, and the dense 

modeling maintains clear context. [Property M2]

TransCT (Zhang et al., 2021e) first decomposes a Low Dose CT (LDCT) into high and 

low frequency components, and denoises the noisy high-frequency component using the 

basic Transformer structure composed of the MSA and MLP layers, simultaneously assisted 

by the features of the noise-free low-frequency part. It pioneers the use of Transformer in 

denoising CT images, and numerically proves that the global modeling ability indeed aids 

in context preservation. To a different extent, TED-Net (Wang et al., 2021b) is proposed 

and studied in LDCT denoising to explore the convolution-free Transformer structure. Their 

design makes use of the tokenization and detokenization operations in the encoder-decoder 

architecture, which aims to entirely evaluate the spatial information extraction capability 

of the Transformer. Such a design helps understand the difference between the convolution-

free features and hybrid features in LDCT denoising, as well as the respective benefits 

of the two genres in clinical pattern recovery. To further combine the global modeling 

capability of Transformer and the successfully applied residual learning in low-level vision 

tasks, Eformer (Luthra et al., 2021) investigates a residual Transformer that redesigns the 

residual block in the denoising encoder-decoder architecture with non-overlapping window-

based MAS. Additionally, it utilizes strided-convolutions and -deconvolutions instead of 

downsampling and upsampling operations to preserve image context. The re-design of the 

previously validated structure, i.e., the residual learning here with Transformer as the basic 

block instead of convolutional layers, contributes a new perspective to the comparison of 

Transformer and CNNs. Although recent works focus on volumetric CT super-resolution, 

the conducted low-resolution (LR) volumes are most degraded from high-resolution CT 

volumes, which brings a domain gap between real-LR and such pseudo-LR volumes. (Yu 

et al., 2022a) thus releases RPLHR-CT paired real-world LR-HR volumes, and proposes 

the transformer-based TVSRN for volumetric CT super-resolution. Considering the remote 

Li et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation between slices, TVSRN designs an asymmetric encoder-decoder architecture 

composed of pure transformers. Such a structure enables the long-range dependencies 

modeling capability and the employed Swin Transformer (Liu et al., 2021b) reduces 

computational costs. For obtaining improved super-resolution MR Images, T2Net (Feng et 

al., 2021) specifically designs a task Transformer module in a multi-task learning process 

of super-resolution and reconstruction. It inserts the module between the iterative recovering 

processes of the two tasks, and utilizes the module to share informative features. In this way, 

the super-resolution features are enriched with the low-resolution reconstruction features, 

resulting in a context devoid of motion artifacts with the detail-preserving Transformer. 

WavTrans (Li et al., 2022a) proposes to impose anatomy information from reference contrast 

MR images for boosting super-resolution performances. They first use Wavelet transforms 

to obtain details of reference images, followed by a carefully designed hybrid structure 

composed of ConvNet and Residual Cross-attention Swin Transformer (Liu et al., 2021b) 

module to extract and upsample images. The introduced transformer explores nonlocal 

features and promotes long-range dependencies between feature maps.

These involved methods, as shown in Fig. 12, take advantage of the hybrid design that 

globally models the whole image context and locally models the fore/back-ground objects. 

In spite of these carefully designed works for image enhancement (also listed in Table 4), 

there is still no discussion of the relationship between the intrinsic properties of Transformer 

structure and image recovery process, leaving the reaction of Transformers on this task as a 

"black box" as deep learning. Future architectural design should place a higher emphasis on 

the interpretability of model mechanisms.

5. Future Perspectives

Returning back to the initial question: Can Transformers transform medical imaging? The 

answer is likely dichotomous. This is because Transformer, albeit powerful, belongs to 

machine learning, deep learning in particular, and hence it inherits the pros and cons of 

machine / deep learning.

The answer is likely positive because it is evident as shown in Section 4 that Transformer, 

one of the latest technological advances of deep learning, is picking up its momentum in 

medical imaging. The properties of Transformers (as listed in section 3.4), such as the 

ability to capture long-range dependencies and the scalability of self-attention, make them 

an attractive option for medical image analysis. As a result, many researchers have used 

these properties to develop Transformers that have performed better than CNNs in various 

medical image tasks. In fact, in the applications surveyed in this paper, some of these 

Transformers have even achieved state-of-the-art performance. It is predictable that more 

and more research will be devoted to innovating the architecture of transform and applying it 

to more medical imaging tasks.

The answer is likely negative too. In (Zhou et al., 2021c), Zhou et al. illustrate some of key 

traits of medical imaging: multi-modal with a high resolution, non-standard acquisition and 

data silo, noisy and sparse labeling, imbalanced samples, long-tail disease prevalence, etc. 

These traits are accompanied with challenges to be solved.
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5.1. Challenges

Annotation intensiveness.—The Transformer or deep learning in general requires 

large-scale datasets (Cheplygina et al., 2019). Empirically, transformer-based models can 

achieve higher performance trained on larger datasets (Chen et al., 2021f), and their 

performances degrade when data or annotations are sparse. To address the challenge, 

self-supervised transformers are promising tools. Using unlabeled data, proxy tasks such 

as contrastive learning and reconstruction can be leveraged to boost representation learning 

capability of transformers. Self-Supervised SwinUNETR (Tang et al., 2022) and unified 

pre-training (Xie et al., 2021c), these medical pre-training frameworks show that training 

with large-scaled unlabeled 2D or 3D images is beneficial to fine-tuning model with smaller 

datasets. However, we observe that employing pre-training is computationally exhaustive. 

Future works can be targeted to simplify and evaluate the efficiency of the pre-training 

framework and fine-tuning it to smaller datasets.

Data bias, domain adaptation, and model fairness.—In addition to the superior 

performance, scalability is an advantage brought by Transformer models. The robustness to 

scaling datasets and model complexity are useful properties to address data bias, domain 

gaps, and fairness. By effectively modeling larger datasets, transformer models (Xie et al., 

2021c; Tang et al., 2022) can learn diverse datasets, including different modalities, different 

body components, variant imaging protocols and reconstructions. Regarding these domain 

gaps, there are adaptation methods (Guan and Liu, 2021), which aim to overcome the 

distribution shift between source and target domains. Meanwhile, the other approach (Caton 

and Haas, 2020) addresses model fairness. For example, if a model is trained by exclusively 

male subjects, its performance on female subjects is unknown to the least extent and even 

worse, the model appears with a gender discrimination. We envision the transformers, with 

superior scalability, can be used to provide solutions to fairness and social affairs.

Incorporating domain knowledge.—Medical imaging is full of domain knowledge 

arising from different sources, including anatomical structures, imaging physics, geometric 

constraints, disease knowledge base, etc. All these knowledge governs the data generation 

process or serves strong priors for regularized. Visual quantitative analysis of anatomic 

structures remains a complex task for radiologists. Some of the histomorphometry features 

of regions of the organs/tissues (e.g. textural or graph features) are poorly adapted for 

manual identifications (Anandarajah et al., 2005). In this study, transformer networks are 

shown to provide a moderately better solution that achieves consistently robust performance 

with variate of anatomies. Compared with previous CNNs (Isensee et al., 2021), transformer 

approaches (Chen et al., 2022b; Yu et al., 2022c) facilitate better derivation of the visual 

and quantitative results. In addition, efficient modeling is essential for clinical practice in 

deploying AI networks. We observe, current medical datasets (Wasserthal et al., 2022) can 

be different in terms of imaging protocols, patient morphology, and institutional variations, 

which lead to challenging target tasks. Transformer models are yet to unleash the potential to 

tackle challenges of sensitivity and adapt abnormal primitives.

Task scalability.—Representation learning with medical images is challenging due to 

it heterogeneity nature (Zhang et al., 2015b). Prior studies typically focus solving single 
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medical task, transformer model, especially with self-supervised learning, are superior at 

learning heterogeneous tasks (Li et al., 2022c). The advanced scaling property empowers 

transformer the ability to tackling multi-domain tasks. In addition, by scaling up transformer 

networks (Zhai et al., 2021), models can fit variate datasets, researchers can adapt a model at 

training from a low-data regime (Tang et al., 2022) to larger scales.

Data scalability.—The lack of inductive bias in the original ViT (Dosovitskiy et al., 

2020) results in subpar performance when trained on a small amount of data (see M3 and 

Appendix .2). If a large amount of data is available, Transformers can surpass inductive bias 

by using various pre-training strategies (Li et al., 2022e; Zhai et al., 2022). In the field of 

medical imaging, pre-training strategies are also shown merits in improving Transformers’ 

performances (Xie et al., 2021c; Tang et al., 2022). However, it is not always practical 

to collect a large amount of data in medical imaging due to patient privacy concerns 

and labor-intensive manual annotations. Obtaining a large amount of data for imaging 

modalities or protocols currently under development is even more challenging. Therefore, 

it is necessary to develop less data-intensive Transformer models for medical imaging 

applications by introducing inductive bias into Transformer architectures. Several works 

have been proposed for both natural images (Touvron et al., 2021b; Liu et al., 2021b; Xu et 

al., 2021c; dâĂŹAscoli et al., 2021) and medical images (Jose and Oza, 2021; Gao et al., 

2021b; Jang and Hwang, 2022; Xie et al., 2021b) to address this issue.

Black box and interpretability.—Deep learning is known as a black-box approach and 

lacks interpretability (Zhang and Zhu, 2018). Though Transformer uses self-attention which 

mimics some human functions, still it is a black box and unable to provide insights on 

how variables are being combined to make decisions. Given that medical image analysis 

is keen to a modelâĂŹs interpretability, it is important to study the interpretability of a 

Transformer model. A common practice to visualize Transformers is to compute relevancy 

score from single or multiple attention layers. The multi-head self-attention mechanism 

provide a direct connections among tokens, an intuitive clue on decision-making. There 

are several methods to visualize transformer in natural images, raw-attention (Hao et al., 

2021), rollout (Xu et al., 2022), GradCAM (Li et al., 2022d), LRP (Chefer et al., 2021), 

etc. Besides, studies (Krishna et al., 2022; Kan et al.) are proposed by using Transformer 

backbones in investigating interpretability. Specifically, the self-attention on the last layer 

of ViTs, trained by a teacher-student style, is visualized. The visualization contains object 

segmentation, which is not clearly observed in supervised ViTs, nor in CNN (Caron et 

al., 2021). Recent efforts (Mondal et al., 2021; Matsoukas et al., 2021) in visualizing 

vision transformers on medical images conform to conventional methods as those on natural 

images. From a perspective of practical medical scenario, interpretability is not a property 

of the algorithm but a model affordance for clinical users (Chen et al., 2022a). The model 

visualization methods, currently used extensively, are depicting the interpretability purely 

computational. It should vary in methods and forms as contexts and users change. It 

remains a challenging and open problem, which would be an essential factor in convincing 

physicians and supporting the deployment of algorithms.
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3D modeling.—Most of medical image tasks need to process 3D volumetric data, 

however, vision Transformer models are known to be computationally intensive and 

memory-demanding. Efficiently and effectively handling 3D data is a key challenge for 

adopting Transformers in medical image analysis, UNETR (Hatamizadeh et al., 2022b), 

TransBTS (Wang et al., 2021e), CoTr (Xie et al., 2021b), nnFormer (Zhou et al., 2021a) 

and many pioneering works have been proposed to address challenges of modeling spatial 

features. Though, there are still difficulties at preserving 3D positional information between 

patches in 1D sequences, and loss of local positional information can lead to sub-optimal 

performance when dealing heterogeneous tissues in 3D medical image segmentation. 

Current works have shown great progresses in segmentation, classification, detection, 

registration, reconstruction or enhancement tasks with 3D radiographic images or videos.

Computational complexity.—As seen in Appendix .4, Transformers are typically 

computationally complex owing to the computation of self-attention, which is typically 

quadratic to input image size. While this seems to be less of an issue with natural images, 

it is a major concern with medical images. This is due to the fact that medical images tend 

to be far more substantial in size than the size that is common to natural image datasets. For 

example, a brain MRI image from the BraTS challenge (Menze et al., 2014) has a size of 

240 × 240 × 155, whereas a natural image from ImageNet (Deng et al., 2009) has an average 

size of around 450 × 400. As a result, Transformers used in medical imaging tend to be more 

compact and trained using a smaller batch size or patched input than their counterparts used 

for natural images. Many of the existing Transformers used in medical imaging applications 

are either constructed on top of a SWin Transformer (Liu et al., 2021b) (e.g., SWin-UNETR 

(Tang et al., 2022; Hatamizadeh et al., 2022a), SWin-UNet (Cao et al., 2021), nnFormer 

(Zhou et al., 2021a), and TransMorph (Chen et al., 2022b)) or rely on a CNN to extract 

and down-sample feature maps before feeding them into a Transformer (e.g., TransUNet 

(Chen et al., 2021d) and ViT-V-Net (Chen et al., 2021c)). Some exciting explorations have 

shown that it may be possible to bypass Softmax in order to linearize the computation of 

self-attention (Choromanski et al., 2021; Qin et al., 2022; Wang et al., 2020c; Xiong et 

al., 2021; Lu et al., 2021), but so far, none of these methods have been applied to medical 

imaging. We foresee more future research in this area for medical imaging applications.

5.2. Discussion and concluding thoughts

5.2.1. The role of MSA—Arguably, the success of a Vision Transformer is brought by 

MSA. However, recent works show that the role of self-attention block is not that much 

irreplaceable in extracting global features. The MSA works as a trainable aggregation of 

feature maps (Park and Kim, 2022), whose function can be covered by MLPs repeatedly 

applied across spatial or channels in several MLP-mixer like models (Tolstikhin et al., 2021; 

Touvron et al., 2021a; Yu et al., 2021b), or large kernel depth-wise convolutions (Liu et 

al., 2022e; Trockman and Kolter, 2022; Han et al., 2021b), or plain pooling operators to 

conduct spatial smoothing (Yu et al., 2021b). In (Tolstikhin et al., 2021; Yu et al., 2021b; Liu 

et al., 2022e), researchers raise skeptical arguments, ascribing the performance gains to the 

design of pipeline, not MSAs. A perspective of Transformer and CNNs is that convolutions 

in CNNs and MLPs in Transformers both learn the patterns derived from images, and 

pooling in CNNs and all operations aforementioned in Transformers are aimed at fusing and 
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integrating feature maps from previous layers. The differences lie in (i) fusion trainability, 

when comparing MSAs with pooling, (ii) fusion field size, when comparing original MSAs 

in ViT with those in Swin Transformer, and (iii) fusion method, when comparing depth-wise 

convolutions with MLPs.

5.2.2. Debate—Despite the promising potential that the Transformers have brought 

to medical imaging, there have been continuing discussions over which properties of 

Transformers (listed in Section 3.D) are particularly beneficial.

1. In (Raghu et al., 2021), the authors discover that the self-attention mechanism 

enables the early aggregation of global information (i.e., the modeling of long-

range dependencies) and that the residual connections help propagate global 

features throughout the Transformer.

2. (Ding et al., 2022) believes that the superiority of Transformers is due to 

their large effective receptive fields, where they experimentally reveal that 

incorporating convolution operations with large kernels could help close the 

performance gap between Transformers and CNNs.

3. Contrarily, in (Park and Kim, 2022), the authors observe that the modeling 

of long-range dependency could hinder the training of Transformers, and 

experimentally demonstrate that constraining locality rather than employing 

global computations improves Transformer performance. They argue that data 

specificity, not long-range dependency, is the critical feature of the self-attention 

mechanism. Additionally, they suggest that although Transformers encourage 

flatter loss landscapes, their weak inductive bias results in non-convex losses that 

disturbs training.

4. (Liu et al., 2022e) believe the superior performance of Transformers over CNNs 

is the result of larger model sizes and training datasets (i.e., the scaling behavior). 

The authors reveal that by carefully tweaking the CNN designs in accordance 

with Transformers, CNN outperform Transformers with the help of larger model 

sizes and training datasets.

5.2.3. Comparative models

CNNs.: Since the introduction of ViT (Dosovitskiy et al., 2020), many advancements to 

ViT have attempted to reinstate convolution-like behaviors, e.g., Swin Transformer (Liu 

et al., 2021b), CVT (Wu et al., 2021a), CeiT (Yuan et al., 2021a), and CMT (Guo et 

al., 2022a). Going a different route, efforts have been made to improve CNNs based 

on the rationale behind the success of Transformers. These CNN models may attain 

performances similar to those of Transformers. Liu et al. propose ConvNeXt (Liu et al., 

2022e), which modifies a standard CNN with Transformer-inspired components, such as 

depthwise convolution, layer normalization (Ba et al., 2016), GELU activation (Hendrycks 

and Gimpel, 2016), and so forth. ConvNeXt exhibits favorable performance and scalability 

to the competing Transformers while maintaining a CNN-only architecture. In (Ding et al., 

2022), Ding et al. draw inspiration from the large kernel size of the self-attention operation 

in a Transformer. They introduce RepLKNet, which substitutes the typically used small 
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convolution kernel (e.g., 3 × 3 or 5 × 5) with large kernels up to 31 × 31. RepLKNet’s 

performance is competitive to that of the competing Transformers, and it demonstrates 

excellent scalability to large data and model sizes. In a similar fashion, (Guo et al., 2022c) 

present VAN that takes advantage of both convolution and self-attention. VAN employs 

depth-wise convolutions with large kernel sizes to mimic self-attention, and it outperforms 

the comparative Transformers and CNNs on several computer vision tasks. As seen from 

these CNN models, the odyssey of CNN design has recently taken on resembling the 

characteristics of Transformers. These CNNs have benefited significantly from components 

like depthwise convolution and large kernel sizes, where the former is analogous to the 

weighted sum operation in self-attention (Liu et al., 2022e) and the latter resembles the large 

effective receptive field of Transformers (Ding et al., 2022). Similar trends can be observed 

in the field of medical imaging, where the integration of these Transformer-like components 

into CNN designs is gaining increased attention (Lin et al., 2022a; Liu et al., 2022d; Jia et 

al., 2022; Han et al., 2022).

MLPs.: Similar to the aforementioned CNNs, MLP-based models are influenced by 

Transformers but diverge from Transformers and CNNs. In (Tolstikhin et al., 2021), 

Tolstikhin et al. first demonstrate that, although being beneficial, convolution and self-

attention are not required for superior performance. They proposed MLP-mixer, a pure 

MLP architecture that attains competitive performances on image classification benchmarks. 

Since then, MLP-mixer has sparked research on developing MLP-based models that can 

compete with the well established CNNs and Transformers. In general, the architecture of 

MLP-based models resembles that of Transformers: first, the input image is divided into 

equal-sized patches; then, the patches are linearly projected to form tokens; and then, two 

types of MLP layers are repeatedly applied across either spatial locations or embedding 

channels. On the basis of this concept, models such as ResMLP (Touvron et al., 2021a), S2-

MLP (Yu et al., 2022b), CycleMLP (Chen et al., 2022c), Dynamixer (Wang et al., 2022d), 

Hire-MLP (Guo et al., 2022b) have shown promising results in a variety of computer vision 

applications. MLP-based models have several appealing advantages over Transformers and 

CNNs, including their simplicity of implementation, more stable training due to the absence 

of self-attention, their ability to capture long-range interactions, the visibility of the linear 

layers, and the alleviation of positional embedding (Tolstikhin et al., 2021; Touvron et al., 

2021a). However, the use of MLP-based models in the medical imaging field is still in its 

infancy, with only a small number of models proposed (Valanarasu and Patel, 2022).

The models discussed above aim to improve upon conventional CNNs and MLPs by making 

special modifications inspired by the properties of Transformers. Likewise, to develop an 

efficient model for medical imaging, it is necessary to understand which Transformer 

properties are particularly advantageous for specific medical imaging applications. In the 

next section, we discuss briefly the key Transformer properties for each medical imaging 

application.

5.2.4. Which properties are beneficial for medical imaging applications?
—It is worth noting that the majority of the findings about Transformers listed in 

5.2.2 are derived from image classification tasks. However, the applications of medical 
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imaging are not limited to classification. The properties listed in Section 3.D are still 

underexploited in all medical imaging applications. The majority of Transformer-based 
methods in medical imaging do not investigate the properties adequately and instead take 
the performance improvement from Transformers for granted. This paper surveys the 

applications of Transformers in medical imaging, including segmentation, classification, 

detection, registration, enhancement, and reconstruction. Yet, it remains to be a question 

of which Transformer properties are beneficial for which application. Further research is 

needed to establish the efficacy of these properties and put them into practical use, maybe 

along the following routes.

• Segmentation. Medical image segmentation is typically with high-resolution, 

high-dimensional images, which requires modeling capability of visual 

semantics in dense prediction. That means, unlike the language tokens that used 

as the basic word sequence in Transformers, visual contexts in segmentation task 

vary substantially in scale. ViT-based methods, especially hierarchical structures 

such as swin Transformer, are designed for efficient modeling of multiscale 

features (Properties M1, M2). Furthermore, Transformer-based segmentation 

networks show futuristic scaling behavior (Property C1) of exploiting large-

scale pre-training dataset with self-supervised learning, which provide effective 

solutions to the difficulties of acquiring expert annotated labels. We believe 

that the efficiency of modeling hierarchical contexts in medical images, and the 

effectiveness of pre-training strategy can pave the way for the future work of 

Transformer-based medical image segmentation.

• Recognition and classification. As the fundamental task evaluated by the original 

ViT (Dosovitskiy et al., 2020), the properties of Transformers for image 

classification have been intensively investigated in computer vision. Although 

medical images are very dissimilar to natural images, Transformers for medical 

image classification are expected to share similar properties with those deemed 

beneficial in natural image classification tasks (i.e., Properties M1, M3, M4, 

M5, and C1). Among these properties, Transformers’ superior scaling behaviour 

(i.e., pre-training using large-scale datasets, Property C1) has been validated 

for various medical classification applications. In general, the applications of 

Transformers for medical image classification are mostly limited to 2D, it will be 

necessary in the future works to expand Transformers to 3D applications given 

the volumetric nature of most medical images, which is related to Property C3.

• Detection. Detection is the task of localizing and categorizing lesions and 

abnormalities. Such a task relies heavily on the comprehension of contextual 

information about abnormalities and organs. Consequently, the capability of 

Transformers to model and aggregate long-range dependencies (Property M1) 

may be the most critical property among other properties for medical image 

Detection.

• Registration. In addition to the flatter loss landscape of Transformer-based 

registration models (as seen in Fig. 5 and Property M4), the large model 

size of Transformers (Property C1) may also aid in generating accurate high-
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dimensional vector fields, hence improving registration performance. Moreover, 

CNN-based models are often of small kernel sizes (e.g., 3 × 3 or 5 × 5), 

while the deformation or displacement in common registration applications 

often exceeds their kernel size. Therefore, CNNs may not recognize the proper 

spatial correspondence until the deeper layers. On the other hand, Transformers 

aggregate contextual information with large kernels starting from the first layer 

of the network (Property M1), which may play a crucial role in the improved 

performance.

• Reconstruction. As discussed, Properties M1 and M2 have been explored in 

reviewed works. Further considering the physical imaging system in a real-time 

clinical diagnosis, the photon noises blur the images and the imaging time 

troubles the waited patients. Therefore, [Properties M5 and C3] need to be further 

concerned in later model design when introducing ViT in reconstruction.

• Enhancement With the low-resolution or downsampled medical images, the 

Region of Interest (RoI), such as anatomy boundaries, seems the most important 

in the diagnosis. Thus, it’s worth exhausting to improve the RoI quality while 

tolerating the else image context less enhanced. Towards this target, exploring 

the relations from the locality of pixels [Properties M3] is necessary in a 

Transformer architecture design. Meanwhile, a considerable balance between the 

global modeling and local modeling of a hybrid model really matters in medical 

image enhancement.

Appendix

Appendix .1. Translational equivalence and invariance of CNNs

Translational equivalence and invariance are fundamentally different properties, as outlined 

in (Goodfellow et al., 2016). Translational equivalence refers to the capability of identifying 

the same features, regardless of where they are located within the input image. In CNNs, 

translational equivalence is made possible by the convolution operation, where the same 

kernel is moved across the entire image, so the same features will be detected even if they 

have been translated. Translational invariance, on the other hand, means that a model will 

produce the same result for a given input image, regardless of where the features are located 

within the image. CNNs are invariant to small translation of features within an image, and 

this is due to the use of max-pooling operations. The output of a max-pooling operation 

is the highest activation value within a group of neighboring activations. If the translation 

is small, the highest value within a specific region will likely remain unchanged, making 

CNNs invariant to small translations. Translational equivalence and invariance are both 

important features of CNNs that make them effective in tasks such as object recognition and 

image classification, where the location of the object in the image is not always predictable.

Appendix .2. Inductive bias

Because of the convolution and pooling operations, CNN architectures impose a strong 

intrinsic inductive bias. A CNN is analogous to a fully-connected network but with an 
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infinitely strong prior over the weights. The convolution operation constrains the weights 

of one hidden unit to be equivalent to the weights of its neighbor but spatially shifted. 

Similarly, the pooling operation constraints that each weight should be invariant to small 

translations (Goodfellow et al., 2016). These priors, known as the intrinsic inductive bias, 

make CNNs more data- and parameter-efficient (Goodfellow et al., 2016; Scherer et al., 

2010). Additional inductive bias, on top of the intrinsic inductive bias, may further improve 

the efficacy of CNN-based generative models (Xu et al., 2021b). Despite inductive bias 

is of great importance, the original ViT (Dosovitskiy et al., 2020) lacks it since the self-

attention operations are global and the positional embedding is the only manually introduced 

inductive bias. Therefore, ViT yields inferior performance when trained on insufficient 

amounts of data. However, it is demonstrated that training Transformers on large-scale 

datasets may surpass inductive bias. When pre-trained using sufficiently large amount of 

data, Transformers achieve superior performances on tasks with less data (Han et al., 2020; 

Zhai et al., 2021; Chen et al., 2021b; Dosovitskiy et al., 2020; Liu et al., 2022e; Naseer et 

al., 2021). Alternatively, there have been attempts to introduce locality into Transformers 

(Liu et al., 2021b; Xu et al., 2021c) or distill the inductive bias from CNNs to Transformers 

(Touvron et al., 2021b; Ren et al., 2022) have been proposed. It has also been shown 

that combining CNNs with Transformers to construct hybrid models imposes convolutional 

inductive bias on network architecture (Dosovitskiy et al., 2020; dâĂŹAscoli et al., 2021; 

Wu et al., 2021a).

Appendix .3. Loss landscapes

The sharpness or flatness of a loss landscape is often used as a measure of the trainability 

and generalizability of a network architecture or optimizer (Li et al., 2018; Keskar et al., 

2017). A loss landscape is generated relative to the parameters of a neural network. Here, 

we provide a brief introduction to the computation of loss landscapes and direct interested 

readers to the corresponding references for further information. We first use a pre-trained 

model with network parameters, θ, to generate a loss value, which corresponds to the 

minimum value in the resulting loss landscape. Then, θ is perturbed using two random 

direction vectors, δ and η, with the corresponding step sizes of α and β. A loss landscape can 

be depicted as a plot of the form:

f(α, β) = ℒ(θ + αδ + βη), (.1)

where ℒ( ⋅ ) denotes the loss value given the perturbed network parameters.

The flatness of a loss landscape translates to how sensitive the network parameters are to the 

perturbations. There have been substantial theoretical and empirical attempts to understand 

the relationship between the sharpness of the loss landscape and the generalizability of 

the neural network (Foret et al., 2021; Dinh et al., 2017; Li et al., 2018; Dziugaite and 

Roy, 2017; Jiang et al., 2019b). Sharp minimizers are more sensitive to noise in the 

parameter space, resulting in poor generalizability in general (Keskar et al., 2017; Hochreiter 

and Schmidhuber, 1997). A recent study suggests that ViTs tend to promote flatter loss 

landscapes than CNNs and thus generalize better on unseen data (Park and Kim, 2022). In 
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this work, we empirically confirm this finding by depicting the loss landscapes for CNNs 

versus Transformers on two tasks, registration and segmentation, as shown in Fig. 5.

Appendix .4. Computational complexity of Transformers

Transformers are generally computationally complex, with the self-attention mechanism 

standing as the main bottleneck. In a self-attention mechanism, each token is updated 

by attending it relative to all other tokens. Although the computation of self-attention is 

discussed in length in section 2, we repeat the its equation here for clarity:

SA(Q, K, V ) = Softmax(Q × KT

d ) × V . (.2)

Suppose Q, K, and V all have the same size of n × d, where n is the sequence length 

and d denotes the embedding size, both matrix multiplications in the above equation (i.e., 

Q × KT and Softmax(·) × V) have the complexity of O(n2d). Consequently, the computational 

complexity of computing self-attention is quadratic to the sequence size, i.e., O(n2). In 

comparison, a convolution operation in CNNs has a linear complexity of O(n). For this 

reason, training Transformers often requires more time and resources than training CNNs. 

In light of this shortcoming, modifications to self-attention computation have been proposed 

to lower its computational complexity. For example, consider Eqn. (.2) without the softmax 

operation, the complexity of Eqn. (.2) can then be reduced by using the associative property 

of matrix multiplication, i.e, Q × (KT × V ) as opposed to (Q × KT) × V , where the former has 

approximately linear complexity while the latter has quadratic complexity. Based on this 

idea, Choromanski et al. (Choromanski et al., 2021) and Qin et al. (Qin et al., 2022) linearize 

the matrix multiplication by avoiding the direct usage of softmax, and afterwards compute 

self-attention by approximating the softmax attention kernels. Wang et al. (Wang et al., 

2020c) propose decomposing self-attention into several smaller attentions by means of linear 

projections, motivated by the finding that self-attention is of low rank. Xiong et al. (Xiong 

et al., 2021) reduce the complexity of self-attention computation by leveraging the Nystrom 

method, which samples a subset of columns or rows to approximate a softmax matrix. 

Similarly, Lu et al. (Lu et al., 2021) propose a Softmax-free Transformer that leverages 

Gaussian kernel, instead of softmax, to define self-attention. In the meanwhile, Liu et al. 

(Liu et al., 2021b) and Wang et al. (Wang et al., 2021f) develop hierarchical Transformers 

that confine self-attention locally rather than globally, thereby reducing complexity and 

introducing spatial inductive bias that conventional Transformers lack.
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Fig. 1. 
Details of a self-attention mechanism (left) and a multi-head self-attention (MSA) (right). 

Compared to self-attention, the MSA conducts several attention modules in parallel. The 

independent attention features are then concatenated and linearly transformed to the output.
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Fig. 2. 
Overview of Vision Transformer (left) and illustration of the Transformer encoder (right). 

The strategy for partitioning an image involves dividing it into several patches of a fixed 

size, which are then treated as sequences using an efficient Transformer implementation 

from NLP.
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Fig. 3. 
Taxonomy of typical approaches in combining CNNs and Transformer.
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Fig. 4. 
Effective receptive fields (ERFs) (Luo et al., 2016) of the well-known CNN, U-Net 

(Ronneberger et al., 2015), versus the hybrid Transformer-CNN models, including UNETR 

(Hatamizadeh et al., 2019), Medical Transformer (Valanarasu et al., 2021), TransMorph 

(Chen et al., 2022b), and ReconFormer (Guo et al., 2022d). The ERFs are computed at the 

last layer of the model prior to the output. The γ correction of γ = 0.4 was applied to the 

ERFs for better visualization. Despite the fact that its theoretical receptive field encompasses 

the whole image, the pure CNN model, U-Net (Ronneberger et al., 2015), has a limited ERF, 

with gradient magnitude rapidly decreasing away from the center. On the other hand, all 

Transformer-based models have large ERFs that span over the entire image.
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Fig. 5. 
Loss landscapes for the models based on CNNs versus Transformers. The left and right 

panels depict, respectively, the loss landscapes for registration and segmentation models. 

The left panel shows loss landscapes generated based on normalized cross-correlation 

loss and a diffusion regularizer; the right panel shows loss landscapes created based on 

a combination of Dice and cross-entropy losses. Transformer-based models, such as (b) 

TransMorph (Chen et al., 2022b) and (d) UNETR (Hatamizadeh et al., 2022b), exhibit flatter 

loss landscapes than CNN-based models, such as (a) VoxelMorph (Balakrishnan et al., 2019) 

and (c) U-Net (Ronneberger et al., 2015).
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Fig. 6. 
(a) The number of papers accepted to the MICCAI conference from 2020 to 2022 whose 

titles included the word "Transformer". (b) Sources of all 114 selected papers.
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Fig. 7. 
An overview of Transformers applied in medical tasks in segmentation, recognition & 

classification, detection, registration, reconstruction, and enhancement.
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Fig. 8. 
Typical Transformer-based U-shaped segmentation model architectures. (a) The TransUNet 

(Chen et al., 2021d)-like structure uses Transformer as additional encoder modeling 

bottleneck features. (b) The Swin UNETR (Tang et al., 2022) uses the Transformer as the 

main encoder and CNN decoder to construct the hybrid network. (c) The TransFuse (Zhang 

et al., 2021b) fuses CNN and Transformer encoders together to connect the decoder. (d) The 

nnFormer (Zhou et al., 2021a)-like structure uses a pure Transformer for both encoder and 

decoder.
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Fig. 9. 
Visualization of CT/MRI segmentation and comparison on public datasets between 

Transformer-based and baseline models. Transformer-based models includes Swin UNETR 

(Tang et al., 2022), T-AutoML (Yang et al., 2021), TransBTSV2 (Li et al., 2022c), AFTer-

UNet (Yan et al., 2022), U- Transformer (Petit et al., 2021), UNesT (Yu et al., 2022c), 

BiTr-Unet (Jia and Shu, 2021), UTNet (Gao et al., 2021b), nnFormer (Zhou et al., 2021a), 

MOCOv3 (Chen et al., 2021f), and DINO (Caron et al., 2021), USST (Xie et al., 2021c). 

Baseline models contain the DiNTS (He et al., 2021b), ResUNet (Zhang et al., 2018), and 

AttentionUNet (Oktay et al., 2018)

Li et al. Page 68

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Transformer segmentation to other medical image modalities such as endoscopy, 

microscopy, retinopathy, ultrasound, X-ray, and camera images. The comparison methods 

include Pyramid Trans (Zhang et al., 2021d), MBT-Net (Zhang et al., 2021a), MCTrans (Ji 

et al., 2021), X-Net (Li et al., 2021d), TransAttUnet (Chen et al., 2021a), MedT (Valanarasu 

et al., 2021), Swin-UNet (Nguyen et al., 2021), SpecTr (Yun et al., 2021), RT-Net (Huang et 

al., 2022b), and ConvNet-based models (ResUNet (Zhang et al., 2018), UNet (Ronneberger 

et al., 2015), UNet++ (Zhou et al., 2018), and AttentionUNet (Oktay et al., 2018)).
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Fig. 11. 
The schematic illustration of the Transformer-based image registration networks. (a) ViT-V-

Net (Chen et al., 2021c). (b) TransMorph (Chen et al., 2022b). (c) PC-SwinMorph (Liu 

et al., 2022a). (d) DTN (Zhang et al., 2021c). These network architectures are based 

predominately on the hybrid ConvNet-Transformer design.
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Fig. 12. 
We illustrate the Transformer-based networks of (a) ReconFormer (Guo et al., 2022d) (b) 

DuDoTrans (Wang et al., 2021a) (c) T2Net (Feng et al., 2021) and (d) TransCT (Zhang et 

al., 2021e). (a) and (b) are reconstruction models, (c) and (d) are for enhancement. These 

structures are based on the hybrid ConvNet-Transformer design.

Li et al. Page 71

Med Image Anal. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
We visualize reconstructions of Transformer-based DuDoTrans (Wang et al., 2021a) versus 

ConvNet with 72 and 96 sparse views on NIH-AAPM-Mayo (McCollough, 2016) dataset, 

and the zoom-in images are shown in the last row. With the included Property M2, 

Transformer-based DuDoTrans obtains better overall performances, especially on bones, and 

alleviates the FBP artifacts. While the recovered soft tissues are not as sharp as ConvNets 

results.
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Table 1.

The summarized review of Transformer-based model for medical image segmentation. "N" denotes not 

reported or not applicable on number of model parameters. "N.A." denotes for not applicable for intermediate 

blocks or decoder module.

Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

CoTr (Xie et al., 
2021b)

Conv-
Transformer 
Hybrid

3D 46.51M CT Multi-organ (BTCV 
(Landman et al., 2015))

No/Yes/
No

The Transformer 
block with 
deformable module 
captures deep features 
in the bottleneck.

SpecTr (Yun et 
al., 2021)

Conv-
Transformer 
Hybrid

3D N Microscopy Cholangiocarcinoma 
(Zhang et al., 2019b)

No/Yes/
No

Hybrid Conv-
Transformer encoder 
with spectral 
normalization.

TransBTS (Wang 
et al., 2021e)

Conv-
Transformer 
Hybrid

3D 32.99M MRI Brain Tumor (Baid et al., 
2021)

No/Yes/
No

3D Transformer 
blocks for encoding 
bottleneck features.

UNETR 
(Hatamizadeh et 
al., 2021)

Conv-
Transformer 
Hybrid

3D 92.58M CT, MRI Multi-organ (BTCV 
(Landman et al., 2015)), 
Brain Tumor, Spleen 
(MSD (Simpson et al., 
2019

Yes/No/
No

The 3D Transformer 
directly encodes 
image into features, 
and use of CNN 
decoder for capturing 
global information.

BiTr-UNet (Jia 
and Shu, 2021)

Conv-
Transformer 
Hybrid

3D N MRI Brain Tumor (Baid et al., 
2021)

No/Yes/
No

The bi-level 
Transformer blocks 
are used for encoding 
two level bottleneck 
features of acquired 
CNN feature maps.

VT-UNet (Peiris 
et al., 2021)

Conv-
Transformer 
Hybrid

3D 20.8M MRI, CT Brain tumor, Pancreas, 
Liver (MSD (Simpson et 
al., 2019))

Yes/Yes/
Yes

The encoder directly 
embeds 3D volumes 
jointly capture local/
global information, 
the decoder 
introduces parallel 
cross-attention 
expansive path.

Swin UNETR 
(Tang et al., 
2022; 
Hatamizadeh et 
al., 2022a)

Conv-
Transformer 
Hybrid

3D 61.98M CT, MRI Multi-organ (BTCV) 
(Landman et al., 2015), 
MSD 10 tasks (Simpson 
et al., 2019)

Yes/No/
No

The 3D encoder with 
swin-Transformer 
direclty encodes the 
3D CT/MRI volumes 
with a CNN-based 
decoder for better 
capturing global 
information.

HybridCTrm 
(Sun et al., 
2021a)

Conv-
Transformer 
Hybrid

3D N MRI MRBrainS (Mendrik et 
al., 2015), iSEG-2017 
(Wang et al., 2019b)

Hybrid/
N.A./No

A hybrid architecture 
encodes images from 
CNN and Transformer 
in parallel.

UNesT (Yu et al., 
2022c)

Conv-
Transformer 
Hybrid

3D 87.30M CT Kidney Sub-components 
(RenalSeg, KiTS (Heller 
et al., 2021))

Yes/No/
No

The use 
of hierarchical 
Transformer models 
for efficiently 
capturing multi-scale 
features with a 3D 
block aggregation 
module.

Universal (Jun et 
al., 2021)

Conv-
Transformer 
Hybrid

3D N MRI Brain Tumor (Baid et al., 
2021)

No/Yes/
No

The proposed model 
takes advantages of 
three views of 
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

3D images and 
fuse 2D features 
to 3D volumetric 
segmentation.

PC-SwinMorph 
(Liu et al., 2022a)

Conv-
Transformer 
Hybrid

3D N MRI Brain (CANDI (Kennedy 
et al., 2012), LPBA-40 
(Shattuck et al., 2008))

No/No/
Hybird

The designed patch-
based contrastive 
and stitching strategy 
enforce a better fine 
detailed alignment 
and richer feature 
representation.

TransBTSV2 (Li 
et al., 2022c)

Conv-
Transformer 
Hybrid

3D 15.30M MRI, CT Brain Tumor (Baid et 
al., 2021), Liver/Kidney 
Tumor (LiTS (Bilic et al., 
2019), KiTS (Heller et 
al., 2021

No/Yes/
No

The deformable 
bottleneck module 
is used in the 
Transformer blocks 
modeling bottleneck 
features to capture 
more shape-aware 
representations.

GDAN (Lin et al., 
2022b)

Conv-
Transformer 
Hybrid

3D N/A CT Aorta No/Yes/
No

Geometry-constrained 
module and 
deformable self-
attention module are 
designed to guide 
segmentation.

VT-UNet (Peiris 
et al., 2022)

Conv-
Transformer 
Hybrid

3D N/A MRI, CT Brain Tumor (Baid et al., 
2021)

Yes/Yes/
No

The self-attention 
mechanism to 
simultaneously 
encode local and 
global cues, the 
decoder employs a 
parallel self and cross 
attention formulation 
to capture fine 
details for boundary 
refinement.

ConTrans (Lin et 
al., 2022a)

Conv-
Transformer 
Hybrid

2D N/A Endoscopy, 
Microscopy, 
RGB, CT

Cell (Pannuke), (Polyp, 
CVC-ClinicDB (Bernal 
et al., 2015), CVC-
ColonDB (Bernal et al., 
2012), ETIS-Larib (Silva 
et al., 2014), Kvasir (Jha 
et al., 2020)), Skin (ISIC 
(Codella et al., 2018))

Yes/Yes/
No

Spatial-Reduction-
Cross-Attention 
(SRCA) module is 
embedded in the 
decoder to form 
a comprehensive 
fusion of these 
two distinct feature 
representations and 
eliminate the semantic 
divergence between 
them.

DA-Net (Wang et 
al., 2022b)

Conv-
Transformer 
Hybrid

2D N/A MRA images Retina Vessels (DRIVE 
(Staal et al., 2004) and 
CHASE-DB1 (Fraz et al., 
2012))

No/Yes/
No

Dual Branch 
Transformer Module 
(DBTM) that can 
simultaneously and 
fully enjoy the 
patches-level local 
information and the 
image-level global 
context.

EPT-Net (Liu et 
al., 2022c)

Conv-
Transformer 
Hybrid

3D N/A Intracranial 
Aneurysm

Intracranial Aneurysm 
(IntrA (Yang et al., 
2020))

No/Yes/
No

Dual stream 
transformer (DST), 
outeredge context 
dissimilation (OCD) 
and inner-edge hard-
sample excavation 
(IHE) help the 
semantics stream 
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

produce sharper 
boundaries.

Latent Space 
Transformer (Li 
et al., 2022f)

Conv-like 
Transformer

3D N/A CT, MRI LiTS (Bilic et al., 2019), 
CHAOS (Kavur et al., 
2020

Yes/Yes/
Yes

It intentionally 
make the large 
patches overlap to 
enhance intra-patch 
communication.

Swin-MIL (Qian 
et al., 2022)

Conv-like 
Transformer

2D N/A Microscopy Haematoxylin and Eosin 
(H&E)

Yes/Yes/
No

A novel 
weakly supervised 
method for pixel-
level segmentation 
in histopathology 
images, which 
introduces 
Transformer into 
the MIL framework 
to capture global 
or long-range 
dependencies.

Segtran (Li et al., 
2021a)

Conv-
Transformer 
Hybrid

2D/
3D

166.7M Fundus, 
Colonoscopy, 
MRI

Disc/Cup (REFUGE20 
(Orlando et al., 2020)), 
Polyp, Brain Tumor

No/Yes/
N.A.

The use of squeeze 
and expansion block 
for contextualized 
features after 
acquiring visual and 
positional features of 
CNN.

MT-UNet (Wang 
et al., 2021c)

Conv-
Transformer 
Hybrid

2D N CT, MRI Multi-organ (BTCV 
(Landman et al., 
2015)), Car-diac (ACDC 
(Bernard et al., 2018))

No/Yes/
No

The proposed mixed 
Transformer module 
simultaneously learns 
inter- and intra- 
affinities used for 
modeling bottleneck 
features.

TransUNet++ 
(Wang et al., 
2022a)

Conv-
Transformer 
Hybrid

2D N CT, MRI Prostate, Liver tumor 
(LiTS (Bilic et al., 2019))

No/Yes/
No

The feature fusion 
scheme at decoder 
enhances local 
interaction and 
context.

RT-Net (Huang et 
al., 2022b)

Conv-
Transformer 
Hybrid

2D N Fundus Retinal (IDRiD (Porwal 
et al., 2018), DDR)

No/yes/
No

The dual-branch 
architecture with 
global Transformer 
block and relation 
Transformer block 
enables detection of 
small size or blurred 
border.

TransUNet (Chen 
et al., 2021d)

Conv-
Transformer 
Hybrid

2D 105.28M CT, MRI Multi-organ (BTCV 
(Landman et al., 2015)), 
Cardiac (ACDC (Bernard 
et al., 2018))

No/Yes/
No

Transformer blocks 
for encoding 
bottleneck features.

U-Transformer 
(Petit et al., 2021)

Conv-
Transformer 
Hybrid

2D N CT Pancreas (TCIA) (Holger 
and Amal, 2016), Multi-
organ

No/Yes/
No

The U-shape design 
with multi-head 
self-attention for 
bottleneck features 
and multi-head cross 
attention in the skip 
connections.

MBT-Net (Zhang 
et al., 2021a)

Conv-
Transformer 
Hybrid

2D N Microscopy Corneal Endothelium cell 
(TM-EM300, Alizarine 
(Ruggeri et al., 2010))

No/Yes/
No

The design of hybrid 
residual Transformer 
model captures 
multi-branch global 
features.
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

MCTrans (Ji et 
al., 2021)

Conv-
Transformer 
Hybrid

2D 7.64M Microscopy, 
Colonoscopy, 
RGB

Cell (Pannuke), (Polyp, 
CVC-ClinicDB (Bernal 
et al., 2015), CVC-
ColonDB (Bernal et al., 
2012), ETIS-Larib (Silva 
et al., 2014), Kvasir (Jha 
et al., 2020)), Skin (ISIC 
(Codella et al., 2018))

No/Yes/
No

The Transformer 
blocks are used for 
encoding bottleneck 
features in a UNet-
like model.

Decoder (Li et 
al., 2021b)

Conv-
Transformer 
Hybrid

2D N CT, MRI Brain tumor (MSD 
(Simpson et al., 2019)), 
Multi-organ (BTCV 
(Landman et al., 2015))

No/No/
Yes

The first study of 
evaluate the effect 
of using Transformer 
for decoder in 
the medical image 
segmentation tasks.

UTNet (Gao et 
al., 2021b)

Conv-
Transformer 
Hybrid

2D 9.53M MRI Cardiac (Campello et al., 
2021)

Hybrid/
Hybrid/

No

The design of a 
hybrid architecture 
in the encoder with 
convolutional and 
Transformer layers.

TransClaw UNet 
(Chang et al., 
2021)

Conv-
Transformer 
Hybrid

2D N CT Multi-organ (BTCV 
(Landman et al., 2015))

No/Yes/
No

The Transformer 
blocks are used as 
additional encoder for 
strengthening global 
connection of CNN 
encoded features.

TransAttUNet 
(Chen et al., 
2021a)

Conv-
Transformer 
Hybrid

2D N RGB, X-ray, CT 
Microscopy

Skin (ISIC (Codella et 
al., 2018)), Lung (JSRT 
(Shiraishi et al., 2000), 
Montgomery (Jaeger et 
al., 2014), NIH (Tang 
et al., 2019)), (Clean-CC-
CCII (He et al., 2020b)), 
Nuclei (Bowl, GLaS 
(Malík et al., 2020))

No/Yes/
No

The model contains 
a co-operation 
of Transformer self-
attention and global 
spatial attention for 
modeling semantic 
information.

LeViT-UNet(384) 
(Xu et al., 2021a)

Conv-
Transformer 
Hybrid

2D 52.17M CT, MRI Multi-organ (BTCV 
(Landman et al., 
2015)), Car-diac (ACDC 
(Bernard et al., 2018))

No/Yes/
No

The lightweight 
design of Transformer 
blocks as second 
encoder.

Polyp-PVT 
(Dong et al., 
2021a)

Conv-
Transformer 
Hybrid

2D N Endoscopy Polp (Kvasir (Jha et al., 
2020), CVC-ClinicDB 
(Bernal et al., 2015), 
CVC-ColonDB (Bernal 
et al., 2012), Endoscene 
(Vázquez et al., 2017), 
ETIS (Silva et al., 2014))

Yes/No/
No

The Transformer 
encoder directly 
learns the 
image patches 
representation.

COTRNet (Shen 
et al., 2021b)

Conv-
Transformer 
Hybrid

2D N CT Kidney (KITS21 (Heller 
et al., 2021))

Hybrid/
N.A./No

The U-shape model 
design has the 
hybrid of CNN and 
Transformers for both 
encoder and decoder.

TransBridge 
(Deng et al., 
2021)

Conv-
Transformer 
Hybrid

2D 11.3M Echocardiograph Cardiac (EchoNet-
Dynamic) (Ouyang et 
al.,2020

No/Yes/
No

The Transformer 
blocks are used for 
capturing bottleneck 
features for bridging 
CNN encoder and 
decoder.

GT UNet (Li et 
al., 2021c)

Conv-
Transformer 
Hybrid

2D N Fundus Retinal (DRIVE (Staal et 
al., 2004))

Hybrid/
N.A./No

The design of 
hybrid grouping and 
bottleneck structures 
greatly reduces 
computation load of 
Transformer.
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

BAT (Wang et al., 
2021d)

Conv-
Transformer 
Hybrid

2D N RGB Skin (ISIC (Codella 
et al., 2018), PH2 
(Mendonça et al., 2013))

No/Yes/
No

The model proposes 
a boundary-wise 
attention gate in 
Transformer for 
capturing prior 
knowledge.

AFTer-UNet (Yan 
et al., 2022)

Conv-
Transformer 
Hybrid

2D 41.5M CT Multi-organ (BTCV 
(Landman et al., 2015)), 
Thorax (Thorax-85 
(Chen et al., 2021e), 
SegTHOR (Lambert et 
al., 2020))

No/Yes/
No

The proposed axial 
fusion mechanism 
enables intra- 
and inter-slice 
communication and 
reduced complexity.

Conv Free 
(Karimi et al., 
2021)

Conventional 
Transformer

3D N CT, MRI Brain cortical (Bastiani 
et al., 2019) plate, 
Pancreas, Hippocampus 
(MSD (Simpson et al., 
2019))

Yes/Yes/
N.A.

3D Transformer 
blocks as encoder 
without convolution 
layers

nnFormer (Zhou 
et al., 2021a)

Conv-like 
Transformer

3D 158.92M CT, MRI Brain tumor (Baid et 
al., 2021), Multi-organ 
(BTCV (Landman et al., 
2015)), Cardiac (ACDC 
(Bernard et al., 2018))

Yes/Yes/
Yes

The 3D model with 
pure Transformer as 
encoder and decoder.

MISSFormer 
(Huang et al., 
2021)

Conv-like 
Transformer

2D N MRI, CT Multi-organ (BTCV 
(Landman et al., 2015)), 
Cardiac (ACDC (Bernard 
et al., 2018))

Yes/Yes/
Yes

The U-shape design 
with patch merging 
and expanding 
modules as encoder 
and decoder.

D-Former (Wu et 
al., 2022b)

Conv-like 
Transformer

2D 44.26M CT, MRI Multi-organ (BTCV 
(Landman et al., 2015)), 
Cardiac (ACDC (Bernard 
et al., 2018))

Yes/Yes/
Yes

The 3D network 
contains local/global 
scope modules 
to increase the 
scopes of information 
interactions and 
reduces complexity.

Swin-UNet (Cao 
et al., 2021)

Conv-like 
Transformer

2D N CT, MRI Multi-organ (BTCV 
(Landman et al., 2015)), 
Cardiac (ACDC (Bernard 
et al., 2018))

Yes/Yes/
Yes

The pure Transformer 
U-shape segmentation 
model design enables 
the use for both 
encoder and decoder

iSegFormer (Liu 
et al., 2022b)

Conv-like 
Transformer

3D N/A MRI Knee (OAI-ZIB 
(Ambellan et al., 2019))

Yes/Yes/
Yes

It contains a memory-
efficient Transformer 
that-combines a Swin 
Transformer with a 
lightweight multilayer 
perceptron (MLP). 
decoder.

NestedFormer 
(Xing et al., 
2022)

Conv-like 
Transformer

3D N/A MRI BraTS2020 (Baid et al., 
2021), MeniSeg

Yes/Yes/
Yes

A novel 
Nested Modality-
Aware Transformer 
(NestedFormer) to 
explicitly explore 
the intra-modality 
and inter-modality 
relationships of multi-
modal MRIs for brain 
tumor segmentation.

Patcher (Ou et al., 
2022)

Conv-like 
Transformer

3D N/A MRI, Endoscopy Stroke Lesion, Kvasir-
SEG (Jha et al., 2020)

Yes/Yes/
Yes

This design allows 
Patcher to benefit 
from both the 
coarse-to-fine feature 
extraction common 
in CNNs and 
the superior spatial 
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

relationship modeling 
of Transformers.

SMESwin UNet 
(Wang et al., 
2022e)

Conv-like 
Transformer

2D N/A Microscopy GlaS (Malík et al., 2020) Yes/Yes/
Yes

Fuse multi-scale 
semantic features 
and attentions maps 
by designing a 
compound structure 
with CNN and 
ViTs (named MCCT), 
based on Channel-
wise Cross fusion 
Transformer (CCT) .

DS-TransUNet 
(Lin et al., 2021)

Conv-
Transformer 
Hybrid

2D N Colonoscopy, 
RGB, 
Microscopy

Polyp (Jha et al., 2020), 
Skin (ISIC (Codella et 
al., 2018)), Gland (GLaS 
(Malík et al., 2020))

Yes/Yes/
Yes

The use of swin 
Transformer as 
both encoder and 
decoder forms the 
U-shape design of 
segmentation model.

MedT 
(Valanarasu et al., 
2021)

Conv-
Transformer 
Hybrid

2D N Ultrasound, 
Microscopy

Brain (Valanarasu et 
al., 2020), Gland 
(Sirinukunwattana et 
al., 2017), Multi-organ 
Nuclei (MoNuSeg 
(Kumar et al., 2019))

Yes/No/
No

A fusion model with 
a global and local 
branches as encoders.

PMTrans (Zhang 
et al., 2021d)

Conv-
Transformer 
Hybrid

2D N Microscopy, CT Gland (GLAS (Malík 
et al., 2020)), Multi-
organ Nuclei (MoNuSeg 
(Kumar et al., 2019)), 
Head (HECKTOR 
(Andrearczyk et al., 
2020))

Hybrid/
No/No

The pyramid 
design of structure 
enables multiscale 
Transformer layers 
for encoder image 
features.

TransFuse (Zhang 
et al., 2021b)

Conv-
Transformer 
Hybrid

2D 26.3M Endoscopy, 
RGB, X-ray, 
MRI

Polp (Kvasir (Jha et al., 
2020), ClinicDB (Bernal 
et al., 2015), ColonDB 
(Bernal et al., 2012), 
EndoScene (Vázquez et 
al., 2017), ETIS (Silva 
et al., 2014)), Skin (ISIC 
(Codella et al., 2018)), 
Hippocampus, Prostate 
(MSD (Simpson et al., 
2019))

Hybrid/
N.A./No

A CNN branch and 
a Transformer branch 
encoded features are 
fused by a BiFusion 
module to the decoder 
for segmentation.

CrossTeaching 
(Luo et al., 2021)

Conv-
Transformer 
Hybrid

2D N MRI ACDC (Bernard et al., 
2018)

Hybrid/
Hybrid/
Hybrid

The two branch 
network employs 
advantage of UNet 
and Swin-UNet.

TransFusionNet 
(Meng et al., 
2021)

Conv-
Transformer 
Hybrid

2D N CT Liver Tumor(LiTS 
(Bilic et al., 2019)), 
LiverVessels (LTBV) 
(Huang et al., 2018), 
Multi-organ (3Dircadb 
(Soler et al., 2010))

Hybrid/
N.A./No

The Transformer- and 
CNN-based encoders 
extract both features 
directly from input 
and fuse to the CNN 
decoder.

X-Net (Li et al., 
2021d)

Conv-
Transformer 
Hybrid

2D N Microscopy, 
Endoscopy

Nuclei (Bowl (Caicedo et 
al., 2019), TNBC (Naylor 
et al., 2018)), Polyp 
(Kvasir (Jha et al., 2020))

Hybrid/
Hybrid/
Hybrid

The use of CNN 
reconstruction model 
and Transformer 
segmentation model 
with mixed 
representations.

T-AutoML (Yang 
et al., 2021)

Net 
Architecture 
Search

3D 16.96M CT Liver, Lung tumor (MSD 
(Simpson et al., 2019))

N.A. The first medical 
architecture search 
framework designed 
for Transformer-based 
models.
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/D
ec

Highlights

(Xie et al., 2021c) Pre-training 
Framework

2D/
3D

N CT, MRI, X-ray, 
Dermoscopy

JSRT (Shiraishi et al., 
2000), ChestXR (Wang 
et al., 2017a), BTCV 
(Landman et al., 2015), 
RI-CORD (Tsai et al., 
2021), CHAOS (Kavur et 
al., 2020), ISIC (Codella 
et al., 2018)

No/yes/
No

The unified pre-
training Framework of 
3D and 2D images for 
Transformer models

(Zhou et al., 
2022c)

Pre-training 
Framework

3D N CT, MRI, X-ray Lung (ChestX-ray14 
(Wang et al., 2017a)), 
Multiorgan (BTCV 
(Landman et al., 2015)), 
Brain Tumor(MSD 
(Simpson et al., 2019))

Yes/No/
No

The masked 
autoencoder scheme 
adapts the pretraining 
framework for 
medical images.

(Tang et al., 
2022; 
Hatamizadeh et 
al., 2022a)

Pre-training 
Framework

3D N CT, MRI Multi-organ (BTCV 
(Landman et al., 
2015)),MSD 10 tasks 
(Simpson et al., 2019)

Yes/No/
No

Very large-scale 
medical image pre-
training framework 
with Swin 
Transformers.

SMIT (Jiang et 
al., 2022)

Pre-training 
Framework

3D N CT, MRI Covid19, Kidney Cancer, 
BTCV (Landman et al., 
2015)

Yes/No/
No

Self-distillation 
learning with masked 
image modeling 
method to perform 
SSL for vision 
transformers (SMIT) 
is applied to 
3D multi-organ 
segmentation from 
CT and MRI. It 
contains a dense 
pixel-wise regression 
within masked 
patches called masked 
image prediction
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Table 2.

The summarized review of Transformer-based model for medical image classification. "N.A." denotes for 

not applicable for intermediate blocks or decoder module. "N" denotes not reported or not applicable on the 

number of model parameters. "t" denotes temporal dimension.

Reference Architecture 2D/3
D

Pre-
training

#Param Classification 
Task

Modality Dataset Highlights

(Sriram et al., 
2021)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N COVID-19 
Prognosis

X-ray CheXpert (Irvin 
et al., 2019), 
NYU COVID 
(Shamout et al., 
2021)

A pre-trained 
CNN backbone 
extracts 
features from 
individual 
image, and a 
Transformer is 
applied to the 
extracted 
features from a 
sequence of 
images for 
prognosis.

(Park et al., 
2021)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N COVID-19 
Diagnosis

X-ray CheXpert (Irvin 
et al., 2019)

A pre-trained 
CNN backbone 
is integrated 
with ViT for 
classification.

TransPath 
(Wang et al., 
2021g)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN + 
ViT

N Histopathological 
Image 
Classification

Microscopy TCGA (Tomczak 
et al., 2015), 
PAIP (Kim et al., 
2021b), NCT-
CRC-HE (Kather 
et al. 2019), 
PatchCamelyon 
(Bejnordi et al., 
2017), MHIST 
(Wei et al.,2021)

The entire 
network is pre-
trained prior to 
the 
downstream 
tasks. The TAE 
module is 
introduced to 
the ViT in 
order to 
aggregate 
token 
embeddings 
and 
subsequently 
excite the MSA 
output.

i-ViT (Gao et 
al., 2021c)

Conv-
Transformer 
Hybrid

2D No N Histological 
Subtyping

Microscopy AIPath (Gao et 
al., 2021d)

A lightweight 
CNN is used to 
extract features 
from a series of 
image patches, 
which is then 
followed by a 
ViT to capture 
high-level 
relationships 
between 
patches for 
classification.

(He et al., 
2021a)

Conv-
Transformer 
Hybrid

2D No N Brain Age 
Estimation

MRI Brain MRI 
(BGSP (Holmes 
et al., 2015), 
OASIS-3 
(LaMontagne et 
al., 2019), NIH-
PD (Evans et al., 
2006), ABIDE-I 
(Di Martino et al., 

2014), IXI*, 
DLBS (Park et 
al., 2012), CMI 
(Alexander et al., 

Two CNN 
backbones, one 
of which 
extract features 
from the whole 
image and the 
other from the 
image patches. 
Then, a 
Transformer is 
used to 
aggregate the 
features from 
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Reference Architecture 2D/3
D

Pre-
training

#Param Classification 
Task

Modality Dataset Highlights

2017), CoRR 
(Zuo et al., 2014))

the two 
backbones for 
classification.

SETMIL 
(Zhao et al., 
2022)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Gene Mutation 
Prediction, 
Lymph Node 
Metastasis 
Diagnosis

Microscopy Whole Slide 
Pathological 
Image

A novel spatial 
encoding wiht 
Transformer is 
proposed for 
multiple 
instance 
learning.

KAT (Zheng et 
al., 2022b)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Tumor Grading 
& Prognosis

Microscopy Whole Slide 
Pathological 
Image

A cross-
attention 
Transformer is 
proposed to 
enable 
information 
exchange 
across tokens 
based on their 
spatial 
relationship on 
the whole slide 
image.

RAMST (Lv 
et al., 2022)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Microsatellite 
Instability 
Classification

Microscopy Whole Slide 
Pathological 
Image

A combination 
region- and 
whole-slide-
level 
Transformer is 
proposed. The 
Transformer 
accepts 
sampled 
patches per the 
attention map 
and combines 
two levels of 
information for 
the final 
classification.

LA-MIL 
(Reisenbüchler 
et al., 2022)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Microsatellite 
Instability 
Classification, 
Mutation 
Prediction

Microscopy Whole Slide 
Pathological 
Image (TCGA 
colorectal & 
stomach 
(Weinstein et al., 
2013))

A local 
attention 
graph-based 
Transformer is 
proposed for 
multiple 
instance 
learning, as 
well as an 
adaptive loss 
function to 
mitigate the 
class 
imbalance 
problem.

BabyNet 
(Plotka et al., 
2022)

Conv-
Transformer 
Hybrid

2D+t No N Birth Weight 
Prediction

Ultrasound Fetal Ultrasound 
Video Scans

BabyNet 
advances a 3D 
ResNet with a 
Transformer 
module to 
improve the 
local and 
global feature 
aggregation.

Multi-transSP 
(Zheng et al., 
2022a)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Survival 
Prediction for 
Nasopharyngeal 
Carcinoma 
Patients

CT In-house CT 
Scans

A hybrid CNN-
Transformer 
model that 
combines CT 
image and 
tabular data 
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Reference Architecture 2D/3
D

Pre-
training

#Param Classification 
Task

Modality Dataset Highlights

(i.e., clinical 
text data) is 
developed for 
survival 
prediction of 
nasopharyngeal 
carcinoma 
patients.

BrainFormer 
(Dai et al., 
2022)

Conv-
Transformer 
Hybrid

3D No N Autism, 
AlzheimerâĂŹs 
Disease, 
Depression, 
Attention Deficit 
Hyperactivity 
Disorder, and 
Headache 
Disorders 
Classification

fMRI ABIDE (Di 
Martino et al., 
2014), ADNI 
(Petersen et al., 
2010), 
MPILMBB 
(Mendes et al., 
2019),ADHD-200 
(Bellec et al., 
2017) and ECHO

A 3D CNN and 
Transformer 
Hybrid 
network 
employs CNNs 
to model local 
cues and 
Transformer to 
capture global 
relation among 
distant brain 
regions.

xViTCOS 
(Mondal et al., 
2021)

Conventional 
Transformer

2D Pre-
trained 
ViT

N COVID-19 
Diagnosis

CT, X-ray Chest CT 
( COVIDx CT-2A 
(Gunraj et al., 
2021)), Chest X-
ray (COVIDx-
CXR-2 (Pavlova 
et al., 2021), 
CheXpert (Irvin 
et al., 2019))

A multi-stage 
transfer 
learning 
strategy is 
proposed for 
fine-tuning 
pre-trained ViT 
on medical 
diagnostic 
tasks.

MIL-VT (Yu 
et al., 2021a)

Conventional 
Transformer

2D Pre-
trained 
ViT

N Fundus Image 
Classification

Fundus
APTOS2019

†
, 

RFMiD2020 
(Pachade et al., 
2021)

Multiple 
instance 
learning 
module is 
introduced to 
the pre-trained 
ViT that learns 
from both the 
classification 
tokens and the 
image patches.

(Matsoukas et 
al., 2021)

Conventional 
Transformer

2D Pre-
trained 
ViT

N Dermoscopic, 
Fundus, and 
Mammography 
Image 
Classification

Fundus, 
Dermoscopy, 
Mammography 
PET/CT

ISIC2019
‡
, 

APTOS2019
†
, 

CBIS-DDSM 
(Lee et al., 2017

This study 
investigates the 
effectiveness of 
pretraining 
DeiT versus 
ResNet on 
medical 
diagnostic 
tasks.

TMSS (Saeed 
et al., 2022)

Conventional 
Transformer

3D No N Survival 
Prediction for 
Head and Neck 
Cancer Patients

HECKTOR 
(Oreiller et al., 
2022)

A Transformer 
for end-to-end 
survial prediction 
and segmentation 
using PET/CT 
and electronic 
health records 
(i.e., clinical text 
data).

Uni4Eye (Cai 
et al., 2022)

Conventional 
Transformer

2D/3
D

Pre-
trained 
ViT

N Ophthalmic 
Disease 
Classification

OCT, Fundus OCTA-500 (Li et 
al., 2020), 
GAMMA (Wu et 
al., 2022a), 
GAMMA (Wu et 
al., 2022a), 

EyePACS
§
, 

Ichallenge-
Ichallenge-

A self-
supervised 
learning 
framework is 
developed to 
pre-train a 
Transformer 
using both 2D 
and 3D 
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Reference Architecture 2D/3
D

Pre-
training

#Param Classification 
Task

Modality Dataset Highlights

PMAMD (Milea 
et al., 2020), 
Ichallenge-PM 
(Fu et al., 2018), 
PRIME-FP20 
(Ding et al., 
2021)

ophthalmic 
images for 
ophthalmic 
disease 
classification.

STAGIN (Kim 
et al., 2021a)

Conventional 
Transformer

3D+t No 1.2M Gender, 
Cognitive Task 
Classification

fMRI HCPS1200 (Van 
Essen et al., 
2013)

A conventional 
Transformer 
encoder is 
employed to 
capture the 
temporal 
attention over 
features of 
functional 
connectivity 
from fMRI.

BolT (Bedel et 
al., 2022)

Conventional 
Transformer

3D+t No N Gender 
Prediction, 
Cognitive Task 
and Autism 
Spectrum 
Disorder 
Classification

fMRI HCP S1200 (Van 
Essen et al., 
2013), ABIDE 
(Di Martino et al., 
2014)

A cascaded 
Transformer 
encodes 
features of 
BOLD 
responses via 
progressively 
increased 
temporally-
overlapped 
window 
attention.

SiT (Dahan et 
al., 2022)

Conventional 
Transformer

3D Pretrained 
ViT

21.6M Cortical Surface 
Patching, 
Postmenstrual 
Age (PMA) and 
Gestational Age 
(GA)

MRI dHCP (Hughes et 
al., 2017)

Reformulating 
surface 
learning task as 
seq2seq 
problem and 
solving it by 
ViTs.

Twin-
Transformers 
(Yu et al., 
2022d)

Conventional 
Transformer

3D+t No N Brain Networks 
Identification

N HCP S1200 (Van 
Essen et al., 
2013)

A Twin-
Transformers is 
proposed to 
simultaneously 
capture 
temporal and 
spatial features 
from fMRI.

(Cheng et al., 
2022)

Conv-like 
Transformer

3D No 6.23M Cortical Surfaces 
Quality 
Assessment

MRI Infant Brain MRI 
Dataset

The first work 
extended 
Transformer 
into spherical 
space.

USST (Xie et 
al., 2021c)

Conv-like 
Transformer

2D/3
D

Pre-
trained 
ViT

N COVID-19 
Diagnosis, 
Pneumonia 
Classification

X-ray, CT RICORD (Tsai et 
al., 2021), 
ChestXR 
(Akhloufi and 
Chetoui, 2021)

The unified 
pre-training 
framework that 
allows the pre-
training using 
3D and 2D 
images is 
introduced to 
Transformers.

*
 https://brain-developmeni.org/ixi-dataset/ 

†
 https://www.kaggle.com/c/aptos2019-blindness-detection/ 

‡
 https://challenge.isic-archive.com/landing/2019/ 

§
 https://https://www.kaggle.com/c/diabetic-retinopathy-detection/ 
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Table 3.

The summarized review of Transformer-based model for medical image detection (upper panel) and 

registration (lower panel). "N.A." denotes for not applicable for intermediate blocks or decoder module. "N" 

denotes not reported or not applicable on the number of model parameters. "t" denotes temporal dimension.

Reference Architecture 2D/3
D

Pre-
training

#Param Detection 
Task

Modality Dataset ViT as 
Enc/
Inter/
Dec

Highlights

Detection

COTR 
(Shen et al., 
2021a)

Conv-
Transformer 
Hybrid

2D No N Polyp 
Detection

Colonoscopy CVC-
ClinicDB 
(Bernal et 
al., 2015), 
ETIS-
LARIB 
(Silva et al., 
2014), CVC-
ColonDB 
(Bernal et 
al., 2012

Yes/N
o/Yes

Convolution 
layers 
embedded 
between 
Transformer 
encoder and 
decoder to 
preserve 
feature 
structure.

(Mathai et 
al., 2022)

Conventional 
Transformer

2D No N Lymph Node 
Detection

MRI Abdominal 
MRI

Yes/
N.A./

Yes

DETR applied 
to T2 MRI.

(Jiang et al., 
2021)

Conv-
Transformer 
Hybrid

2D No N Dental 
Caries 
Detection

RGB Dental 
Caries 
Digital 
Image

No/Ye
s/No

Augment 
YOLO by 
applying 
Transformer on 
the features 
extracted from 
the CNN 
encoder.

TR-Net (Ma 
et al., 
2021a)

Conv-
Transformer 
Hybrid

3D No N Stenosis 
Detection

CTA Coronary 
CT 
Angiography

No/Ye
s/N.A.

CNN applied 
to image 
patches, 
followed by a 
Transformer to 
learn patch-
wise 
dependencies.

DATR (Zhu 
et al., 2022)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
Swin

N Landmark 
Detection

X-ray Head (Wang 
et al.,2016), 
Hand 
(Payeret al., 
2019), and 
Chest (Zhu 
et al., 2021)

Yes/
N.A./

No

The integration 
of a learnable 
diagonal 
matrix to Swin 
Transformer 
enables the 
learning of 
domain-
specific 
features across 
domains.

SATr (Li et 
al., 2022b)

Conv-
Transformer 
Hybrid

2D No N Lesion 
Detection

CT DeepLesion 
(Yan et al., 
2018

No/Ye
s/No

Introduce slice 
attention 
Transformer to 
commonly 
used CNN 
backbones for 
capturing inter- 
and intra-slice 
dependencies.

(Tian et al., 
2022)

Conv-
Transformer 
Hybrid

2D+t Pre-
trained 
CNN

N Polyp 
Detection

Colonoscopy Hyper-
Kvasir 
(Borgli et 
al., 2020), 
LD-
PolypVideo 
(Ma et al., 
2021b

No/Ye
s/N.A.

A weakly-
supervised 
framework 
with a hybrid 
CNN-
Transformer 
model is 
developed for 
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polyp 
detection.

SCT 
(Windsor et 
al., 2022)

Conv-
Transformer 
Hybrid

2D Pre-
trained 
CNN

N Spinal 
Cancer 
Detection

MRI Whole Spine 
MRI

No/Ye
s/N.A.

A Transformer 
that considers 
contextual 
information 
from the 
multiple spinal 
columns and 
all accessible 
MRI sequences 
is used to 
detect spinal 
cancer.

Reference Architecture 2D/3
D

Pre-
training

#Param Registration 
Task

Modality Dataset ViT as 
Enc/
Inter/
Dec

Highlights

Registration

ViT-V-Net 
(Chen et al., 
2021c)

Conv-
Transformer 
Hybrid

3D No 110.6M Inter-patient MRI Brain MRI Yes/N
o/No

ViT applied to 
the CNN 
extracted 
features in the 
encoder.

TransMorph 
(Chen et al., 
2022b)

Conv-
Transformer 
Hybrid

3D No 46.8 Inter-patient, 
Atlas-to-
patient, 
Phantom-to-
patient

MRI, CT, 
XCAT

IXI*, OASIS 
(Marcus et 
al., 2007), 
Abdominal 
and Pelvic 
CT, (Segars 
et al., 2013)

Yes/N
o/No

Swin 
Transformer is 
used as the 
encoder for 
extracting 
features from 
the 
concatenated 
input image 
pair.

DTN 
(Zhang et 
al., 2021c)

Conv-
Transformer 
Hybrid

3D No N Inter-patient MRI OASIS 
(Marcus et 
al., 2007

No/Ye
s/No

Separate 
Transformers 
are employed 
to capture 
inter- and 
intra-image 
dependencies 
within the 
image pair.

PC-
SwinMorph 
(Liu et al., 
2022a)

Conv-
Transformer 
Hybrid

3D No N Inter-patient MRI CANDI 
(Kennedy et 
al., 2012), 
LPBA-40 
(Shattuck et 
al., 2008)

No/No
/

Hybird

Patch-based 
image 
registration; 
Swin 
Transformer is 
used for 
stitching the 
patch-wise 
deformation 
fields.

Swin-
VoxelMorph 
(Zhu and 
Lu, 2022)

Conv-
Transformer 
Hybrid

3D No N Patient-to-
atlas

MRI ADNI 
(Mueller et 
al.,2005), 
PPMI 
(Marek et 
al., 2011)

Yes/
N.A./

Yes

Swin-
Transformer-
based encoder 
and decoder 
network for 
inverse-
consistent 
registration.

XMorpher 
(Shi et al., 
2022)

Conv-like 
Transformers

3D No N Inter-patient CT MM-WHS 
2017 
(Zhuang and 
Shen, 2016), 
ASOCA 
(Gharleghi 
et al., 2022)

Yes/
N.A./

Yes

Two Swin-like 
Transformers 
are used for 
fixed and 
moving 
images, with 
cross-attention 
blocks 
facilitating 
communication 
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between 
Transformers.

C2FViT 
(Mok and 
Chung, 
2022)

Conv-like 
Transformers

3D No N Template-
matching, 
patient-to-
atlas

MRI OASIS 
(Marcus et 
al., 2007), 
LPBA-40 
(Shattuck et 
al., 2008

Yes/
N.A./
N.A.

Multi-
resolution 
Vision 
Transformer is 
used to tackle 
the affine 
registration 
problem with 
brain MRI.

*
 https://brain-development.org/ixi-dataset/ 
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Table 4.

The summarized review of Transformer-based model for medical image reconstruction and enhancement. "N" 

denotes not reported or not applicable on model parameters.

Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/
Dec

Highlights

Reconstruction

ReconFormer 
(Guo et al., 
2022d)

Conv-
Transformer 
Hybrid

2D 1.414M MRI fastMRI (Knoll 
et al.,2020), 
HPKS (Jiang 
etal.,2019a)

No/Yes
/No

The Pyramid 
Transformer Layer 
(PTL) introduces a 
locally pyramidal but 
globally columnar 
structure.

DSFormer 
(Zhou et al., 
2022b)

Conv-
Transformer 
Hybrid

2D 0.18M MRI Multi-coil Brain 

Data from IXI*
No/Yes

/No
The proposed 
Swin Transformer 
Reconstruction 
Network enables 
a self-supervised 
reconstruction process 
with lightweight 
backbone.

SLATER 
(Korkmaz et 
al., 2022)

Conv-
Transformer 
Hybrid

2D N MRI Single-coil Brain 

Data from IXI*, 
Multi-coil Brain 
Data from 
fastMRI (Knoll 
et al., 2020)

No/Yes
/Yes

An unsupervised 
MRI reconstruction 
design with the long-
range dependency of 
Transformers.

DuDoCAF 
(Lyu et al., 
2022)

Conv-
Transformer 
Hybrid

2D 1.428M MRI fastMRI (Knoll 
et al.,2020), 
Clinical Brain 
MRI Dataset

No/Yes
/No

The proposed 
recurrent blocks 
with transformers 
are employed to 
capture long-range 
dependencies from the 
fused multi-contrast 
features maps, which 
boosts target-contrast 
under-sampled imaging.

SDAUT 
(Huang et al., 
2022a)

Conv-
Transformer 
Hybrid

2D N MRI Calgary 
Campinas 
dataset (Souza et 
al., 2018

No/Yes
/No

The proposed U-Net-
based Transformer 
combines dense and 
sparse deformable 
attention in separate 
stages, improving 
performances and 
speed while revealing 
explainability.

MIST-net (Pan 
et al., 2021)

Conv-
Transformer 
Hybrid

2D 12.0M CT NIH-AAPM-
Mayo 
(McCollough, 
2016

No/Yes
/No

The Swin Transformer 
and convolutional layers 
are combined in 
the High-definition 
Reconstruction Module, 
achieving high-quality 
reconstruction.

DuDoTrans 
(Wang et al., 
2021a)

Conv-
Transformer 
Hybrid

2D 0.44M CT NIH-AAPM-
Mayo 
(McCollough, 
2016), 
COVID-19

No/Yes
/No

The Sinogram 
Restoration Transformer 
(SRT) Module is 
proposed for projection 
domain enhancement, 
improving sparse-view 
CT reconstruction.

FIT (Buchholz 
and Jug, 2021)

Conventional 
Transformer

2D N CT LoDoPaB 
(Leuschner et al. 
2021,

Yes/No
/Yes

The carefully 
designed FDE 
representations mitigate 
the computational 
burden of traditional 
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Reference Architecture 2D/
3D

#Param Modality Dataset ViT as 
Enc/
Inter/
Dec

Highlights

Transformer structures 
in the image domain.

RegFormer 
(Xia et al., 
2022a)

Conv-
Transformer 
Hybrid

2D N CT NIH-AAPM-
Mayo 
(McCollough, 
2016

Yes/Ye
s/Yes

The unrolled iterative 
scheme is redesigned 
with transformer 
encoders and decoders 
for learning nonlocal 
prior, alleviating the 
sparse-view artifacts.

Enhancement

TransCT 
(Zhang et al., 
2021e)

Conv-
Transformer 
Hybrid

2D N CT NIH-AAPM-
Mayo 
(McCollough, 
2016), Clinical 
CBCT Images

No/Yes
/No

Decomposing Low 
Dose CT (LDCT) 
into high and low 
frequency parts, and 
then denoise the 
blurry high-frequency 
part with the basic 
Transformer structure

TED-Net 
(Wang et al., 
2021b)

Conv-like 
Transformer

2D N CT NIH-AAPM-
Mayo 
(McCollough, 
2016

Yes/Ye
s/Yes

Their design makes 
use of the tokenization 
and detokenization 
operations in 
the convolution-free 
encoder-decoder 
architecture.

Eformer 
(Luthra et al., 
2021)

Conv-
Transformer 
Hybrid

2D N CT NIH-AAPM-
Mayo 
(McCollough, 
2016

Yes/Ye
s/Yes

A residual Transformer 
is proposed, which 
redesigns the 
residual block in 
the denoising encoder-
decoder architecture 
with nonoverlapping 
window-based Multi-
head Self-Attention 
(MSA).

TVSRN (Yu et 
al., 2022a)

Conv-like 
Transformer

3D 1.73M CT
RPLHR-CT

† 

dataset

Yes/Ye
s/Yes

They design an 
asymmetric encoder-
decoder architecture 
composed of pure 
transformers. The 
structure efficiently 
models the context 
relevance in CT 
volumes and the long-
range dependencies.

T2Net(Feng et 
al., 2021)

Conv-
Transformer 
Hybrid

2D N MRI Single-coil Brain 

Data from IXI*, 
Clinical Brain 
MRI Dataset

No/Yes
/Yes

The task Transformer 
module is designed 
in a multi-task 
learning process of 
super-resolution and 
reconstruction, and 
the super-resolution 
features are enriched 
with the low-resolution 
reconstruction features

WavTrans(Li et 
al., 2022a)

Conv-
Transformer 
Hybrid

2D 2.102M MRI fastMRI (Knoll 
et al., 2020), 
Clinical Brain 
MRI Dataset

No/Yes
/No

The Residual Cross-
attention Swin 
Transformer is proposed 
to deal with cross-
modality features and 
boost target contrast 
MRI super-resolution.

*
 https://brain-development.org/ixi-dataset/ 

†
 https://github.com/smilenaxx/RPLHR-CT/ 
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