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Abstract

Motivation: IntLIM uncovers phenotype-dependent linear associations between two types of analytes (e.g. genes
and metabolites) in a multi-omic dataset, which may reflect chemically or biologically relevant relationships.

Results: The new IntLIM R package includes newly added support for generalized data types, covariate correction,
continuous phenotypic measurements, model validation and unit testing. IntLIM analysis uncovered biologically
relevant gene–metabolite associations in two separate datasets, and the run time is improved over baseline R func-
tions by multiple orders of magnitude.

Availability and implementation: IntLIM is available as an R package with a detailed vignette (https://github.com/
ncats/IntLIM) and as an R Shiny app (see Supplementary Figs S1–S6) (https://intlim.ncats.io/).

Contact: ewy.mathe@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

In recent years, many biomedical fields have begun to explore multi-
omic mechanisms of disease, clinical outcomes and other phenotypic
traits. However, integrating and interpreting multi-omic data to dis-
cover latent interdependencies remains a challenge (Eicher et al.,
2020). We introduce IntLIM 2.0, an R package that uncovers
phenotype-dependent linear associations between two types of ana-
lytes (e.g. genes and metabolites). IntLIM 2.0 extends IntLIM 1.0
(Siddiqui et al., 2018) to support generalized analyte measurement
data types, continuous phenotypic measurement, covariate correc-
tion, model validation and unit testing. Several other tools support
global multi-omic correlations or phenotype-dependent correlation
analysis for either discrete or continuous phenotypic measurements
(Fukushima, 2013; Langfelder and Horvath, 2008; Ma et al., 2019;
Shi et al., 2019; Siska et al., 2016). IntLIM 2.0 is unique as it sup-
ports continuous and discrete phenotypic measurements, and is
based on linear models, which allow for adjustment of independent
effects (e.g. clinical variables and technical effects).

2 IntLIM functionality

For each pair of analytes in a dataset, IntLIM 2.0 solves Equation
(1) in a streamlined manner, where ai and aj are measurements for
two separate analytes, p is the phenotypic measurement, C ¼
fc1,. . .cjCjg is a set of continuous or discrete clinical covariates
(potential model confounders as determined by data analyst), and
b0–b3 þ jCj is a set of coefficients corresponding to the model inter-
cept, aj, p, the interaction between aj and p, and additional model
covariates. Notably, the order of ai and aj may affect the outcome
and should be motivated by biology (e.g. effect of gene expression
level ai on metabolite abundance aj).

ai ¼ b0 þ b1aj þ b2pþ b3ajpþ
XCj j

k¼4

bkck�3: (1)

The input to IntLIM 2.0 is described in the Supplementary Files.
Users have the option to filter individual analytes by percentage of
missing values, mean measurement and coefficient of variation, but
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it is expected that the sample metadata and analyte measurements
have already been otherwise filtered, normalized and/or imputed
prior to analysis.

Analyte pairs with significant phenotype-dependent associations
are filtered and returned using one or more of the following criteria:
Benjamini–Hochberg false discovery rate adjusted b3 P-value,
b3 percentile and coefficient of determination (R2) value
(Supplementary Files). To ensure the validity of the P-value as a
measure of significance, it is expected that aj follows a Gaussian dis-
tribution. We note that multiple visualization functions are also
included in IntLIM 2.0, including a trendline and residual plot, a
newly developed figure of analyte measurements marginalized over
phenotype and a plot of sorted b3 values (Supplementary Files). An
overview of the functionality of IntLIM is illustrated in Figure 1.

3 New features

IntLIM 2.0 includes several major expansions to IntLIM 1.0 (Patt
et al., 2019; Siddiqui et al., 2018). First, in addition to the gene �
metabolite models supported by IntLIM 1.0, IntLIM 2.0 supports
both inter- and intra-omics (e.g. metabolite � metabolite) models
and other types of omics data (e.g. microbial abundance, protein
abundance, methylation level or mutation rate) (Do et al., 2015;
Langfelder and Horvath, 2008; Van Der Knaap and Verrijzer,
2016). Second, IntLIM 2.0 supports correction for covariates (e.g.
batch effects, demographic or clinical covariates). Relatedly, a new
option to filter models by R2 value allows users to evaluate models
by goodness of fit. Third, IntLIM 2.0 supports continuous pheno-
typic measurements (e.g. disease severity, drug response metrics,
etc.) in addition to data with two phenotype categories of interest
(e.g. case/control). Fourth, IntLIM 2.0 supports model validation
using (i) cross-validation and (ii) random permutation models,
along with accompanying visualizations described further in
Supplementary Files. Finally, the introduction of unit tests using the
testthat package (Wickham, 2011) makes IntLIM 2.0 more robust
to programming errors than IntLIM 1.0.

4 Results

The utility of IntLIM 2.0 is illustrated using datasets with continu-
ous and discrete phenotypic measurements. The NCI-60 dataset
(continuous) includes 57 cell lines from NCI-60 (Shoemaker, 2006),
each with 17 987 gene expression levels, 280 metabolite abundance
levels (Su et al., 2011) and the average drug concentration that
inhibits cell growth by 50% (IC50) over 48 h (drug score) (Reinhold
et al., 2012). The BRCA dataset (discrete) includes 61 tumor and 47
adjacent normal breast tissue samples, each with 20 254 gene ex-
pression levels and 536 metabolite abundance levels (Terunuma

et al., 2014). Patient age and race covariates were adjusted for this
dataset. Detailed vignettes on running these models in the NCI-60
and BRCA vignettes are available at tinyurl.com/du5xv5pc and
tinyurl.com/2p94sfde, respectively. Results are summarized in
Table 1, Supplementary Files and vignettes.

Significant associations found in the NCI-60 data have been
implicated in tumor progression and/or treatment: namely, choles-
terol with HHAT (Callahan and Wang, 2015) and CDKN1A
(Moon et al., 2019). These pairs and 19 pairs with knowledgebase
support were insignificant in all 100 permutations of the data
(Supplementary Fig. S7), supporting non-randomness. Further, 1778
of the 2517 pairs were significant in at least one leave-one-out cross-
validation fold, and 734 were significant in more than half of the
folds. Additionally, the BRCA analysis also uncovered associations
previously reported using IntLIM 1.0 (Siddiqui et al., 2018); namely,
ASNS and glutamine, SLC7A1 and glutamine, and GPT2 and
2-hydroxyglutarate. These pairs and 413 pairs with knowledgebase
support were insignificant in all 100 permutations (Supplementary
Fig. S8). 19 of the 14 583 pairs were significant in at least one leave-
one-out cross-validation fold, which is likely attributable to the
smaller sample size.

Runtime of IntLIM 2.0 was considerably faster than the linear
mixed model function lm() in the stats R package when tested on
all metabolite levels and the first 100 gene expression levels in the
NCI-60 data (Table 2).

Fig. 1. Schematic of IntLIM 2.0 functionality. New features include filtering by coefficient of variation in FilterData(), addition of covariate terms in RunIntLim(), filtering by

model R2 in ProcessResults(), and the RunCrossValidation() and PermuteIntLIM() functions

Table 1. Summary of IntLIM 2.0 results on NCI-60 and BRCA

datasets

Dataset Filtered

analyte count

(gene/metabolite)

Significant

paira count

Significant pairs

with knowledge

supportb

NCI-60 16 188/280 2517 26

BRCA 18 288/536 14 583 555

aFDR-adjusted P-value < 0.1 for b3, jb3j percentile > 0.5, R2 > 0.2.
bShared pathway and/or reaction in RaMP-DB 2.0 (Braisted et al., 2022;

Zhang et al., 2018).

Table 2. Runtime of IntLIM 2.0 and lm() on two separate machines

for a reduced dataset

R function Runtime (Machine 1) (s) Runtime (Machine 2) (s)

RunIntLim() 12 11

lm() 1622 482
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Machine 1 is a MacBook Pro laptop running macOS 12.3 with
an Intel Core i7 CPU, and Machine 2 is a single compute node of a
SLURM high-performance computing cluster running CentOS
Linux 7 with 2 allocated Intel Gold 6140 CPU’s.
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