
Deep-Learning to Map a Benchmark Dataset of Non-amputee 
Ambulation for Controlling an Open Source Bionic Leg

Minjae Kim1,2 [Member, IEEE], Levi J. Hargrove1,2 [Member, IEEE]
1Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611 
USA

2Regenstein Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, 60611 USA

Abstract

Powered lower-limb prosthetic devices may be becoming a promising option for amputation 

patients. Although various methods have been proposed to produce gait trajectories similar to 

those of non-disabled individuals, implementing these control methods is still challenging. It 

remains unclear whether these methods provide appropriate, safe, and intuitive locomotion as 

intended. This paper proposes the direct mapping of the voluntary movement of a residual limb 

(i.e., thigh) to the desired impedance parameters for amputated limbs (i.e., knee and ankle). The 

proposed model was learned from the gait trajectories of intact limb individuals from a publicly 

available biomechanics dataset, and was applied to control the prosthetic leg without post-tuning 

the network. Thus, the proposed method does not require training time with individuals with 

amputation nor configuration time for its use, and it provides a closely resembling gait trajectory 

of the intact limb. For preliminary testing, three able-bodied subjects participated in bypass tests. 

The proposed model accomplished intuitive and reliable level-ground walking at three different 

step lengths: self-selected, long-, and short-step lengths. The results indicate that intact benchmark 

data with different sensor configurations can be directly used to train the model to control 

prosthetic legs.

Keywords

Prosthetics and Exoskeletons; Deep Learning Methods

I. INTRODUCTION

MILLIONS of people live with lower-limb amputation, and even when using state-of-the-art 

microprocessor-controlled passive prostheses, they have limited mobility and functional 

deficits [1], [2]. Bionic legs—devices that are powered and appropriately controlled—are 

a promising option to restore more function compared to passive prostheses, as they are 

capable of doing mechanical work and restoring a gait that more closely resembles that of 

intact limb individuals [3].
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The control of bionic legs is commonly achieved using a three-level hierarchical controller. 

The high-level controller in-terprets human intentions and predicts the desired ambulation 

modes, such as level-ground walking or ascending/descending stairs. The mid-level 

controller generates the resulting gait trajectory parameters for the desired leg behavior. 

Finally, the low-level controller generates motor commands with feedback loops to control a 

specific parameter derived by the mid-level controller, such as position, velocity, torque, or 

impedance.

A variety of methods have been proposed to create mid-level controllers. For example, 

neuromuscular model control [4] mimics the underlying dynamics of the human 

neuromuscular system driven by virtual muscles. Phase-based control [5] parameterizes 

the gait cycle by a human-inspired phase variable, such as the thigh phase angle. 

Another common mid-level control approach uses an impedance-inspired controller where a 

number of impedance parameters are implemented within a finite-state machine. Using this 

approach, the parameters are carefully tuned, usually by hand. However, parameter tuning 

is a time-consuming and subjective process that relies on the experiences of therapists and 

prosthetists [6]. Thus, more recently, machine learning [7] and deep learning [8] techniques 

have been proposed for more intuitive and efficient tuning. Regardless of which mid-level 

control approach is used, implementation is still challenging, and it remains unclear which 

method works best or generalizes best across various activities. Individuals with amputation 

interact with their devices and the surrounding environment using their residual limbs, 

which are attached to the device through a socket. For example, individuals with unilateral 

transfemoral amputation (i.e., above-knee amputation) wear the socket on their thigh. They 

can voluntarily move their residual limb to change their thigh angle, making it a useful 

signal to help control the device (using the previously mentioned phase-based control 

approach as an example). The interaction between the user and environment can be sensed 

and contextualized by sensors (e.g., a load cell) and the current operational state of the 

device. For example, a load cell can measure the forces and moments created when the 

user shifts their weight onto or off the device by adjusting their intact hip joint and their 

non-amputated side. These voluntary control signals and resulting sensor recordings are 

powerful tools from which controllers can be created.

Deep neural networks (DNNs) are a rapidly evolving field of research and have been used 

in a variety of applications in the fields of the exoskeleton and prosthetic devices. DNNs 

are layered structures with various learnable parameters and have a powerful capability to 

learn non-linear input-output mappings. For example, convolutional neural networks and 

long short-term memory (LSTM) networks were used to estimate the human gait phase and 

used a generated hip torque to control a robotic hip exoskeleton [9]. Multi-stream LSTM 

dueling models have been used to predict the arm trajectory based on electromyography 

(EMG) data and inertial measurement unit data to control an upper limb exoskeleton [10]. 

Our research group has used DNNs to augment sensor data to learn robust representations of 

movement intention for powered leg prostheses [11] and improve classification performance 

in the presence of noise for EMG-based control of upper-limb prosthetic limbs [12].

In this paper, we propose DNN-based direct mapping between the voluntary movement 

of residual limbs and impedance parameters to generate the desired movement of the 
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bionic leg. We trained the proposed model using data collected from a publicly available 

benchmark dataset measured from intact limb individuals. Then, the DNN model collected 

thigh angle and vertical load using the sensors available on the device and generated 

knee and ankle commands for a low-level controller in real-time. In terms of joint angle 

prediction, Gaussian process regression-based methods have been proposed. Thigh angle 

and angular velocity were used to predict knee angle [13]. Muscle activities were analyzed 

using EMG [14], ultrasound imaging [15], and their sensor fusion [16]. However, validation 

of the real-time control of prosthetics is yet to be performed.

The proposed method reduces the training time and configuration time required to use a 

prosthetic leg by eliminating the mid-level controller while providing impedance parameters 

for a gait trajectory closely resembling that of intact limb individuals. The proposed system 

was demonstrated to control powered knee and ankle with intact-limb subjects using a 

bypass adaptor. We hypothesized that the DNN could (i) find the relationship between 

voluntary movement (i.e., thigh angle and vertical load) and movement of joints that 

required control and (ii) generate a reliable and safe gait trajectory without post-tuning 

the system.

II. METHODS

A. Open Source Benchmark Dataset

We used an open-source dataset of lower-limb biomechanics [17] to learn the gait trajectory 

of intact limb individuals. These data contain several mechanical sensor data and EMG 

data recorded from 22 intact limb subjects performing several ambulation modes, including 

stair ascent, ramp ascent, and level-ground walking. For this work, we used only data from 

walking on the treadmill, as we required data from continuous gait cycles with a ground 

reaction force to train the proposed system. The treadmill dataset contains data from walking 

at speeds that range from 0.5 to 1.85 m/s. From this dataset, we used the motion capture 

data (thigh (hip), knee, and ankle angles), the force plate data (vertical load), and five EMG 

data channel recordings (gluteus medius, vastus medialis, biceps femoris, gastrocnemius, 

and tibialis anterior).

B. Open Source Bionic Leg

The proposed method was evaluated using a self-contained open-source bionic leg (OSL). 

The OSL includes a powered knee and ankle, in which joints are actuated along the sagittal 

plane. The actuation at each joint is powered by brushless DC motors with a closed-loop 

controller (Dephy Inc., Cambridge, Mass.) powered by a 36 V lithium-polymer battery back. 

The knee uses a three-stage belt-drive transmission, and the ankle uses a two-stage belt-drive 

transmission in series with a single-stage kinematic linkage. The OSL also includes several 

sensors that can be used to monitor the state of the device. The OSL has a total mass of ∼4 

kg. Additional details for the hardware, available sensors, and the built-in controller can be 

found in [18].
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C. Control of the OSL

We used an impedance controller to generate torques for the knee and ankle based on the 

following equation:

τi = − ki θi − θi
eq − bθ̇i (1)

where i represents the knee or ankle joint, τ represents the joint torque, θ and θ̇ represent 

the joint angle and velocity, respectively, and k, b, and θeq denote the stiffness, damping 

coefficient, and equilibrium angle, respectively. The sign conventions for the knee joint 

angles were that knee flexion was positive and knee extension was negative. In the case of 

the ankle, dorsiflexion was positive, and plantar flexion was negative. The proposed DNN 

method generates these impedance parameters for the OSL knee and ankle by training the 

model using only the benchmark dataset.

D. DNN System

The proposed DNN system aims to predict the control parameters for the prosthetic legs 

from a benchmark dataset and then control the leg in real-time. In other words, the DNN 

system should collect sensor data from prosthetic legs and generate impedance parameters 

periodically at a fixed rate, without delaying or disturbing the routine functionalities of the 

prosthetic leg. We chose the vertical load and thigh angle as input data to map the powered 

knee and ankle impedance parameters. The vertical load provides information regarding 

two distinct phases: stance and swing. In addition, the thigh angle can be voluntarily and 

intuitively controlled by the residual limbs of individuals with transfemoral amputations. 

The benchmark dataset needs to be transformed to the OSL prior to mapping the desired 

impedance parameters using DNNs.

1) Data Conversion: The benchmark dataset and the OSL use different sensor 

coordinate systems. For example, in the case of the benchmark dataset, knee flexion is a 

negative value as opposed to the OSL. Fig. 1 shows the exemplary benchmark data (AB10, 

part of treadmill_07_01) and its transformed data for the OSL. The vertical load (Fig. 1(a)) 

was divided by the user weight to normalize it (Fig. 1(b)). The directions of the thigh and 

knee angles were changed (Fig. 1(c)-Fig. 1(d)). The sensor value ranges for the knee and 

ankle were also adjusted (Fig. 1(d)) as follows:

θknee = max 0, θknee
subject − θknee

25

θankle = θankle
subject − θankle

70 (2)

where θknee
subject and θankle

subject represent the knee and ankle angles from each subject, respectively, 

and θi
n denotes the nth percentile of angles from all subjects. These percentile values were 

heuristically determined for the purposes of accommodating the alignment of the device 

when attached to the bypass prosthesis and matching the sensor ranges between the device 

and the benchmark dataset.

The benchmark dataset includes stance-phase knee flexion up to 20 degrees, as shown 

in Fig. 1(d). In preliminary testing, this knee flexion in mid-stance felt uncomfortable to 

testers; thus, we added a constraint for the knee (Fig. 1(e)) as follows:
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θ′
knee = θknee × 1 − Fz

2
(3)

where Fz denotes the normalized vertical load.

For the stiffness and damping coefficients, EMG data from five muscles (Fig. 1(f)) were 

used to generate synthetic stiffness and damping coefficients for the knee and ankle. 

The gluteus medius (VGM ) contributes to walking stability during thigh abduction, 

vastus medialis (VV M ) contributes to knee extension, biceps femoris (VBF ) contributes 

to knee flexion, gastrocnemius (VG) contributes to plantar flexion, and tibialis anterior 

(VTA) contributes to dorsiflexion; these muscles provide the primary force driving the 

corresponding actions [19]. To generate the stiffness and damping coefficients, the root 

mean square (RMS) envelope of the EMG data is first extracted (Fig. 1(g)). The RMS 

envelope at time t represents the RMS value from t to t + 200 ms. Here, no method has been 

utilized to correct or remove artifacts from EMG data before the RMS envelope. Then, the 

synthetic stiffness and damping coefficient (Fig. 1(h)) were obtained as follows:

kknee = Fz V GM
RMS + V V M

RMS + V BF
RMS

bknee = V V M
RMS × V BF

RMS

kankle = Fz V GM
RMS + V G

RMS + V TA
RMS

bankle = V G
RMS × V TA

RMS

(4)

where VRMS represents RMS envelopes of the EMG data. Finally, the synthetic stiffness and 

damping coefficient were extracted, and their values were normalized and bounded between 

0 and 1 as follows:

p′
i = pi − pi

5

pi
95 − pi

5 (5)

where pi and p′
i represent impedance parameter and its normalized value respectively, and 

pi
n represents nth percentile of the parameter from all subjects. This relationship between the 

EMG data and impedance parameters was heuristically determined. The details are provided 

in Discussion.

Fig. 2 displays the gait trajectories and corresponding impedance parameters that were 

ultimately extracted from the benchmark dataset.

The proposed system parsed sensor data every 5 ms (i.e., 200 Hz) from the OSL. For the 

benchmark dataset, the joint angles (i.e., motion capture data), the vertical load (i.e., force 

plate data), and the EMG data have a sampling frequency of 200 Hz, 1 kHz, and 1 kHz, 

respectively. Therefore, the vertical load and synthetic stiffness/damping coefficient were 

downsampled to 200 Hz to match sampling frequencies.

2) Network Configuration: An overview of the proposed system architecture is 

presented in Fig. 3. Two independent networks were used to extract impedance parameters. 

The first DNN extracts the equilibrium angle for the knee and ankle (θknee
eq  and θankle

eq ) from the 

vertical load and thigh angle (Fz and θthigh), and the second DNN extracts the stiffness (kknee 
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and kankle) and damping coefficient (bknee and bankle) from the vertical load and thigh, knee, 

and ankle angles (Fz, θthigh, θknee, and θankle).

All these values were normalized to values between 0 to 1 for application to the DNN 

system. The synthetic stiffness and damping coefficient already range between 0 and 1. In 

the case of the vertical load and joint angles, we normalized data as follows:

vn = 0.1 v
gv

+ 0.5

gv = 1, if v = Fz

36, otherwise
(6)

where v and vn denotes the data (i.e., Fz, θthigh, θknee, or θankle) and its normalized value, 

and gv denotes the gain.

The network modules include the Gaussian noise, LSTM sigmoid, time distributed, 

flattening, and dense sigmoid modules (Fig. 3(c)). The sigmoid is utilized as an activation 

function in all cases because the range of input and output data used for the DNN is between 

0 and 1. The overall execution time for the two DNNs is about 7 ms, which we found was 

sufficient to control the leg in real-time.

a) DNN for equilibrium angles:  the input for this network (Fig. 3(a)) is the 250 ms 

history of the thigh angle and the vertical load (i.e., Fz and θthigh [t − 250 ms, t] at time t). 
The outputs of this network are the knee and ankle angles 100 ms in the future (i.e., θknee

pred

and θankle
pred t + 100ms ). In the case of the ankle, the leg should provide power to the user to 

initiate leg swing (i.e., push-off). Therefore, the sign-converted value of the output ankle was 

used as the equilibrium ankle angle i . e . , θankle
eq = − θankle

pred . The input layer is followed by a 

Gaussian noise layer (σ = 0.01). This module corrupts the input data in training sessions and 

improves the robustness of the network. Then, the LSTM layer follows to extract temporal 

information from the data. After flattening, a sequence of dense layers is connected to 

the output layer. The hyperparameters for the network were heuristically chosen, and the 

network has 3,904 total parameters. The network was trained for 50 epochs (a batch size of 

256, ADAM with a learning rate of 0.001, and the mean squared error (MSE) as the loss 

function). At each epoch, the data were shuffled and split into training and validation data in 

a ratio of 7:3.

b) DNN for stiffness and damping coefficient:  the input for this network (Fig. 3(b)) is 

the 250 ms history of the vertical load, and thigh, knee, and ankle angles (i.e., Fz, θthigh, 

θknee, and θankle [t − 250 ms, t] at time t). The outputs of this network are the synthetic 

stiffness and damping coefficient extracted in Section II-D1 at time t. Because the range 

of these outputs is from 0 to 1, we scaled the outputs to a range of generic impedance 

parameters [6], as shown in Table I.

This network has the same structure as the network for equilibrium angles except for the 

input and output layers. This network has 4,006 total parameters. The network was trained 

with the following learning configuration: 50 epochs, a batch size of 256, RMSprop with a 

Kim and Hargrove Page 6

IEEE Robot Autom Lett. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learning rate of 0.001, and MSE as the loss function). At each epoch, the data were shuffled 

and split into training and validation data in a ratio of 7:3.

3) DNN Processor: Pairs of sensor data (e.g., network inputs) and impedance 

parameters (e.g., network outputs) were used to train the DNN models using TensorFlow 

(v. 2.7.0, Google) in Python 3.8 on a laptop (ROG Strix G17, ASUS). The trained DNN 

models were deployed to a smartphone running Android 12 (Galaxy Z Flip 3, Samsung). 

A bidirectional translation module (Pyboard D-Series SF6W) accepted commands from the 

smartphone over USB serial communication and transmitted them to the OSL via CAN and 

vice versa. First, the smartphone parsed the sensor data and generated impedance parameters 

every 5 ms and 15 ms, respectively. Then, the impedance parameters were transmitted to the 

OSL every 25 ms due to the limitations of the translation board. The system diagram for the 

hardware used to control the OSL is shown in Fig. 4.

E. Experimental Protocol and Data Analysis

We quantified performance through an offline analysis of model fit and through real-time 

ambulation by non-amputees who walked with the OSL using a bypass adapter.

To quantify model fitting, the trained DNN models were applied to the benchmark dataset, 

and the Pearson correlation was calculated as follows:

corr zb, zd = 1
N − 1 i = 1

N zb
i − zd

σzb

zd
i − zd

σzd
(7)

where z represents the synthetic impedance parameters (i.e., k, b, or θeq) obtained from ith 

benchmark data point zb
i , and its estimated value zd

i  using the DNNs. zb and zd denote the 

mean of zb and zd, respectively, and σz denotes the standard deviation of z.

For bypass testing, three individuals (AB1, AB2, and AB3) participated in a real-time 

ambulation experiment approved by the Northwestern University Institutional Review 

Board. The subjects performed level-ground walking with self-selected, long-, and short-step 

lengths with the parallel bars; 5 repetitions of each step length for each subject were 

performed. Next, we computed the root mean square difference (RMSD) between median 

joint trajectories (i.e., thigh, knee, and ankle) for the gait cycle: those from the benchmark 

dataset and those obtained from the bypass tests.

III. RESULTS

A. Benchmark Data Fitting

Fig. 5 shows the trajectories of synthetic impedance parameters in the gait cycle from the 

benchmark dataset used for model training and their fitted data with the proposed model. 

The correlation for knee stiffness, ankle stiffness, knee damping coefficient, ankle damping 

coefficient, knee equilibrium angle, and ankle equilibrium angle was 0.89, 0.91, 0.78, 0.63, 

0.98, and 0.89, respectively.
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B. Bypass Testing

Joint trajectories (i.e., thigh, knee, and ankle) from the benchmark dataset and bypass testing 

data in the gait cycle are shown in Fig. 6. All bypass testing subjects could ambulate 

within the level-ground walking mode with different step lengths; trajectories of the powered 

knee (Fig. 6(f)-(h)) and ankle (Fig. 6(j)-(l)) showed similar trajectories to those from the 

benchmark data (Fig. 6(e) and (i)). RMSDs between benchmark data and bypass testing data 

are shown in Table II.

There was a large difference in the range of thigh angle between benchmark data and 

bypass data, which might be induced by differences in sensor configuration, angular bias, or 

characteristics of subjects. In the case of the knee, RMSD increased as RMSD of thigh angle 

increased. On the other hand, in the case of the ankle, the differences were smaller than in 

the knee.

IV. DISCUSSION

The proposed system learns a direct mapping from the sensor data on the prosthetic leg and 

modeled impedance parameters for the low-level controller to restore locomotion. Notably, 

the model was trained using gait trajectory from a benchmark dataset and did not use data 

from any of the subjects who ultimately ambulated with the OSL.

One of the challenges of this approach is converting the benchmark dataset to the domain 

expected by the OSL, which expects different sensor configurations (e.g., types of sensors, 

sensor coordinates, and data resolution). To compensate for the differences, we normalized 

the vertical load, removed the angle bias of the knee and ankle, and prevented knee flexion 

in the mid-stance by multiplying the knee angle by (1 − Fz)2 before training. Although there 

was a large difference in thigh angle, we did not modify the thigh angle to minimize the 

modification in the input data for the DNN. These conversion parameters were heuristically 

chosen based on preliminary experiments. It is unclear to what extent these transformations 

would be necessary if a better domain adaptation strategy were used.

The ankle should provide powered push-off in the late stance phase of gait. In other words, 

the ankle should hit the ground at the end of the stance phase. However, the ankle usually 

tends to be dorsiflexed in the stance phase, so we commanded a sign-converted ankle angle 

i . e . , θankle
eq = − θankle

pred  to the leg as the equilibrium angle. Although this approach provided 

power to push-off, the resulting trajectory of the powered ankle was different from the actual 

human ankle trajectory (see Fig. 2 and Fig. 6). Therefore, a different mapping strategy could 

be considered to create more normal joint trajectories.

The stiffness and damping coefficients are important parameters to generate a reliable gait 

trajectory. We first attempted to simply impose constant stiffness and damping coefficients 

within the stance and swing phase of gait. However, subjects noted that ambulating with 

this style of control felt unrealistic and inconvenient; knee extension was too fast during 

the swing phase. One possible solution can be to impose constant parameters for each 

phase. However, we wanted to generate continuous impedance parameters by utilizing 

the benchmark dataset for more natural motion. Although several model-based methods 
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have been proposed to predict joint stiffness [20], [21], we combined EMG data to 

generate synthetic stiffness and damping coefficients from benchmark data to simplify the 

relationship in accordance with the following criteria: stiffness should be proportional to 

user weight to support the leg in the stance phase; damping coefficient should be high 

when the joint is interacting with the ground (e.g., knee before and after the heel strike, or 

ankle before and after the midstance). Although EMG data can represent muscle stiffness, 

our synthetic parameters should not be considered ground truth and may differ from actual 

stiffness and damping coefficient. Ideally, the real impedance values for these joints (e.g., 

work of [22]) would be available for all joints and multiple activities. These may provide 

even better performances.

For the equilibrium angles, the ankle fitting performed more poorly than the knee. The ankle 

is relatively farther away from the thigh than the knee, and movement of the ankle might be 

highly related to not only thigh angle but also knee angle; these factors might have affected 

the performance. In the case of the stiffness and damping coefficient, the ankle damping 

coefficient showed poor-fitting performance because it has significant variation, as shown in 

Fig. 5(d). Nonetheless, the model achieved a good overall correlation with the median value.

Performance depends upon the DNN configuration. The Gaussian noise layer was critical in 

the proposed system. Without the Gaussian noise layer, oscillation increased in the swing 

phase of the OSL. Input signal (i.e., vertical load and thigh angle) corruption using the 

Gaussian noise layer may stabilize the leg by compensating for the difference in sensor 

configuration between the benchmark dataset and the OSL. The increase in the number of 

epochs seemingly increases stability, but we didn’t notice a significant difference. In this 

study, a 250 ms history of thigh angle and vertical load (i.e., the length of historical input 

data) was used to predict knee and ankle angles 100 ms in the future (i.e., the length of 

time in the future) as equilibrium angles. These parameters have a significant effect on 

performance. Regarding the length of historical input data, the longer the history used, 

the lower the sensitivity. For an even slightly longer history (i.e., 300 ms), difficulty in 

performing slow and short-step walking was encountered, although the LSTM layer was 

implemented in the networks. On the other hand, a short history, such as 50 ms, resulted in a 

jerky motion, especially in the swing phase. The length of time in the future determines the 

differences between current and equilibrium angles. If the differences are small (e.g., 50 ms 

in the future), the motor generates a small torque according to (1). Thus, the leg generates 

slower motion than the user intended; it may remain stiff in the worst case. On the other 

hand, a longer time length in the future results in faster leg motion due to the large torque 

generated. Meanwhile, stability is reduced. For example, in the transition from the stance 

phase to the swing phase, bypass subjects felt the leg moving too slowly for a prediction of 

50 ms in the future; they felt that the knee was bent early in mid-stance for a prediction of 

150 ms in the future.

Bypass testing results indicate that the proposed model successfully generated impedance 

parameters for gait in different step lengths. In addition, bypass subjects commonly 

noted that short-step walking performed very well. This is encouraged feedback because 

lower-limb amputation patients tend to walk with shorter step lengths than non-disabled 

individuals [23]. Future research will include testing with transfemoral amputation patients 
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to demonstrate the proposed method. In addition, a more detailed analysis in terms of 

naturalness and symmetricity between sound and prosthetic sides will be performed.

Although the benchmark dataset we used contains various ambulation modes, including 

stair ascent/descent and ramp ascent/descent, we used only treadmill data and demonstrated 

level-ground walking since data, not from the treadmill, provides only partial vertical load 

during gait. We believe that the proposed model can cover the various ambulation modes 

with an additional dataset, and it will be performed as future work.

Our study had several limitations in terms of quantitative analysis. First, although all 

bypass subjects who participated in this study could walk at different speeds and different 

step lengths, the results were not quantitated. Additional tests, such as walking on the 

treadmill at different speeds consistent with the benchmark data, should be needed for 

the generalizability of the proposed method. To guarantee the safety and reliability of the 

proposed system, we performed a T-handle test prior to the bypass test (see supplementary 

video); the T-handle test refers to a test in which a T-shaped handle is attached to the 

OSL, and locomotion is mimicked by hand. We investigated whether the system could 

provide sufficient support during a stance, as well as avoid unstable leg oscillation and 

any jerky motion (e.g., sudden knee drop in the stance phase). No such problems were 

observed. However, this qualitative evaluation may not be sufficient because safety remains 

a primary concern. Future research will include a quantitative evaluation of safety under 

well-organized conditions.

V. CONCLUSION

In this study, we proposed the benchmark data-derived DNN model to control prosthetic 

legs. The proposed DNN successfully generated impedance parameters for level-ground 

walking trained using synthetic impedance parameters from non-disabled limb trajectories.

The high correlation between synthetic impedance parameters and their fitted parameters 

with benchmark data confirmed hypothesis (i). The proposed DNN accomplished 

comfortable and reliable locomotion without post-tuning the system for three bypass 

subjects, confirming the hypothesis (ii).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Conversion of the benchmark data to the OSL data through exemplary data (AB10, part 

of treadmill_07_01). The vertical load measured by force plate (a) was normalized by user 

weight (b). In the case of the joint angles (c), the direction of the thigh and knee angles 

was changed to compensate for the difference in the sensor coordinate system, and the bias 

was removed from the knee and ankle angles (d). In addition, we added a constraint for 

the knee to prevent knee flexion in mid-stance (e). In the case of the stiffness and damping 

coefficient, RMS envelopes (g) of five EMG data (f) were utilized to generate synthetic 

stiffness and damping coefficient (h).
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Fig. 2. 
Gait trajectory (a) and corresponding stiffness and damping coefficient (b) were extracted 

from 22 non-disabled subjects. All plots show 75th and 25th percentiles in lighter bands.
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Fig. 3. 
Architecture of the proposed system. In the case of the equilibrium angle (a), the model 

takes the history of the vertical load and thigh angle as the inputs. In the case of the stiffness 

and damping coefficient (b), the model takes the history of the vertical load, thigh, knee, and 

ankle angles. (c) The network modules represent the function of layers. The number in the 

brackets in a Gaussian noise layer represents the standard deviation of the noise distribution. 

The number in the brackets in the other modules represents the number of units in the layers 

(e.g., Dense (N) represents the Dense layer with N units.
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Fig. 4. 
System configuration. Details of the OSL can be found in [18]. The Pyboard acted as a 

bidirectional translation module between the Android smartphone and OSL; it is connected 

to the OSL and the smartphone, respectively, by CAN and USB. The smartphone parses 

sensor data and generates impedance parameters every 5 ms and 15 ms, respectively. The 

generated impedance parameters are transmitted to the OSL and control the leg every 25 ms.
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Fig. 5. 
Comparison of synthetic impedance parameters from the benchmark data (blue lines) and 

their fitted data (red lines). The correlation was 0.89, 0.91, 0.78, 0.63, 0.98, and 0.89 

for knee stiffness (a), ankle stiffness (b), knee damping coefficient (c), ankle damping 

coefficient (d), knee equilibrium angle (e), and ankle equilibrium angle (f), respectively. All 

plots show 75th and 25th percentiles in lighter bands.

Kim and Hargrove Page 17

IEEE Robot Autom Lett. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Joint trajectories in the gait cycle. From top to bottom, thigh, knee, ankle angles. From 

left to right, benchmark data, AB1, AB2, AB3. Knee and ankle angles of benchmark data 

((e) and (i)) represent equilibrium angles. Blue, red, and yellow lines in bypass data (from 

the second column to the fourth column) represent trajectories at self-selected, long-, and 

short-steps, respectively. All plots show 75th and 25th percentiles in lighter bands.

Kim and Hargrove Page 18

IEEE Robot Autom Lett. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Hargrove Page 19

TABLE I

RANGE OF STIFFNESS AND DAMPING COEFFICIENT.

Impedance parameter

Joint Stiffness (Nm/deg) Damping coefficient (Nm·s/deg)

Knee 3–5 0.05–0.5

Ankle 3–8 0.05–0.15

IEEE Robot Autom Lett. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Hargrove Page 20

TABLE II

RMSD OF JOINT ANGLES WITH RESPECT TO THE BENCHMARK DATA.

RMSD [deg] Subject

AB1 AB2 AB3

Joint

Thigh 11.53 14.71 6.84

Knee 9.59 15.33 6.44

Ankle 5.79 5.41 7.17
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