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Abstract

A fundamental principle of biological motor control is that the neural commands driving 

movement must conform to the response properties of the motor plants they control. In the 

oculomotor system, characterizations of oculomotor plant dynamics traditionally supported 

models in which the plant responds to neural drive to extraocular muscles on exclusively 

short, subsecond timescales. These models predict that the stabilization of gaze during fixations 

between saccades requires neural drive that approximates eye position on longer timescales and 

is generated through the temporal integration of brief eye velocity-encoding signals that cause 

saccades. However, recent measurements of oculomotor plant behaviour have revealed responses 

on longer timescales. Furthermore, measurements of firing patterns in the oculomotor integrator 
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have revealed a more complex encoding of eye movement dynamics. Yet, the link between 

these observations has remained unclear. Here we use measurements from the larval zebrafish 

to link dynamics in the oculomotor plant to dynamics in the neural integrator. The oculomotor 

plant in both anaesthetized and awake larval zebrafish was characterized by a broad distribution 

of response timescales, including those much longer than 1 s. Analysis of the firing patterns 

of oculomotor integrator neurons, which exhibited a broadly distributed range of decay time 

constants, demonstrates the sufficiency of this activity for stabilizing gaze given an oculomotor 

plant with distributed response timescales. This work suggests that leaky integration on multiple, 

distributed timescales by the oculomotor integrator reflects an inverse model for generating 

oculomotor commands, and that multi-timescale dynamics may be a general feature of motor 

circuitry.
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Introduction

Motor plants transform commands from motor neurons into action. Because motor plant 

responses to neural drive can be complex and history-dependent, commands needed to elicit 

a particular movement differ from the desired patterns of muscle activation. Standard models 

of motor control assume that premotor circuitry generates appropriate motor commands by 

filtering intended muscle activation through an inverse model of the plant being controlled 

(Kawato, 1999; Lisberger, 2009). This filtering is then cancelled by the plants response 

to the command, resulting in the intended movement. In this manner, the filtering via the 

inverse model compensates for the response properties of the plant.
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This inverse model framework has proven useful in understanding motor command 

generation in the oculomotor system (Fig. 1A; Green et al., 2007; Robinson, 1989; Van 

Opstal et al., 1985). In the classical view, based on the work of Robinson (1964), passive 

oculomotor plant behaviour in the horizontal plane is modelled by a pair of one-dimensional 

viscoelastic (Voigt) elements in series, each characterized by a time constant that dictates the 

exponential time course of the elements length change following a step change in applied 

force. These time constants have been estimated to be relatively short: 10–60 ms and 250–

660 ms (Goldstein & Robinson, 1984; Optican & Miles, 1985; Robinson, 1964; Sklavos 

et al., 2006; Stahl & Simpson, 1995; Stahl et al., 2015). The motor command required 

for a step change in eye position (saccade), determined by inverting this two-element 

plant model, is composed of three components, each of which compensates for a different 

aspect of the plant model’s response properties (Goldstein & Robinson, 1984; Optican & 

Miles, 1985; Robinson, 1964). The first component is a brief eye velocity-encoding burst of 

firing (termed the ‘pulse’) that overcomes plant viscosity to quickly pull the eye to a new 

position. The second is an eye position-encoding ‘step’ that counters the plant’s elasticity to 

maintain the eye at a fixed position during fixation. The final component is an exponential 

decay (termed the ‘slide’) that reflects the attenuating force needed to stabilize gaze as the 

viscoelastic elements equilibrate following the saccade.

Each of these components appears to be reflected in the firing patterns of ocular motor 

neurons during horizontal eye movements (Robinson, 1981). The pulse is conveyed by 

saccadic burst neurons that project to the ocular motor nuclei. The step component has 

been observed in the firing of premotor neurons constituting the velocity-to-position neural 

integrator for horizontal eye movements (hVPNI), which receives eye velocity-encoding 

bursts and appears to compute their temporal integral, producing the step (Fig. 1; Cohen 

& Komatsuzaki, 1972; Robinson, 1989; Scudder et al., 2002; Skavenski & Robinson, 

1973). The slide component has also been observed in hVPNI neurons (Aksay et al, 2000; 

McFarland & Fuchs, 1992); its origin is less clear, but may reflect an imperfect integral of 

the burst inputs that ‘leaks’ away over time with a particular time constant.

More recent work has suggested a need for substantial modifications to the classical view 

of eye movement command generation based on a two-element plant model. Sklavos et 

al. (2005, 2006) found evidence of additional time constants on the order of 1 and 10 s 

following long steps of force externally applied to the eye. Quaia, Ying, Nichols et al. (2009) 

analysed the response of primate extraocular muscle to elongation steps, demonstrating 

muscle tension relaxation on a wide range of timescales, with time constants ranging up 

to at least 40 s. Davis-Lopez de Carrizosa et al. (2011) measured lateral rectus muscle 

tension in cats, finding that it decays on timescales of 1–10 s during fixations between 

saccades while eye position is approximately stable. Additionally, firing rates of abducens 

motor neurons in primates during different types of eye movement are not consistent with 

a common two-element plant model (Sylvestre & Cullen, 1999). These results support an 

expanded model of the oculomotor plant having several viscoelastic elements with time 

constants distributed across several orders of magnitude, from 10 ms to 10 s (Sklavos et al., 

2005, 2006). The long timescale responses of such plant models imply that additional drive 

components that decay on long timescales (> 1 s) are necessary to produce stable fixations 

(Fig. 1B and C; Sklavos et al., 2005).
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Nevertheless, questions remain about the relevance of long response timescales in the 

awake, behaving (active) state. Previous measurements of oculomotor plant responses in 

alert animals have been limited to short time intervals (<400 ms in monkey, Anderson et al., 

2009; <2 s in mouse, Stahl et al., 2015), precluding observation of long timescale responses. 

These studies also used brief eye position steps of < 1 s, which would not appreciably 

deform viscoelastic elements with long time constants (Anderson et al„ 2009; Sklavos et 

al„ 2006). Furthermore, previous fitting of oculomotor plant models has depended on the 

assumption that viscoelastic elements were at equilibrium (Sklavos et al., 2005) and was 

therefore not suitable for fitting model parameters in awake animals.

In addition, questions remain about the relation between long response timescales in the 

plant and firing dynamics in the hVPNI. We have reported that during fixations, firing rates 

in hVPNI neurons do not simply encode eye position and a single fast slide, as predicted 

by classical models, but instead decay on long timescales that vary across an order of 

magnitude within individual larval zebrafish (Miri, Daie, Arrenberg et al., 2011). Such 

heterogeneity in firing rate decay timescales has also been measured during fixation in adult 

goldfish hVPNI (Miri, Daie, Arrenberg et al., 2011) and in monkey oculomotor integrator 

neurons (Joshua et al., 2013). In cats, abducens firing after saccades decays on varying 

timescales generally greater than 1 s, with such decays believed to arise from the oculomotor 

integrator (Davis-Lopez de Carrizosa et al., 2011). While heterogeneous firing rate decays 

may reflect an inverse model that helps stabilize a plant with distributed response timescales, 

it remains to be seen whether firing in the hVPNI could constitute a signal sufficient to do 

so.

Here we used measurements of oculomotor plant dynamics and analysis of previously 

obtained neural recordings in the larval zebrafish to assess whether the hVPNI implements 

an approximate inverse model that accommodates long timescale behaviour of the 

oculomotor plant to promote gaze stability. In both anaesthetized and awake animals, we 

performed mechanical displacements sufficiently long enough (~10–100 s) to appreciably 

deform elements with long timescale responses. We developed methods for analysing the 

eye’s return from long displacements in the active state. Our measurements demonstrate 

the existence of both short (<1 s) and long response timescales in the larval zebrafish 

oculomotor plant in both the anaesthetized and active states. We used these measurements to 

fit oculomotor plant models for each larva, employing a new method that does not require an 

equilibrium assumption. Using these plant models, we then compared the predictions of the 

neural drive during active state fixations with previous measurements of activity in the larval 

zebrafish hVPNI. Analysis of the distribution of decay times seen in hVPNI neuron firing 

rates suggests that this distribution is sufficient to enable stabilization of an oculomotor 

plant with the distributed response timescales we observed. Our results support a view of 

integration in the oculomotor system in which hVPNI firing, rather than purely or primarily 

encoding eye position, compensates for plant viscoelasticity by generating firing rate decay 

on multiple, distributed timescales (Fig. 1).
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Methods

Ethical approval

All experiments were performed in compliance with protocols approved by the Princeton 

University Institutional Animal Care and Use Committee (protocols 1726 and 1863), and 

in accordance with the policies of The Journal of Physiology. Following these guidelines 

ensured that animal distress was minimized in the course of our study.

Framework for modelling oculomotor plant

We modelled the oculomotor plant as a combination of viscoelastic Voigt elements in 

series that respond over n effective timescales. This was represented as a linear filter 

whose impulse response function consists of a sum of exponentially decaying components 

(Robinson, 1964; Sklavos et al., 2005):

p(t) = ∑
i = 1

n
cie−t/τi, (1)

where ci > 0 is the coefficient of the component with time constant τi. The time constants 

can be identified by finding the step response of the system. If a force f(t) is applied to the 

system at time t = 0, the measured eye position y(t) will be a convolution of the force profile 

and the impulse response:

y(t) = (f ∗ p)(t) = ∫
0

t

du f(u)p(t − u) . (2)

If the applied force is stopped at time t = t0, then the measured eye position at later times will 

be:

y t > t0 = ∫
0

t0

du f(u) ∑
i = 1

n
cie−(t − u)/τi

= ∑
i = 1

n
ci∫

0

t0

du f(u)e− t0 − u /τi e− t − t0 /τi

= ∑
i = 1

n
aie− t − t0 /τi,

(3)

that is, the response after release will be a sum of exponentials with the same time constants 

as the plant.

Based on the above, in order to model the oculomotor plant, we took the following steps, 

detailed in the sections below:

1. Apply a transient external force (‘displacement’) resulting in a step change in 

eye position, and measure the eye position after release from displacement (‘step 

response’).
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2. Fit a multiexponential model to the step response and extract the plant time 

constants τi .

3. Find the plant coefficients ci  by fitting a model of the form in eqn (2) to the eye 

position during and after displacement.

Step response measurement

Mitfa−/− (nacre) mutant zebrafish (Danio rerio) larvae (Lister et al., 1999) of age 5–8 days 

post-fertilization were used for all experiments. We obtained the nacre strain from Zebrafish 

International Resource Centre. Embryos were reared in egg water (Westerfield, 2007) in 

Petri dishes in an incubator at 28°C on a 12 h light-12 h dark cycle. Larvae at this age feed 

from their yolk and additional food was not provided.

To enable eye tracking, larvae were immobilized by embedding in a thin layer of 1.7% 

low melting point agarose (SeaPlaque, Lonza, Switzerland) immediately prior to data 

collection, and the agarose was removed from around the eyes to allow free eye movement. 

A rectangular agarose block containing the larva was excised and mounted on a Sylgard 

platform in a water-filled chamber. Individual larvae were embedded for no more than 3 h. 

Following data collection, larvae were removed from agarose and immediately euthanized 

by submerging in ice water for >5 min, to which bleach was added to a concentration of 1% 

by volume.

We used one of two methods to anaesthetize larvae. Ethyl 3-aminobenzoate 

methanesulfonate (MS-222, Sigma, St Louis, MO, USA; n = 10 larvae) was gradually added 

to the chamber water to achieve a concentration at which spontaneous eye movements 

stopped. Final concentrations were between 0.005% and 0.015% (weight/volume). For 

ketamine experiments (n = 6 larvae), embedded larvae were incubated for 15 min in 0.5% 

(weight/volume) ketamine prior to mounting in the chamber; no ketamine was added to 

the chamber water. This ketamine concentration was found to be sufficient to abolish 

spontaneous eye movement in most larvae. Data were not collected from larvae that 

performed eye movements under anaesthesia. Separate sets of larvae were used for each 

of the experimental groups: MS-222 anaesthetized, ketamine anaesthetized, and awake.

The left eye’s response to step displacement was measured in the dark. In order to displace 

the eye, a blunt probe (hemispherical tip ~30 μm in diameter) controlled by a hydraulic 

micromanipulator (Siskiyou, Grants Pass, OR, USA) was brought toward a point ~50 μm 

temporal of the centre of the left eye at an oblique angle relative to the eye’s minor axis 

(considering the eye as an ellipsoid; Fig. 2A). After gently contacting the eye, the probe 

was advanced to rotate the eye temporally in the horizontal plane. Probe advancement was 

performed quickly, taking less than a second. For active state measurements (n = 6 larvae), 

this displacement was performed 5–7 s following a saccade in which the eye moved nasally. 

This allowed the expected position of the eye in the absence of the displacement to be 

estimated by extrapolating a fit to the eye position between the saccade and the displacement 

(see below). The eye was released by quickly retracting the probe. Eye position was tracked 

at ~70 Hz for >60 s following release using methods previously described (Beck et al., 

2004; Miri, Daie, Burdine et al., 2011). Briefly, a 945-nm LED illuminated the chamber 
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from below while a mirror, long-pass filter, and charge-coupled device (CCD) camera above 

the chamber collected video images that were processed in real-time to extract eye position 

measurements using software custom written in LabView (National Instruments, Austin, 

TX, USA). In this software, two regions of interest (ROIs) that included either the eyes or 

a fixed segment of the body were drawn on a reference CCD image. During data collection, 

the ROIs were thresholded, the two largest objects within the eye ROI were defined as the 

eyes, the largest object within the body field was defined as the body segment, and the edges 

of these three objects were smoothed. The body axis was defined as the line connecting the 

centre of the body segment and the midpoint between the centroids of the eyes. Horizontal 

eye positions were measured as the angle formed by the major axis of the eye and the body 

axis. Eye position measurements were digitized by a Digidata 1440A (Molecular Devices, 

San Jose, CA, USA) and recorded at 5000 Hz in Clampex (v. 10, Molecular Devices). 

Visual inspection of eye tracking images indicated that eye shape was at most minimally 

disturbed by contact with the probe and any disturbance was confined to the site of probe 

contact. Contact with the probe did not cause visible deformation of the eye that extended 

appreciably into the displacement response.

In each anaesthetized larva, two displacements of differing duration were performed: 10 and 

60 s in MS-222 experiments, 15 and 90 s in ketamine experiments. Displacements ranged 

from 14.8 to 22.2° under MS-222, and 8.5 to 20.9° under ketamine. Pairs of displacements 

performed on individual larvae were nearly equal, differing on average by only 1.5°. In 

awake larvae, up to five displacements were performed on each larva, each between 6.5 

and 8.5 s in duration, and 11.6 and 26.0° in size. Active state trials in which spontaneous 

eye movements occurred during the applied displacement or within 8 s following the 

release were discarded. As a result, at most two responses from each larva were analysed. 

Spontaneous eye movements during displacement could be identified by motion of the 

undisplaced eye. At least 10 min elapsed between displacements.

Step response fitting

Eye position during the displacement prior to release was measured from an image captured 

while the eye was displaced. The time of release was defined as the time of the last sample 

during which the probe was contiguous with the eye in the video image. For MS-222 and 

ketamine experiments, baseline eye position was measured as the mean eye position during a 

50 s epoch preceding the displacement and was subtracted from the eye position time series.

For active state responses, the centre of gaze was estimated from a plot of eye velocity 

versus eye position (a ‘PV plot’; Becker & Klein, 1973; Goldman et al„ 2002) assembled 

as follows from at least 3 min of eye position data collected during spontaneous eye 

movement prior to the displacement. First, data from 100 ms prior to each saccade until 

500 ms after each saccade were discarded. The remaining time series data were divided into 

non-overlapping 0.3 s segments. Next, the mean eye position and the slope of a least-squares 

fit line to eye position over each segment were calculated to define the two coordinates of 

each point for the PV plot. Finally, a linear function was least-squares fit to these points. The 

intercept of this function with the eye position axis was defined as the centre of gaze and 

subtracted from all measurements in the eye position time series.
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Since data were initially acquired at ~70 Hz and digitized at 5000 Hz, we downsampled eye 

position time series before performing any data analysis. We therefore subsampled traces 

every 72 time points, resulting in new traces at 69.44 Hz that we then analysed. Subsequent 

analysis of the power spectra of eye position traces showed anomalously large peaks at 

~30 Hz, which were likely artefacts. These were removed, while preserving the phase in 

each frequency bin, by scaling the amplitudes of the Fourier transform in the peaks so 

that the amplitude was equal to that of the mean amplitude of the 6–10 frequency bins 

surrounding the peak (3–5 closest on each side of the peak, chosen by visual inspection of 

power spectrum). All analyses were performed in Python 3.7, using the Scientific Python 

stack (SciPy and NumPy).

Anaesthetized step responses.—Eye position step responses (Fig. 2B) in 

anaesthetized larvae were fit with a multiexponential model:

y(t) = ∑
i = 1

n
aie−kit + ε(t), (4)

where ε is independent Gaussian noise with mean 0 and variance σ2, ki = 1/τi, is an inverse 

time constant, and the number of components n ranged between 1 and 6. Each component 

amplitude was constrained to be non-negative, ai ≥ 0. Eye positions were normalized to be 1 

at the time of release, and accordingly the sum of the component amplitudes in the model 

was constrained to equal 1. This allowed for comparison of step response fits even though 

displacement amplitudes varied. Visual inspection of these time series near the release time 

found ringing/oscillation present during the initial 50–200 ms following release in some 

cases, perhaps resulting from the manual control of the hydraulic manipulator. We therefore 

analysed responses beginning 230 ms and ending 60 s after release time.

For each larva, we simultaneously fit the short and long step response with models of the 

form in eqn (4) for each value of n between 1 and 6. For each value of n, we defined the best 

n-component model to be the one which maximized the sum L of log-likelihoods Lj; for 

each response j:

L = ∑
j

Lj . (5)

Here

Lj = − T
2 log2π

ψj
− ψj

2 ∑
k = 1

T
y tk − y tk

2, (6)

where T is the total number of time points tk  recorded in the response, yj is the recorded 

eye position, y j, is a model in the form of eqn (4), and, for numerical stability, we defined 

ψj = 1/σj
2 where σj is the standard deviation of the noise. We allowed the fits to each of 

the two response durations to have different sets of component amplitudes ai , but we 

required a single set of inverse time constants ki , with corresponding time constant values 

constrained to be greater than 43.2 ms, or three samples. Separate σj were fit for each 
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response. To find sets of parameters that maximized L, we used the non-linear solver 

truncated Newton conjugate gradient (TNC; implemented in the ‘optimize’ library of SciPy), 

which we provided with an analytical formula for the gradient of L that was derived by 

hand. We used 100 initial sets of parameter values by choosing component amplitudes 

uniformly at random between 0 and 1 and then dividing each coefficient by the sum of all 

component amplitudes. Initial time constants were chosen by taking random powers of 10, 

generated by first taking n evenly spaced powers between −1 and 2, and adding Gaussian 

noise with mean 0 and standard deviation 0.1 to each. By examining the mean squared error 

curves of fits as n increased, we saw clear ‘elbows’ after which fit quality stopped visibly 

improving. Separately for each larva, we called the value of n at which this elbow occurred 

n∗. For the sake of parsimony we picked the best overall model for each larva to be the best 

n∗-component model.

To examine the sensitivity of the parameter estimates, we used a parametric bootstrap 

procedure as follows. For each larva, we used the best step response fit (component 

amplitudes, time constants and measurement noise variances) to generate 100 new eye 

position traces according to the model in eqn (4), and re-ran our fitting procedure on each 

of these, then calculated the standard deviations of the resulting bootstrap parameters, which 

we used as an estimate of the standard deviations of the true parameter distributions.

In order to determine the necessity of including long time constant components, we next 

repeated the above procedure to find the best fits for each larva when time constants were 

constrained to be less than 10 s.

Active state step responses.—Because the eye moves spontaneously in the active state 

and is not at the centre of gaze prior to the imposed displacement, we did not model the 

active state step response as a decay toward the centre of gaze. Rather, we modelled it as 

returning to where the eye would have been had the displacement not occurred (Fig. 2C). Let 

ytarget(t) be the position of the eye if no displacement had occurred. Then, we modelled the 

active state step response as:

ysr t − trelease = y(t) − ytarget(t), (7)

where, as before, y(t) is the measured eye position.

We determined ytarget(t) by extrapolating the changing position of the eye, based on the 

4–6 s of post-saccadic eye relaxation immediately preceding displacement (Fig. 2C). 

We found that this relaxation could also be modelled well by eqn (4), which we fit 

by maximum likelihood estimation to the eye position from 500 ms after the previous 

saccade to displacement onset, using the method described above for anaesthetized step 

responses. For all but one active state response we picked a two-component model for the 

‘best’ extrapolation, as there was negligible improvement in fit quality for more than two 

components. For the remaining response, we used a three-component model.

To evaluate the quality of this extrapolation technique, we identified long nasal fixations 

lasting at least 15.26 s in eye position recordings prior to each active step response. We then 
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performed the same fitting procedure used to find ytarget(t) above, here fitting eye position 

from 500 ms to 4.8 s post-saccade (Fig. 2D). We then calculated how much the resulting fit 

function deviated from the true eye position in a ~230 ms window of time centred at 15.16 

s post-saccade by calculating the error relative to the extrapolation at each data point in this 

interval:

relative error at time t = y(t) − ytarget(t)
ytarget(t) . (8)

For each fixation, we then calculated the average relative error over the 16 data points in 

this window (Fig. 2D, inset; black point indicates the centre point of this window at time 

textrap = 15.16 s). A negative relative error meant that the extrapolation decayed more slowly 

than the true fixation. We found that the average relative error was positive, so that fits were 

likely to decay more quickly than the true fixation, but with relatively large variance (Fig. 

2D, right; mean ± standard deviation (SD) = 0.16 ± 0.33; n = 9). Three out of the nine 

fixations resulted in a negative average relative error, where the extrapolated eye position 

decayed more slowly than true eye position. Thus, a step response estimated from these 

extrapolations would also decay more slowly than the ‘true’ step response and would be 

more likely to have long time constants. In order to make our fitting procedure more robust 

to such an artefact, which could lead to spurious identification of long time constant decays, 

we sought to also fit a more quickly decaying, ‘conservative’ extrapolation of eye position 

for each active state step response.

We fit the conservative extrapolations by finding fit functions which fit the first 4–6 s 

of eye position well, but also decayed faster than the best extrapolation. We did this by 

including a penalty term in our optimization that incentivized fit functions to pass through a 

virtual point at time textrap that was closer to the null eye position than the best extrapolation 

would be. First, we defined Δ to be the most negative relative error, averaged over the 

window described above (Fig. 2D, right, bottom blue point). Then, starting with the best 

extrapolation (Fig. 2C and D, red curve), we fit by maximum likelihood estimation a higher 

order model, i.e. n + 1 components if the best extrapolation needed n components, but where 

we augmented the model in eqn (4) by fitting an additional point y textrap = (1 + Δ)ytarget textrap

All of the fixations before displacement were less than 7 s long, so this additional point 

did not overwrite any actual data points. We let the noise at this additional point, ε textrap . 

be normally distributed with mean 0 and variance σ2/λ. Increasing λ increasingly penalizes 

fits that do not pass through y textrap . By bisection search on λ, we allowed the procedure to 

choose a fit whose sum of squared errors over the real data deviated from that of the best 

extrapolation by ~ 10%, as follows (Fig. 2C and D, black curve). For each value of λ, we 

performed maximum likelihood estimation from 100 starting points and picked the most 

parsimonious model, as described above (see ‘Anaesthetized step responses’), to perform 

this comparison. The bisection search terminated when the deviation of the sum of squared 

errors fell between 9.9% and 10.1%. The eye position predicted by the maximum likelihood 

model for the value of X for which the bisection search terminates was defined to be the 

conservative extrapolation.
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For both the best extrapolation and conservative extrapolation, we calculated the 

corresponding step response time series ysr(t). For each displacement in each larva, we fit 

multiexponential models to both of the resulting active step response time series from 230 

ms to between 8 and 14 s after release from displacement, with the fits performed as above 

for anaesthetized responses. After discarding responses due to spontaneous eye movements, 

a single response was fit for three of six larvae and a pair of responses was fit for the 

remaining three. We again ran the parametric bootstrap procedure, as in the anaesthetized 

case above, here using the best three-component fits in order to evaluate the sensitivity of 

parameter estimates. In order to evaluate the necessity of long time constant components, we 

also fit responses while constraining the time constants to be less than 5 s. This was again 

done assuming the best and conservative extrapolations.

For comparison of anaesthetized and active state results, we also fit three-component models 

as above to just the first 15 s of eye position following the 10 s displacement in larvae 

anaesthetized with MS-222.

Oculomotor plant model estimation

To estimate an oculomotor plant model for each larva, we used measured step responses to 

calculate parameters of the linear filter given by eqn (2) above. We assumed that each step 

response was the result of an applied force convolved with a linear filter representing the 

oculomotor plant. As described above, a linear filter model implies that the eye position after 

release from displacement will have the same number of components and the same time 

constants as the plant (see eqn (3)). However, the coefficients of the plant {ci} must still 

be determined. Because the profile of the applied force is unknown, finding the coefficients 

of the plant requires simultaneously finding the appropriate applied force profile. This is 

a ‘blind deconvolution’ problem and is generally under-constrained. Here, however, we 

have two important constraints that facilitate finding a solution: first, we partially know the 

applied force profile, i.e. that it is zero after the time of release; and second, the plant is 

assumed to be a sum of exponentials with known time constants.

For each larva, we assembled eye position time series yj starting from the onset of 

displacement for each response j until 8–14 s after release. All the anaesthetized larvae had 

two responses each, three of six awake larvae had two responses, and the remaining three 

had a single response. Eye position was considered to be constant during displacement (see 

‘Step response fitting’). For awake larva time series, we used estimated step responses ysr(t)
resulting from both best and conservative extrapolations, as described above. Similar to the 

fitting of step responses, we removed the first 230 ms of data after release from displacement 

due to ringing/oscillation shortly after release. Data points in this epoch were replaced with 

the prediction of the best fit exponential model to the step response.

For linear filter estimation, we then defined the following loss function:
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E f1, ⋯, fm, c1, ⋯, cn

= 1
2 ∑

j = 1

m
∑

k = 1

T j

wjk fj ∗ p c1, ⋯, cn tk − yj tk
2 .

(9)

Here, m is the number of responses for the larva, fj(t) is the time-varying force applied for 

response j, p t; c1, ⋯, cn  represents the plant model parameterized by variable coefficients ci

and fixed time constants τi , time is discretized as tk = kΔt where 1/Δt is the sampling rate, 

and T j is the number of time points in the response yj. Each data point in the loss function is 

weighted by a factor:

wjk =
1/T release, j during displacement, k ≤ T release, j

1/ T j − T release, j after release ,

where T release, j is the number of data points in the displacement period. This weighting causes 

the loss function to be a sum of the mean squared fit error during displacement and the mean 

squared fit error during the step response, with errors in these periods weighted equally even 

though the period lengths are heterogeneous. We approximated convolution of continuous 

signals with a discrete convolution, since Δt is small:

(f ∗ p) tk = Δt ∑
k′ = 0

k
f tk′ p tk − k′ . (10)

The blind deconvolution can then be computed by finding the forces fj  and plant 

coefficients ci  such that the loss E is minimized. First, we used the non-linear solver 

TNC from 100 starting points that consisted of ci, initial  chosen uniformly at random on (0, 1) 

and normalized to sum to 1. These preliminary results were used as the initial point ci
(0)  for 

an alternating least squares procedure, as follows:

1. Applied force estimation step. On iteration l + 1, given estimates for the plant 

coefficients ci
(l) , solve the optimization problem:

f1
(l + 1)′, …, fm

(l + 1)′ = argminf1, …fmE f1, …, fm, ci
(l)

subject to fj t > trelease = 0 for j ∈ 1, …, m .

2. Plant estimation step. Given these estimates of the applied forces, update the 

estimate of the plant coefficients:

c1
(l + 1)′, …, cn

(l + 1)′ = argminc1, …, cnE fj
(l + 1)′ , c1, …, cn

subject to ci ≥ 0 for all i .

Note that the solutions obtained by this procedure are not unique: for example, if 

all the plant coefficients are divided by a constant K, then as long as the resulting 
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applied forces are also multiplied by K, the new scaled coefficients still solve 

the problem. We resolve this degeneracy by imposing the condition that the final 

plant coefficient estimates sum to 1:

ci
(l + 1) = ci

(l + 1)′

K and fj
(l + 1) = Kfj

(l + 1)′, where K = ∑
i = 1

n
ci

(l + 1)′ .

These two steps are then repeated until the decrease in error is smaller than 

a threshold, E(l) − E(l + 1) ≤ 10−8. Note that the error cannot increase on any step, 

because in the worst case the same solution as the previous iteration can be 

chosen. Because the discrete convolution given by eqn (10) is linear, we can 

write it as a matrix-vector product, and each of the two steps above can be solved 

efficiently and accurately by a linear least squares solver (lsq_linear in SciPy’s 

‘optimize’ library). The plant model for each larva was chosen to be the one 

of the 100 solutions that had the smallest final value for E. We repeated this 

procedure using time constants and eye positions resulting from the conservative 

extrapolations in awake larvae.

For each plant model, we calculated the fractional contribution of each exponential 

component to the total area under the curve by integrating over the range t = 0 to t = 

60 s for anaesthetized plants, and to t = 20 s for the active state plant models.

Neural drive estimation

Using the active state plant models, we estimated the force needed to produce the eye 

position profile observed during fixation. We assumed this force was proportional to the 

neural drive output by motor neurons. We computed neural drive estimates by deconvolving 

active state eye position during the period of fixation preceding displacement with the 

corresponding plant model for each larva, and separately for a classical two-element 

plant model with time constants of 20 and 200 ms and coefficients of 0.4 and 0.6, 

respectively (Robinson et al., 1990). In order to reduce noise, we used ytarget(t) as a smoothed 

representation of eye position before displacement (see ‘Step response fitting’), and 

performed the deconvolution by solving a linear least squares problem with non-negative 

least squares, as described above (see ‘Oculomotor plant model estimation’). We measured 

the persistence of both the estimated neural drive and the corresponding eye position by 

summing the time series during fixation starting from and normalized to the value at 0.25 s 

post-saccade, and dividing this sum by the number of elements in the time series (Lee et al., 

2015). With this measure, a perfectly stable time series would have a persistence value of 1.

We also directly calculated the time constants of the slide components of the neural drive for 

each plant by calculating the poles of the Laplace transform of the neural drive. This was 

equivalent to finding the roots of the polynomial:

N(s) = ∑
i = 1

n
ci ∏

j ≠ i
s + kj , (11)
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where ci and ki, are the coefficient and inverse time constant of the ith plant component, 

as in eqns (1) and (4) (see Appendix, ‘Analytical calculation of neural drive for a 

multiexponential plant,’ for derivation). This was done numerically using the function 

‘roots’ in NumPy.

Comparison of estimated neural drive to hVPNI activity

Optical recordings.—To compare the required neural drive to the activities of cells in 

the hVPNI, we used previous optical recordings of somatic calcium-sensitive fluorescence 

in a separate set of six larvae to estimate neuronal firing rates during fixations (Miri, Daie, 

Burdine et al., 2011). Calcium-sensitive dye loading and optical recording methods are 

described in the original reference. Data were collected using Oregon Green BAPTA-1 

AM (Thermo Fisher Scientific, Waltham, MA, USA) on a custom-built laser-scanning 

two-photon microscope that allowed synchronous eye tracking and fluorescence image time 

series collection from sagittal planes within the hindbrain. Fluorescence data acquisition and 

microscope control were performed using Cfnt v. 1.529 (Michael Mueller, MPI, Heidelberg). 

Images were 256 × 256 pixels spanning 100 μm × 100 μm regions and acquired at ms per 

line (~2 Hz) in time series of 750 frames. For each larva, five or six fluorescence image time 

series were collected from image windows lying in parasagittal planes at fixed dorsoventral 

and rostrocaudal coordinates in the ventral ~2/3 of the caudal hindbrain (rhombomere 7/8). 

All data analysed here were collected in the dark to eliminate visual feedback.

hVPNI firing rate estimation.—For each cell, we determined baseline fluorescence to 

be the smaller of two quantities: the mean of the saccade-triggered average fluorescence 

from 2 to 1 s before ipsiversive saccades, and the mean of the saccade-triggered average 

fluorescence from 4 to 5 s after contraversive saccades. We fit a calcium impulse 

response function (CIRF), modelled by a single exponential decay, to baseline-subtracted 

contraversive saccade-triggered average fluorescence time series, as in previous studies 

(Daie et al., 2015; Miri, Daie, Burdine et al„ 2011) and calculated the coefficient of 

determination, R2, for each fit. As in previous studies (Miri, Daie, Arrenberg et al, 2011; 

Miri, Daie, Burdine et al., 2011), cells for which CIRF fits had R2 ≥ 0.5, and for which the 

Pearson correlation between saccade-triggered average fluorescence and CIRF-convolved 

eye position after a contraversive saccade was >0.5, were used (166 of 195 cells).

For each cell j satisfying these criteria, we modelled baseline-subtracted ipsiversive saccade-

triggered average fluorescence xj as a convolution between the CIRF and the sum of two 

components: a delta function modelling the saccadic burst and a multiexponential function 

representing the saccade-triggered average firing rate:

xj(t) = e−kCIRF, jt ∗ a0δ(t) + ∑
i = 1

n
aie−kit + εj(t), (12)

where kCIRF, j is the cell-specific inverse CIRF time constant, ki are inverse time constants of 

the saccade-triggered average firing rate, with coefficients ai ≥ 0 for all components i, and εj

is Gaussian noise with mean 0 and variance σj
2. For each number of exponential components 

n between 1 and 3, we solved for the coefficients ai  and inverse time constants ki  that 
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minimized the mean squared error of the model fit to data, using the non-linear solver TNC 

from 100 initial sets of parameters. For each number of components n, we picked the best 

n-component model fit to be the one with the smallest mean squared error. Separately for 

each cell, we called n∗ the value of n after which adding another component decreased the 

mean squared error by less than 1%. Then, we defined the best overall firing rate model fit 

for each cell to be the best n∗-component model fit. We analysed responses from cells where 

the ratio of the sum of squared errors of the best firing rate model fit to the sum of squares 

of the data (sum of squares ratio, SSr) was less than 0.007 (151 of 167 cells) - cells with 

SSr greater than this value had fits that were noticeably worse upon visual inspection. For 

each cell, we calculated firing rate persistence values in the same manner described above 

for neural drive and eye position persistence (see ‘Neural drive estimation’).

Summary plant and neural drive estimation.—For the nine active state step 

responses from six larvae, we simultaneously fit a single set of time constants, using the 

same procedure as above (see ‘Step response fitting’). Then, using these time constants, 

we performed the blind deconvolution procedure (see ‘Oculomotor plant model estimation’) 

to find the best fit plant model for all nine responses simultaneously (‘summary plant’). 

We then computed the saccade-triggered average eye position using smoothed versions 

of fixations from each of six separate larvae in which optical recording was performed. 

Smoothing was performed by fitting multiexponential functions to the saccade-triggered 

average eye position from each animal, as described above (see ‘Step response fitting’). 

A neural drive estimate was then generated for each larva by deconvolving the saccade-

triggered average eye position with the summary plant.

We then performed a regularized linear regression of the saccade-triggered average firing 

rates of all hVPNI neurons onto the neural drive estimate for each larva, with regression 

weights constrained to be nonnegative, using a linear least squares solver (lsq_linear). We 

used a regularization term equal to the sum of squares (L2 norm) of the regression weights 

of each time series, multiplied by a regularization parameter. We chose this parameter 

separately for each larva by bisection search so that approximately 50% of the weights were 

non-zero, broadly in agreement with the fraction of putative hVPNI neurons that synapse 

onto motor neurons in electron microscopy data (Lee et al., 2015; Vishwanathan et al., 

2017).

To show the importance of intermediate timescales in the neural drive (see Appendix), for 

each larva we generated 100 synthetic populations of 150 mock cells whose firing rates were 

each described by an exponential decay. For each population, 75 of the cells’ firing rates had 

time constants that were randomly drawn from a uniform distribution between 0 and 1 s, 

and 75 had time constants generated by taking 10 to the power of a uniform random number 

between 1.3 and 2, resulting in random time constants between 20 and 100 s. We then 

performed a regularized linear regression of the mock cells’ firing rates onto the estimated 

neural drive exactly as for the real cells.
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Results

Measurement of zebrafish oculomotor plant response under anaesthesia

In order to determine whether the larval zebrafish oculomotor plant, like that of the 

anaesthetized primate, shows both short and long response timescales (Sklavos et al., 

2005, 2006), we first measured the response of the eye to horizontal step displacements 

(‘step responses’) of two different durations in larvae anaesthetized with MS-222. Because 

MS-222 inhibits action potential firing and thus input to neuromuscular junctions, active 

muscle tone is likely diminished or absent in this state so that the observed responses 

primarily reflect the passive properties of the plant. Similar amplitude abducting step 

displacements lasting 10 and 60 s were applied to one eye of anaesthetized larvae (n = 

10) and the return trajectory of the eye was tracked following release (Fig. 2A and B). These 

experiments and those described in what follows were performed in the dark to prevent 

the influence of visual feedback. The use of two different step durations helps expose both 

short and long response timescales; if the plant responded on exclusively short timescales, 

it would effectively reach steady state within 10 s, so that the responses to 10 and 60 s 

displacements would be similar.

However, the responses to 10 and 60 s step displacements were strikingly different 

(Fig. 3). To quantify response timescales present in these trajectories, for each larva 

we simultaneously fit with multiexponential functions the first 60 s following release of 

responses to both displacements. These functions had from one to six exponential decay 

components and were constrained at the time of release to equal the eye position prior to 

release. For each function with a given number of components, fits assumed a single set 

of time constants but distinct sets of corresponding amplitudes for the responses to the 10 

and 60 s displacements. Oscillatory artefacts sometimes present in responses during the 

first 200 ms following release, perhaps resulting from the manual control of the hydraulic 

manipulator, led us to omit the first 230 ms of responses when fitting. Thus, our model 

fits cannot be expected to well capture response timescales faster than ~100 ms. Single 

exponential functions failed to capture much response structure, while models with four 

components provided a better fit (Fig. 3A and B). Improvements in fit quality as the 

number of model components increased were similar to those observed previously for plant 

responses measured in anaesthetized monkeys (Sklavos et al, 2005) and awake mice (Fig. 

3B; Stahl et al, 2015).

In order to determine the minimum number of discernible timescales in step responses, 

we examined the change in mean squared error of fits as the number of exponential 

decay components used in the fits was increased. For each larva, there was an ‘elbow’ 

at four components, after which the reduction in mean squared error by adding more 

components was extremely small (Fig. 3B). The median values of the time constants of 

the four-component fits were 0.092, 1.34, 7.95 and 91.6 s (Fig. 3C). We do not ascribe 

particular significance to the precise values of the fit time constants, only that the plant 

shows a wide range of response timescales including those much greater than 1 s. As has 

been well documented, time constant values that are relatively close to one another are often 

not possible to resolve (see Discussion; Istratov & Vyvenko, 1999; Quaia, Ying, Nichols 
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et al„ 2009). Bootstrapped standard deviation estimates for time constant values were small 

relative to the gaps between values for successive components (median SD of estimates 

ranged between 2.1% and 6.6% as a fraction of the best-fit time constant values). Time 

constants greater than 10 s were necessary to well fit responses; multiexponential models 

constrained to have time constants less than 10 s failed to fit step responses as well as 

unconstrained models having equivalent numbers of components (Fig. 3A; 39- to 172-fold 

increase in MSE for four-component models).

We next measured step responses under another anaesthetic, the NMDA receptor antagonist 

ketamine. These experiments were performed for three reasons: (1) to demonstrate that 

aspects of the results obtained with MS-222 are not dependent on the choice of anaesthetic, 

(2) to better compare our results in the larval zebrafish with those of Sklavos et al. (2005) 

in the primate, and (3) because there is some indication in mammals that at ketamine doses 

near the threshold above which the animal becomes unresponsive to eye manipulation, some 

active muscle tone is preserved, making ketamine anaesthesia potentially closer to the active 

state (Blanks et al., 1977; King et al., 1978; Sklavos et al., 2005). We did not attempt to 

verify the presence of active muscle tone under ketamine. After anaesthetizing larvae (n = 

6) with ketamine, we applied similarly sized abducting step displacements of 15 and 90 s to 

one eye and tracked its return trajectory following release (Fig. 3D).

We simultaneously fit the responses following 15 and 90 s displacements using 

multiexponential functions as described above. The choice of slightly different step 

durations here was arbitrary and should not obscure the general agreement this similarity 

demonstrates. Fit results were similar to those obtained under MS-222 (Fig. 3D-F). The 

median values of the time constants of four-component fits were 0.131, 2.01, 10.7 and 110.2 

s (Fig. 3F). Bootstrapped standard deviation estimates for time constant values were small 

relative to the gaps between values for successive components (median SD of estimates 

ranged between 4.7% and 8.4% as a fraction of the best-fit time constant values). Models 

constrained to have time constants less than 10 s again failed to fit step responses well (Fig. 

3D; 8- to 58-fold increase in MSE for four-component models).

Collectively, the data from anaesthetized larvae suggest that the larval zebrafish oculomotor 

plant, like that of the primate, demonstrates both short (<1 s) and long (>1 s) response 

timescales. Moreover, our observation of time constants spread over several orders of 

magnitude under both types of anaesthesia matches results from comparable primate 

experiments (Sklavos et al., 2005, 2006).

Measurement of oculomotor plant responses in the active state

Because active tone in extraocular muscles could influence the response properties of 

the oculomotor plant, we examined whether long response timescales were discernible in 

awake, behaving larvae. Previous observations of active state plant responses have been 

limited to relatively brief time windows (<400 ms in monkey, Anderson et al., 2009; 

<2 s in mouse, Stahl et al., 2015) and relatively short displacements (<1 s), potentially 

obscuring the presence of long response timescales. Here we succeeded in measuring active 

state plant responses of longer duration thanks to the relatively low saccade frequency of 

larval zebrafish. Five to seven seconds after an adducting saccade in the dark, we applied 
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abducting step displacements lasting 6.5–8.5 s. On nine occasions across six larvae, we were 

able to record responses lasting >8 s without any interrupting saccades. To our knowledge, 

active state measurements of comparable duration have not been previously reported.

In order to properly fit these responses, we needed to estimate what the eye position would 

have been during the responses had the imposed displacements not occurred (Fig. 2C). 

Because eye position decays toward the centre of gaze appreciably during fixations in 

larval zebrafish, we could not use the eye position immediately prior to displacement as an 

estimate of the expected eye position in the absence of displacement. Instead, we estimated 

the expected eye position in the absence of displacement by fitting multiexponential models 

to eye position between the previous adducting saccade and the displacement, and then 

extrapolated the model fits forward in time. Models having between one and six components 

were initially fit, and the number of components used for subsequent analysis was chosen 

using the reduction in mean squared error from each added component as described 

above. In addition to this ‘best’ extrapolated eye position fit, we also performed a second 

‘conservative’ fit with faster eye position decay (see Methods, Fig. 2D) that conservatively 

accounts for possible overestimates of expected eye position resulting from extrapolation. 

We extrapolated both the best and conservative fit functions through the step and subsequent 

response epochs to predict eye position had the displacement not been applied. We defined 

the step response as the difference between the eye position following release and these 

extrapolated fit functions (Fig. 2C, grey arrows).

To quantify response timescales in the active state, we fit multiexponential functions 

to responses from 230 ms to between 8 and 21 s following release for each larva. 

For three larvae, a single response was fit. For three other larvae, responses to two 

separate displacements were simultaneously fit with a common set of time constants, but 

distinct component amplitudes as in the anaesthetized case. Results assuming the best and 

conservative extrapolations were generally in agreement. Single exponential functions failed 

to well-capture response structure (Fig. 4A and B). For five of six larvae, responses were 

best fit by a three-component model (Fig. 4C), while responses from the remaining larva 

were best fit by a four-component model. Fit improvements upon inclusion of additional 

components beyond four were again generally very small (Fig. 4D). Time constants were 

broadly distributed for all larvae, assuming both the best and conservative eye position 

extrapolations (Fig. 4E and F). Assuming the best extrapolation, the median values of 

the time constants of three-component fits for all six larvae were 0.170, 2.52 and 38.8 

s. Bootstrapped standard deviation estimates for time constant values were again small 

relative to the gaps between values for successive components (median SD of estimates 

was around 5% as a fraction of the best-fit time constant values). Here again, very long 

time constants were necessary for an adequate fit; multiexponential models constrained 

to have time constants no greater than 5 s produced much worse fits to step responses 

than unconstrained models having equivalent numbers of components (Fig. 4A,B; 3- to 

459-fold increase in MSE for three-component models using the best extrapolation and 

1.3- to 356-fold increase using the conservative extrapolation). Collectively, these results 

demonstrate that, even when accounting for possible errors in extrapolation, active state step 

responses also display both short and long response timescales.
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Though there are physiological differences between the active and anaesthetized states, 

step response fits in both cases contained time constants that ranged over several orders 

of magnitude, including 1 and 10 s timescales. Quantitatively, the time constants for the 

active state fits tended to be a few times smaller than for the anaesthetized preparations. 

However, this may be an artefact of the limited measurement time in the active state; the 

mean time constants we found when we fit only the first 15 s of post-release eye position in 

anaesthetized larvae did not differ significantly from the best three component fits to active 

state larvae (P = 0.0832, 0.155, 0.224, two-sided Wilcoxon rank-sum for each component).

Oculomotor plant model estimation

We used our step response measurements to compute models of the oculomotor plant that 

were then used (see ‘Implications for neural drive’) to estimate the neural drive to the plant 

in the active state. Because step response measurements reflect both the force applied to 

the plant, either externally or due to neural drive, and the dynamics of the plant itself, 

we developed a methodology that enabled us to isolate the plant dynamics. We estimated 

these dynamics using the standard linear plant model assumption that eye position is the 

result of the convolution of an applied force with the plant model (i.e. the plant impulse 

response function). In the case of a known applied force, the plant model can be derived 

straightforwardly through deconvolution of the eye position response with the applied force. 

However, in the present case, the applied force is also not known (except for when it equals 

zero), making this estimation a more challenging ‘blind deconvolution’ problem in which 

the applied force and plant model must be simultaneously estimated.

To address this problem, we used the fact that, for a multiexponential plant model, 

the response after release from displacement is a multiexponential decay with time 

constants equal to those of the plant model (see eqn (3)). Previous work has noted that 

for a displacement long enough to bring all of the mechanical elements in the plant 

to equilibrium, the amplitude of each exponential component in the step response is 

proportional to the coefficient of the corresponding plant element (Sklavos et al., 2005). 

This was used to infer plant model parameters in anaesthetized animals. However, given the 

time constants we observed in step responses, this equilibrium condition is certainly not met 

for displacements in the awake animals. Therefore, we implemented a blind deconvolution 

method to simultaneously infer the parameters of the plant model and the profile of the force 

applied to the eye (see Methods; Fig. 5A). When two responses were recorded from a single 

larva, the blind deconvolution was performed jointly on both responses so that a single plant 

model was inferred.

We first applied our method to the anaesthetized step responses and qualitatively compared 

our results to previous observations in anaesthetized primates. Using the plant models and 

applied force profiles inferred by blind deconvolution, we could reconstruct measured eye 

position reasonably well (Fig. 5B and C; mean R2 ± SD = 0.870 ± 0.065). We note that the 

step response reconstructions are less accurate than the direct fits to the step responses 

performed above (Fig. 3A and D), which arises because the plant model was constrained 

to be identical for the short and long step displacements. This reduced fit accuracy could 

reflect a small non-linearity in plant responses or slight non-stationarity between the two 
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recordings. In agreement with previous work in anaesthetized primates (Sklavos et al., 

2005), there was an approximately linearly decreasing relationship between the coefficients 

and corresponding time constants of the inferred plant models on a log-log plot (Fig. 

5D; parameters of equation (A.6) of Sklavos et al., 2005). Although the long timescale 

components had relatively small coefficients, due to their long time constants, the integrated 

area of these components was comparable to that of the faster components (Fig. 5E).

We then applied our method to the active state step responses (Fig. 6A), obtaining good 

reconstructions (Fig. 6B-D; best extrapolation: mean R2 ± SD = 0.936 ± 0.073, conservative 

extrapolation: mean R2 ± SD = 0.960 ± 0.049). As expected from the inverse model 

framework, the inferred profile of applied force during displacement appeared to be 

composed of a pulse, step, and some number of exponential slide components (Fig. 6C). 

Like the plant models inferred for anaesthetized larvae, the coefficients of the model 

components decreased approximately linearly with their corresponding time constants on 

a log-log plot (Fig. 6E), and each component made a comparable contribution to the total 

area under the curve of the plant model impulse response (Fig. 6F).

Implications for neural drive

We calculated the neural drive required to stabilize gaze during fixation by deconvolving eye 

position with the plant impulse response functions inferred from active state step responses 

(using the ‘best’ extrapolation; Fig. 7A-D). Classical two-element plant models require a 

neural drive consisting of a brief pulse component, a fast exponential slide component, and a 

prolonged step component that closely resembles eye position (Goldstein & Robinson, 1984; 

Optican & Miles, 1985). For our active state plant models, with component time constants 

distributed from ~10–100 ms to ~10 s, the inferred neural drive instead included multiple 

exponential slide components and a much smaller step component, so that the amplitude of 

the neural drive visibly appeared to decay throughout the course of the fixation (Fig. 7B, red 

trace). Solving for the time constants of the neural drive, we found that at least one slide 

time constant was always > 1 s. For comparison, we calculated the neural drive that would 

be required given a classical two-element plant with time constants of 20 and 200 ms and 

coefficients of 0.4 and 0.6, respectively (Robinson et al, 1990). For the classical plant model, 

the neural drive was essentially constant during fixation (here, we focus on the neural drive 

>0.25 s after initiation). Thus, the presence of multiple long timescale components markedly 

changes the nature of the neural drive required to perfectly stabilize gaze.

To understand the nature of the difference in drive for distributed and classical plant models, 

we analytically derived a formula for the drive as a function of plant model parameters (see 

Appendix). This analysis revealed two key differences. First, when long response timescales 

are present, the drive may no longer be dominated by the step component. Instead, the 

amplitude of the step component is inversely proportional to the area under the curve of 

the plant impulse response. As this impulse response becomes longer, the step component’s 

influence decreases. Second, the presence of multiple plant components that equilibrate 

over long timescales requires a slowly decaying neural drive. Specifically, we show in the 

Appendix that exactly one slide time constant of the neural drive must fall between each pair 

of consecutive plant model time constants. This was confirmed by numerical calculation of 
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the slide component time constants for the measured plants (Fig. 7D). Thus, the presence of 

multiple long response timescales necessitates slowly decaying neural drive components.

Actual measurements of larval zebrafish eye position show prolonged but imperfect fixations 

(Fig. 7C, grey trace). Nevertheless, neural drive estimates obtained with distributed plant 

models, unlike those obtained with classical plant models, again decay more quickly than 

eye position (Fig. 7C, red vs. blue trace). Furthermore, the neural drive contains long 

timescale slide components identical to those required to maintain perfect fixation (Fig. 

7D). We show in the Appendix that, under the inverse model formulation, the neural drive 

yielding imperfect fixations has slide components with time constants identical to those of 

the drive that generates stable fixations, in addition to components resembling recorded eye 

position that are analogous to the step component for stable fixations.

How much do neural drive estimates for distributed plant models differ from those for 

classical plant models, given actual eye position measurements? We used ‘persistence 

values’ to quantify the difference in time course decay expected between neural drive 

and eye position, assuming either distributed or classical plant models (nine fixations 

from six larvae; Lee et al., 2015). We defined the persistence value for a neural drive or 

eye position time series as its integral starting from 0.25 s post-saccade, normalized so 

that a stable time series yields a persistence value of 1. Hence larger persistence values 

correspond to increasingly persistent time courses. Distributed plant models lead to neural 

drive persistence that is substantially less than eye persistence, whereas classical plant 

models imply similar drive and eye persistence (Fig. 7E). The median ratios between the 

persistence values of estimated neural drive and eye position were 0.71 and 1.06 for the 

distributed and classical plant models, respectively. Thus, distributed plant models predict 

neural drive will substantially diverge from eye position during fixations.

The relationship between measured hVPNI activity and eye position

The hVPNI has traditionally been assumed to generate a constant step component, but recent 

recordings have revealed a diversity of decay timescales in hVPNI firing during fixation 

(Daie et al., 2015; Miri, Daie, Arrenberg et al., 2011). We reanalysed recordings from a 

previous study (Miri, Daie, Arrenberg et al., 2011; Miri, Daie, Burdine et al., 2011) to 

evaluate if this heterogeneous activity in the hVPNI is indeed capable of providing the 

neural drive required to produce observed fixations, given the oculomotor plant models we 

computed.

We first compared the difference in time course persistence expected between the neural 

drive and eye position during fixation for individual larvae (Fig. 7E) with that seen between 

measurements of hVPNI firing and simultaneously recorded eye position. Time course 

persistence was computed for hVPNI neurons whose saccade-triggered average firing rates 

were estimated from calcium-sensitive cellular fluorescence measured during saccadic eye 

movement. We modelled saccade-triggered average fluorescence as a multiexponential 

firing rate function convolved with a calcium impulse response function describing the 

fluorescence response following an action potential (see Methods; Fig. 8A and B; Daie et 

al„ 2015; Miri, Daie, Arrenberg et al., 2011; Miri, Daie, Burdine et al., 2011). Out of an 

initial dataset of 195 neurons across six larvae, we excluded neurons that were not putative 
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integrator neurons (29/195 neurons excluded) such as those exhibiting only bursting activity 

during saccades, and those for which fluorescence was not well fit by the saccade-triggered 

average fluorescence model (15/195 neurons excluded), leaving 151 neurons for subsequent 

analysis. Consistent with previous results, we observed a broad range of persistence values 

across this population (Fig. 8C).

We then compared persistence values for hVPNI neurons with those of the saccade-triggered 

average eye position calculated from simultaneously recorded eye position (Fig. 8D). We 

found that firing rate and eye persistence measurements were statistically unlikely to be 

drawn from the same distribution (P = 0.01106, two-sided Wilcoxon rank-sum test). Firing 

rate persistence was lower than that for the corresponding eye position for 122/151 neurons 

(81%). The median ratio between the persistence values for firing rate and eye position 

across all neurons was 0.69, very close to the corresponding value for neural drive estimates 

(0.71, red line in Fig. 8D). Overall, the distribution shown in Fig. 8D is more consistent with 

what would be expected given the distributed plant models than given the classical plant 

model.

We next addressed whether the firing rates of the population of hVPNI neurons could be 

used to construct a neural drive that stabilizes gaze given long response timescales in the 

plant. For this analysis, we generated a three-component summary plant model computed as 

for the individual larvae but using a simultaneous fit to the active state responses from all 

six larvae (Fig. 9A-C). This summary model had coefficients and time constants similar to 

the medians of the corresponding distributions from models for individual larvae (Fig. 9B). 

We then deconvolved the saccade-triggered average eye position for each larva with this 

summary plant model to generate neural drive estimates. Assuming that hVPNI output could 

effectively be fed forward by motor neurons, we asked whether weighted sums of saccade-

triggered average firing rates for recorded hVPNI neurons could well-approximate these 

neural drive estimates (see Methods, Fig. 9D-F). Weights were constrained so that 50% 

were positive and the rest zero, in agreement with anatomical estimates of the proportion 

of integrator cells that synapse onto motor neurons (Lee et al., 2015; Vishwanathan et al., 

2017). We found that a weighted sum of hVPNI firing could well-approximate the neural 

drive estimate for all six larvae (R2 = 1.000). This indicates that hVPNI firing is sufficient 

to constitute the neural drive needed to stabilize an oculomotor plant characterized by long 

response timescales.

That such good fits can be achieved is perhaps not surprising given the range of persistence 

timescales present in hVPNI activity (Fig. 8C). However, we note that intermediate 

timescales are critical to fit neural drive estimates well. Weighted sums of simulated cell 

populations containing only a distribution of short (<1 s) and very long (>20 s) timescales 

could not reconstruct neural drive estimates (Fig. 9E, cyan traces; 163- to 978-fold increase 

in MSE). Thus, the intermediate persistence timescales not present in classical models of the 

oculomotor neural integrator are a necessary component of this drive.
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Discussion

We report here two significant findings regarding the oculomotor plant and the motor 

circuits that control it. First, we extend the demonstration of both short (<1 s) and long 

(>1 s) response timescales in the plant (Quaia, Ying, Nichols et al., 2009; Sklavos et al., 

2005, 2006) to the active, unanaesthetized state, and to a new vertebrate model organism. 

Recent reports of long timescale responses in the primate plant have been based on studies 

using anaesthetized animals. The relevance of these findings to the active state has been 

argued only indirectly using models (Sklavos et al., 2005). Second, our results establish that, 

despite such long response timescales, the firing of hVPNI neurons (Daie et al., 2015; Miri, 

Daie, Arrenberg et al., 2011) can still be interpreted in terms of an inverse model-based 

compensation of plant viscoelasticity. While previous work has focused on the encoding 

of eye position in neuronal populations necessary for gaze stability during fixation (Aksay 

et al., 2000; Escudero et al., 1992; McFarland & Fuchs, 1992; Pastor et al., 1994), a 

deviation from simply representing eye position appears crucial to the hVPNI’s function. As 

predicted for an inverse plant model that achieves substantially stable gaze, firing among 

larval zebrafish hVPNI neurons shows both less persistence on average than eye position 

itself, and a heterogeneity of persistence timescales.

Previous models of the oculomotor plant that included only short response timescales 

implied that during fixation, neural drive to the plant would decrease over the first 

tens or hundreds of milliseconds and thereafter would stably approximate eye position 

(Goldstein & Robinson, 1984; Optican & Miles, 1985; Robinson, 1964). This decrease 

in drive that follows the saccade-inducing burst, attributed to an exponentially decaying 

slide component, reflects the attenuating force needed to stabilize gaze as the viscoelastic 

elements equilibrate. The presence of distributed response timescales in the plant that 

range up to tens of seconds implies a reduced need for the constant, step component of 

neural drive; instead, distributed timescales of decaying drive extend long into fixations 

to compensate for the distributed timescales of force dissipation. Indeed, measurements of 

abducens motor neuron firing during approximately stable fixations in cats show evidence 

of firing rate decay on timescales greater than 1 s (Davis-Lopez de Carrizosa et al„ 2011). 

Hysteresis observed between abducens motor neuron firing and eye position greater than 2.5 

s into fixations (Goldstein & Robinson, 1986) is also consistent with the presence of neural 

drive components on the many seconds timescale, as is the hysteresis seen across timescales 

between hVPNI neuron firing and eye position (Aksay et al, 2003).

The requirement for neural drive that decays across short and long timescales complicates 

descriptions of drive to the plant. The notion that the drive is composed of an eye velocity-

encoding component, an eye position-encoding component and an exponentially decaying 

slide component can be extended to include multiple decaying slide components distributed 

across a range of timescales (see Appendix). The time constants of the slide components 

depend on the values of the time constants and coefficients of the plant elements. But, 

because sums of exponential components differing in component number, time constants 

and amplitudes can well-approximate the same function, discerning precise values for the 

time constants may not be possible (Istratov & Vyvenko, 1999; Quaia, Ying, Nichols et al., 

2009). In particular, it is commonly not possible to resolve time constants that are similar to 
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one another (a factor of approximately 1.5–3 apart; Istratov & Vyvenko, 1999), so a single 

component in the fit could represent one or several actual components with similar time 

constants. However, parameters from the multiexponential fits we used to characterize plant 

responses do meaningfully reflect the breadth of response timescales.

Despite this ambiguity regarding the precise neural drive needed to stabilize gaze, the need 

for multiple slide timescales does entail a coherent view of the transformation performed by 

the hVPNI in stabilizing gaze. Each slide timescale can be computed as a ‘leaky’ integral 

of a brief eye velocity-encoding burst that ‘leaks’ away over time with a particular time 

constant. The hVPNI can then be viewed as computing a sum of multiple leaky integrals 

of eye velocity (Fig. 1A). Individual hVPNI neurons may reflect distinct combinations of 

these integrals in their firing, as would the ocular motor neurons they target. Since leaky 

integration can also be expressed as a convolution with an exponentially decaying filter, the 

hVPNI can be seen as convolving eye velocity with a multiexponential filter. One practical 

manifestation of this leaky integration of eye velocity is that hVPNI firing will decay faster 

than eye position (the pure integral of eye velocity), consistent with our observations of 

hVPNI firing in the aggregate. While pure integration remains a useful approximation of the 

transformation performed by the hVPNI, the distributed nature of its integration timescales 

may have important consequences for the underlying biological mechanisms (Daie et al., 

2015; Miri, Daie, Arrenberg et al., 2011; Seung, 1996; Seung et al., 2000). In previous 

work, we have identified an array of neural circuit architectures capable of generating leaky 

integrals on multiple, distributed timescales (Miri, Daie, Arrenberg et al, 2011).

Our results here show that the range of persistence timescales present in hVPNI firing 

is broad enough to constitute a signal matching estimates of the neural drive needed to 

dictate eye position during fixation. Although contemporary multiexponential plant models 

imply that this drive should differ from previous descriptions of hVPNI output emphasizing 

the encoding of eye position, we show here that linear sums of larval zebrafish hVPNI 

neuron firing, relayed by motor neurons, could stabilize gaze assuming the plant models we 

computed. Observations of distributed persistence timescales in the hVPNI of adult goldfish 

(Major et al., 2004; Miri, Daie, Arrenberg et al., 2011) and cat (Davis-Lopez de Carrizosa 

et al, 2011) suggest that hVPNI output and oculomotor plant dynamics could be similarly 

reconciled for adult vertebrates.

Despite the sufficiency of hVPNI firing for constituting a drive that can compensate for 

distributed response timescales in the oculomotor plant, the variation in persistence across 

neurons may still seem curious. If the plant is well modelled by a single filter, then 

there will exist a single fixed mapping between eye velocity-encoding commands and the 

drive needed to produce observed eye position, reflecting a single inverse model of the 

plant. This single inverse model could be instantiated by the hVPNI such that all hVPNI 

neurons fired identically, counter to our observations. One possible explanation is that the 

variation in hVPNI persistence reflects the circuit architecture that gives rise to distributed 

persistence timescales, or an architecture that additionally enables the context-dependence 

in the distribution of these timescales that has recently been observed (Daie et al., 2015). 

Another possibility is that variation in neuronal persistence timescales provides a means for 

conferring robustness to gaze control. Changes in plant dynamics could be counterbalanced 
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simply by reweighting inputs to motor neurons or the extraocular muscles, effecting a 

reweighting of different timescales in the neural drive.

It is also possible that our measurements belie a greater complexity in the plant. Here, we 

built a model of eye position that lumps together the mechanical properties and geometry 

of the different extraocular muscles and connective tissue present in the eye plant into 

a single linear filter. This approach has been widely used (Robinson, 1981; Robinson, 

1989), but has limitations (Quaia & Optican, 2003). First, the premotor circuitry may 

need to separately compensate for the distinct dynamics of different extraocular muscles 

by instantiating not one but multiple inverse models (Dietrich et al., 2017; Hernandez et 

al, 2019). Second, recent work has shown that the primate extraocular muscles behave 

non-linearly, for example having a superlinear length-tension relationship, in ways that are 

not captured by existing models (Quaia, Ying, Nichols et al., 2009; Quaia, Ying, & Optican, 

2009). Indeed, we found that, for fish in which two displacements were performed, the linear 

model did not fully reproduce the time course of both eye position responses (Fig. 5B and 

C), suggesting the system maybe non-linear. Plant responses that depend non-linearly on 

the length of muscles or the position of the eye would require drive components that are 

not always in similar proportion. Wide variation in the firing persistence of hVPNI neurons 

would then be needed to serve as a basis for the larger range of neural drive dynamics 

required to control a more complex plant. The previously observed non-linear recruitment 

order of integrator neurons during fixation (Aksay et al., 2000) may also play an important 

role in constructing the superlinear drive required to match the observed length-tension 

relationship.

The model of the oculomotor plant as a discrete set of viscoelastic elements is a 

simplification; a biological plant, as a viscoelastic material, may be better thought of as 

a continuum of viscoelastic elements (Quaia, Ying, Nichols et al., 2009; Sklavos et al., 

2005). In particular, Anastasio (1994) hypothesized that the response of the oculomotor 

plant may be described by a power law. The neural drive required for stable gaze given 

such a plant is a fractional-order integral of the eye velocity command, rather than a pure 

temporal integral (an integral ‘of order 1’). In this model, both the plant and the neural 

drive required to control it are effectively infinite sums of exponential components across 

a continuum of timescales. Observations that the oculomotor plant responds on timescales 

distributed across orders of magnitude, as well as our finding that hVPNI firing rates decay 

over a broad distribution of timescales, are consistent with a model containing a continuum 

of decay timescales spanning multiple orders of magnitude.

While gaze stability appears to require something beyond pure temporal integration, the 

underlying circuitry remains a valuable model for circuit-level short-term memory (Major & 

Tank, 2004). In particular, the multiple timescales of firing persistence seen in the hVPNI 

appear to be analogous to those seen in cortical short-term memory circuits (Bernacchia et 

al., 2011; Machens et al, 2010), suggesting that multi-timescale responses may represent 

a core feature of short-term memory systems throughout the brain. Moreover, models 

capturing integration on multiple, distributed timescales proposed in previous work on 

the larval zebrafish hVPNI (Miri, Daie, Arrenberg et al., 2011) have been extended to 

interpret response diversity among oculomotor integrator neurons in monkeys (Joshua et 
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al., 2013). Having established here that long response timescales are not unique to the 

primate oculomotor plant, the neural dynamics that compensate for this plant behaviour, and 

their tuning by the cerebellum, may be further addressed in the larval zebrafish, which is 

particularly amenable to circuit-level analysis (Ahrens et al., 2012; Arrenberg & Driever, 

2013; Friedrich et al., 2013; Orger et al., 2008; Miki et al., 2020; Aizenberg & Schuman, 

2011) and has achieved prominence in the study of visuomotor behaviour (Bianco et al., 

2011; Gahtan et al., 2005; Helmbrecht et al., 2018; Okamoto et al., 2008; Portugues & 

Engert, 2009; Sylvester et al., 2017). We note that leaky integration of velocity signals 

on distributed timescales in the hVPNI still requires the generation of firing that persists 

much longer than typical membrane and synaptic time constants. Cellular and/or circuit 

mechanisms must exist that generate this persistence. Thus, elucidating these mechanisms in 

the larval zebrafish should contribute to our understanding of short-term memory in other 

circuits.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Analytical calculation of neural drive for a multiexponential plant

Here, we derive analytical expressions for the neural drive expected in the case of a linear 

multi-exponential plant under the inverse model formulation, extending the work of Sklavos 

et al. (2005). First, we provide a general formula, then specific formulae for the one- and 

two-exponential cases. Finally we show that for general plants, the slide components of 

the neural drive have time constants that are intermediate between the viscoelastic time 

constants of the plant.

Suppose that the measured eye position during normal fixations can be described by sums of 

npos exponential decays with time constants τpos, i = 1/kpos, i and amplitudes cpos, i:

y(t) = ∑
i = 1

npos

cpos, ie−t/τpos,i = ∑
i = 1

npos

cpos, ie−kpos,it, (A.1)

with perfectly stable eye position represented by a single exponential decay with kpos = 0. 

We assume that the eye position is generated by linear filtering of the neural drive by a 

plant with a multiexponential impulse response function, as in eqns (1) and (2). Taking the 

Laplace transform of eqns (1), (2), and (A.1), eqn (2) becomes:

∑
i = 1

npos cpos, i

s + kpos, i
= Y (s) = F(s)P(s) = ∑

i = 1

n ci

s + ki
F(s), (A.2)

where ki = 1/τi, are the inverse time constants, as before, and Laplace transformed variables 

are represented with uppercase letters. Since we assume the plant is modelled by Voigt 

elements in series, we assume the coefficients are positive, ci > 0. Examining only P(s), the 

Laplace transform of p(t), we can turn the sum of fractions into a single fraction:

P(s) =
∑i = 1

n ci∏j ≠ i s + kj

∏i = 1
n s + ki

=
∑i = 1

n ci ∏i = 1
n − 1 s + λi

∏i = 1
n s + ki

, (A.3)
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where the numerator is an n − 1 degree polynomial with roots −λi.

We also write the Laplace transform of the eye position, Y (s), as a single fraction that is the 

ratio of two polynomials. Then, resolving the degeneracy in equation (A.2) (see Methods) by 

assuming that the sum of the coefficients ci is 1, the Laplace transform of the neural drive is:

F(s) = Y (s)
P(s) =

∏i = 1
npos − 1 s + λpos, i ∏i = 1

n s + ki

∏i = 1
npos s + kpos, i ∏i = 1

n − 1 s + λi

. (A.4)

Assume that λpos, i, ki, kpos, i and λi. are all unique; then, by partial fraction decomposition, 

equation (A.4) becomes:

F(s) = 1 + ∑
i = 1

npos apos, i

s + kpos, i
+ ∑

i = 1

n − 1 aslide, i

s + λi
. (A.5)

Taking the inverse transform, the neural drive in the time domain is:

f(t) = δ(t) + ∑
i = 1

npos

apos, ie−t/τpos, i + ∑
i = 1

n − 1
aslide, ie−λit, (A.6)

which consists of a pulse, a set of components that decay as eye position, and 

n − 1 exponentially decaying slides with time constants 1/λi - that may be complicated 

combinations of the plant coefficients and time constants, but which do not depend on the 

desired eye position. Note that if the desired eye position had had a component with time 

constant given by the plant (such that kpos, i = kj for some i and j), then a component with this 

time constant would not be required in the drive.

From the residue theorem, the amplitude of any eye position component of the drive can be 

calculated by evaluating s + kpos, i F(s) at s = − kpos, i:

apos, i = s + kpos, i F(s) s = − kpos,i = 1
P −kpos, i

. (A.7)

For the special case of perfectly stable eye position, a single component with inverse time 

constant kpos = 0, this component is a step with amplitude:

apos = 1
∑i = 1

n ci
ki

= 1
∑i = 1

n ciτi

.
(A.8)

That is, since the area contributed by each plant component i is ciτi, the amplitude of the step 

component is equal to the inverse of the total area of the plant filter. To provide additional 

intuition about the effect of long time constants on the neural drive, we below consider the 
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simple examples of plants with either a single exponential decay or a sum of two exponential 

decays and for simplicity, eye position that can be described by a single exponential decay.

Single exponential plant

Consider the case of a single exponential plant model:

p(t) = e−kt .

Then, the Laplace transform of the neural drive is:

F(s) = s + k
s + kpos

= 1 + k − kpos
s + kpos

.

and in the time domain:

f(t) = δ(t) + k − kpos e−t/τpos,

where k > kpos. Thus, in this simplest case, the neural drive consists of a pulse and a decaying 

component that follows eye position. In the case of stable fixation (kpos = 0, τpos ∞) this 

component is a step whose amplitude increases in proportion to the decay rate k of the plant. 

To interpret this result, note that convolution with an exponential filter can be thought of 

conceptually as a leaky integral. To generate stable eye position, an eye velocity command 

must be supplemented with an eye position command to compensate for the effect of the 

plant’s leaky filter. As the time constant increases, i.e. as k decreases, the plant’s integration 

becomes less leaky, and the step-like position command becomes less necessary.

Double exponential plant

Next, consider a plant with two exponential components:

p(t) = c1e−k1t + c2e−k2t,

with c1 + c2 = 1 and k1 > k2, which implies τ1 < τ2. This has Laplace transform:

P(s) = c1
s + k1

+ c2
s + k2

= c1 s + k2 + c2 s + k1
s + k1 s + k2

= s + c1k2 + c2k1
s + k1 s + k2 .

The required neural drive is:

F(s) = s + k1 s + k2
s + kpos s + c1k2 + c2k1

= 1 + apos
s + kpos

+ aslide
s + c1k2 + c2k1

,
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which in the time domain is:

f(t) = δ(t) + apose−t/τpos + aslidee−t/τslide,

a combination of a pulse, a position-like, and an exponentially decaying slide component, 

where apos and aslide are defined below. The decay rate of the slide is a linear combination of 

the decay rates of the two plant components:

1
τslide

= kslide = c1k2 + c2k1,

or in terms of time constants:

τslide = 1
c1k2 + c2k1

= τ1τ2
c1τ1 + c2τ2

.

Since c2 = 1 − c1, the slide time constant is bounded by the two plant time constants. The 

slide time constant is longest in the limit where the coefficient of the faster plant component 

is large (c1 1, c2 0), in which case it approaches τ2, the time constant of the slower plant 

component. It is shortest in the limit in which the coefficient of the faster plant component is 

very small (c1 0, c2 1), in which case it approaches τ1.

The purpose of the slide can be seen clearly in the case of perfectly stable desired eye 

position, kpos = 0. Applying neural drive with only a pulse and position (step) component to 

the plant, the eye position due to each plant component i is:

cie−kit ∗ δ(t) + aposu(t) = apos
ci
ki

+ ci 1 − apos
ki

e−kit,

where u(t) is the Heaviside or unit step function. We can find a step amplitude apos such that 

the exponential decay term in the above expression is cancelled for each plant component 

individually, but we will be unable to simultaneously cancel the corresponding exponential 

decay resulting from the other plant component (a pulse/step mismatch). This is corrected by 

adding the additional slide component to the drive.

The amplitudes of the position and slide components of the drive are respectively given by:

apos = k1 − kpos k2 − kpos
kslide − kpos

,

aslide = k1 − kslide kslide − k2
kslide − kpos

= c1c2 k1 − k2
2

kslide − kpos
.

For simplicity, let us consider perfectly stable fixations, kpos = 0, so that again the eye 

position component is a step. Then, the ratio of the amplitude of the slide to the amplitude of 

the step is given by:
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aslide
apos

= c1c2 k1 − k2
2

k1k2
.

For a fixed choice of time constants, the ratio is proportional to the product c1c2 = c1 1 − c1 . If 

either c1 or c2 is sufficiently close to 1, then the amplitude of the slide will be extremely small 

compared to the step. The ratio is maximized for c1 = c2 = 1/2.

In this study, we encountered the situation in which plant components contributed similar 

areas to the plant, an important parameter setting we will now consider. In the case of two 

equal area components, with c1/k1 = c2/k2, the coefficients of the plant components become:

c1 = k1
k1 + k2

c2 = k2
k1 + k2

.

Then, the time constant of the slide is the average of the two plant time constants:

τslide = 1
2 τ1 + τ2 ,

and the amplitudes of the step and the slide are:

apos = 1
2 k1 + k2

aslide = 1
2

k1 − k2
2

k1 + k2
.

In this case, the contribution of the slide is appreciable only if the inverse time constants 

of the two plant components are far apart. For the equal areas case, we also can understand 

easily the effect of a long time constant on the required neural drive. For a fixed choice 

of time constant τ1 and coefficient c1 for the faster component, as the time constant of the 

slower component becomes longer, the slide time constant increases, the amplitude of the 

step decreases and the amplitude of the slide increases.

General relationship between plant time constants and slide time constants

The observation for the double-exponential plant that the slide time constant of the drive 

required to stabilize gaze was intermediate between the two plant time constants generalizes 

to multi-exponential plants. The generalization is that neural drive derived from an inverse 

model of a multi-exponential plant has slide time constants that are intermediate between 
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neighbouring plant time constants. Thus, long time constants in the plant imply the presence 

of slowly decaying slides in the drive.

Recall that the time constants of the slide components of the drive τslide, i are related to 

the zeros of the plant −λi (the roots of the numerator) as τslide, i = 1/λi. We will consider 

a multi-exponential plant with n components (eqn (A.3)) in which the inverse plant time 

constants are ordered such that for all i ≤ n, ki > ki + 1 > 0. We will show that there is exactly 

one inverse slide time constant λi intermediate between each pair of neighbouring inverse 

plant time constants, i.e. ki > λi > ki + 1, as has been previously observed in models of linear 

viscoelastic materials (Tschoegl, 1989).

To show this, first define Pm(s) as the first m ≤ n components of the plant, with time constants 

ordered as above, i.e.

Pm(s) = ∑
i = 1

m ci

s + ki
. (A.9)

Let Nm(s) be the numerator of Pm(s) when Pm(s) is expressed as a single fraction. Then, we 

perform proof by induction on m. As before, we assume the plant coefficients are positive, 

ci > 0.

Base case.

For m = 2, we have:

P2(s) = c1
s + k1

+ c2
s + k2

,

which has numerator:

N2(s) = c1 s + k2 + c2 s + k1 = c1 + c2 s + λ1 ,

where −λ1 is the zero of P2(s). We aim to show that k1 > λ1 > k2.

We can write the numerator as the difference of two functions, N2(s) = f2(s) − g2(s), where 

f2(s) = c1(s + k2  and g2(s) = − c2 s + k1 . Then, to find the zero −λ1, we look for the value of s 

such that N2(s) = 0, i.e. where the lines f2(s) and g2(s) intersect.

Notice that when s = − k2 we have that f2 −k2 = 0 and g2 −k2 < 0, so that N2 −k2 > 0; 

similarly when s = − k1 we have that f2 −k1 < 0 and g2 −k1 = 0, so that N2 −k1 < 0. 

Therefore, by the intermediate value theorem, the intersection point, which is the zero −λ1; 

lies in the interval (−k2, −k1). Thus, k1 > λ1 > k2, as was to be shown.

Miri et al. Page 32

J Physiol. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inductive step.

Now, we assume that the proposition is true for the restricted plant Pm − 1(s), i.e. that each of 

its zeros λi
′ for 1 ≤ i ≤ m − 2 lies between ki and ki + 1. Then, we have that:

Pm(s) = Pm − 1(s) + cm
s + km

,

which has numerator:

Nm(s) = s + km Nm − 1(s) + cm ∏
i = 1

m − 1
s + ki .

Define fm(s) as the first term of the right hand side, and −gm(s) as the second term, so that 

Nm(s) = fm(s) − gm(s).

First, consider pairs of poles (inverse time constants) of Pm − 1, i.e. −ki and −ki + 1 for 

1 ≤ i < m − 1. For any of these poles, gm −ki = gm −ki + 1 = 0, km − ki < 0 and km − ki + 1 < 0. 

Then, we will have that Nm −ki  and Nm −ki + 1  will have opposite signs, because by 

assumption there will be exactly one zero of Pm − 1 between −ki and −ki + 1 (so that Nm − 1 −ki

and Nm − 1 −ki + 1  have opposite signs). Therefore, by the intermediate value theorem, Nm(s)
will have at least one zero in the interval (−ki, −ki + 1).

Next, for s = − km − 1, we have gm −km − 1 = 0. Using that λi
′ − km − 1 > 0 for all i < m − 1, we also 

have that Nm − 1 −km − 1 > 0, and since km − km − 1 < 0, we have therefore that fm −km − 1 < 0. For 

the added pole s = − km, we have that fm −km = 0, and because ki − km > 0 for all i < m, we 

have gm −km < 0. Then, Nm −km − 1 < 0 and Nm −km > 0, and again by the intermediate value 

theorem, there is at least one zero in the interval −km − 1, − km .

Since Nm(s) is an m − 1 degree polynomial, it can have at most m − 1 roots. Consequently, 

since there is at least one root between each of the m − 1 pairs of neighbouring poles, Nm(s)
must have exactly one root (and hence Pm(s) exactly one zero) −λi in each interval (−ki, 

−ki + 1) for all 1 ≤ i ≤ m − 1.

Data availability statement

Data and code used in this study for data analysis can be found at https://github.com/

goldman-lab/oculomotor-response-timescales.
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Key points

• Recent observations of oculomotor plant response properties and neural 

activity across the oculomotor system have called into question classical 

formulations of both the oculomotor plant and the oculomotor integrator.

• Here we use measurements from new and published experiments in the 

larval zebrafish together with modelling to reconcile recent oculomotor plant 

observations with oculomotor integrator function.

• We developed computational techniques to characterize oculomotor plant 

responses over several seconds in awake animals, demonstrating that long 

timescale responses seen in anaesthetized animals extend to the awake state.

• Analysis of firing patterns of oculomotor integrator neurons demonstrates the 

sufficiency of this activity for stabilizing gaze given an oculomotor plant with 

multiple, distributed response timescales.

• Our results support a formulation of gaze stabilization by the oculomotor 

system in which commands for stabilizing gaze are generated through 

integration on multiple, distributed timescales.
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Figure 1. Models of gaze stabilization
A, schematic illustration of the conversion of eye velocity commands into the neural drive 

f(t) necessary to maintain stable fixation. This neural drive is conveyed by the ocular 

motor neurons to determine eye position y(t). The oculomotor plant is modelled as a linear 

filter p(t) operating on this drive. Premotor circuitry generates components of f(t) from 

signals encoding eye velocity. The classical view, which predates recent results, held that the 

plant can be characterized by components that relax on tens and hundreds of milliseconds 

timescales. Gaze stability on longer timescales then would require the generation of a neural 

drive that approximates the temporal integral of eye velocity. Here we argue that evidence 

for a broad distribution of response timescales in the plant redefines the role of premotor 

circuitry as involving a summation of leaky integrations on distributed timescales. hVPNI, 

horizontal velocity-to-position neural integrator. B, decomposition of the neural drive needed 

to stabilize gaze under classical and contemporary models of the oculomotor plant. C, neural 

drive required to maintain stable fixation, from 500 ms to 10 s after saccade termination, for 

a classical plant model (black) and ones with longer response timescales (cyan, red).
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Figure 2. Methodological approach
A, schematic illustration of the method used to measure the oculomotor plant step response. 

A blunt probe controlled by a hydraulic micromanipulator was used to transiently displace 

the eye. B, in anaesthetized larvae, the step response was the eye position measured after 

release from an imposed step displacement. C, in awake larvae, the eye after displacement 

was assumed to return to the position it would have occupied had no displacement occurred. 

Thus, the step response (grey arrows) was estimated to be the measured eye position after 

release from the step displacement (grey), minus the extrapolation of pre-displacement eye 

position (red). A faster decaying conservative extrapolation (black) was also calculated. D, 

left: to validate the extrapolations, fits to the initial portion (darker grey) of long unperturbed 

fixations were extrapolated (red), and the fractional error of the extrapolation relative to the 

true eye position was averaged over a ~230 ms window centred at 15.16 s (inset: cyan, 

data; dashed black, mean of these data). Right: the average relative error across the 230 ms 

window for each measured fixation (red arrow corresponds to the fixation shown on the left).
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Figure 3. The eye’s return from step displacements in anaesthetized zebrafish larvae reveals 
short and long response timescales in the oculomotor plant
A, example responses of the eye (grey) following step displacements lasting 10 s (left) or 60 

s (right), normalized by eye position prior to release, In larvae anaesthetized with MS-222. 

Coloured traces: simultaneous fits to both displacements with multiexponential models 

having one (cyan), two (black), or four components with time constants unconstrained (red) 

or constrained to be less than 10 s (purple). Inset: fits during the first 3 s after release. 

The 230 ms of data Immediately following release contained release-related artifacts and 

were excluded. B, mean squared error (MSE) of fits with different numbers of components 

(black) and percentage change In MSE compared to the fit with one fewer component (red) 

In larvae anaesthetized with MS-222. Boxes span the 25th to 75th percentile range; whiskers 

show maximum and minimum values (n = 10 larvae). C, component amplitudes and time 

constants for four-component fits In larvae anaesthetized with MS-222. D-F, same as/A-C 
but for larvae anaesthetized with ketamlne (n = 6), for which step displacements lasted 15 or 

90 s.
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Figure 4. The eye’s return from step displacements in awake zebrafish larvae exhibits short and 
long response timescales
A and B, example active state step response calculated using the best (A) and 

conservative (B) extrapolation of eye position in the absence of displacement. Fits of 

multiexponential models having one (cyan), two (black) or three components with time 

constants unconstrained (red) or constrained to be less than 5 s (purple) are overlaid. 

Inset: fits during the first 2 s after release. The 230 ms of data immediately following 

release contained release-related artefacts and were excluded. C and D, mean squared error 

(MSE) (C) and percent change in MSE (D) for step response fits compared to models with 

one fewer component, calculated using the best (red) or conservative (black) eye position 

extrapolations for each larva. Boxes span the 25th to 75th percentile range; whiskers show 

maximum and minimum values (n = 6 larvae). E and F, distributions of amplitudes and 

time constants for fits to step responses calculated using the best (E) and conservative (F) 

eye position extrapolations. Circles and lines show parameter combinations for larvae for 

which the best fit was a three-component model (red; best extrapolation: n = 5, conservative 

extrapolation: n = 4) or a four-component model (black; best: n = 1, conservative: n = 2).
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Figure 5. Oculomotor plant model estimates for anaesthetized larvae
A, schematic outline of the method used to estimate linear filters that describe plant 

response properties. We estimated the plant filter and applied force that best fit the 

measured anaesthetized step responses. B, example responses of the eye (grey) following 

step displacements lasting 10 s (left) or 60 s (right), normalized by the eye position prior 

to release, in larvae anaesthetized with MS-222, and predicted step response from the best 

recovered four-component model (red). Inset: fits during the first 3 s after release. C, same 

as B, but for larvae anaesthetized with ketamine, for which step displacements lasted 15 

or 90 s. D, coefficients and time constants for each component of the best four-component 

plant models for larvae anaesthetized with MS-222 (red, n = 10) or ketamine (black, n 
= 6). E, fraction of the total area under the curve (AUC) contributed by each component 

for the best four-component plant models for larvae anaesthetized with MS-222 (red) or 

ketamine (black). Boxes span the 25th to 75th percentile range; whiskers show maximum 

and minimum values (MS-222, n = 10; ketamine, n = 6).
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Figure 6. Oculomotor plant models can be recovered from step responses in awake zebrafish 
larvae
A, schematic outline of the method used to estimate linear filters that capture plant response 

properties. The measured eye position Is assumed to derive from the sum of two inputs 

to the plant: external force applied by the probe, which leads to the active state step 

response y(t), and internally generated neural drive, which would lead to the (extrapolated) 

unperturbed eye position. We estimated the plant filter and applied force that best fit the 

active state step responses. Active state step responses were estimated from the ‘best’ 

extrapolation procedure of Fig 2C and normalized to be 1 at the time of release. B, example 

active state step response (grey), and predicted step response from the best recovered three-

component plant model (red). Inset: fits during the first 2 s after release. C, time course of 

recovered applied force, normalized to be 1 immediately after pulse offset. D, time course of 

the impulse response of the best three-component plant model. E, distribution of coefficients 

and time constants for each component of the best recovered plant models. Circles and lines 

show parameter combinations for larvae for which a three-component model was best (red, 

n = 5) or for which a four-component model was best (black, n = 1). F, fraction of the total 

area under the curve (AUC), calculated over 20 s, contributed by each plant component for 

the best recovered three- (red, n = 5) or four-component (black, n = 1) plant models.
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Figure 7. Estimating the neural drive to the oculomotor plant during fixation
A, eye position was deconvolved with the filter from a given larva’s plant model to estimate 

the neural drive needed to generate that eye position. B, perfectly stable eye position (grey) 

and neural drive estimates calculated from the best three-component (red) and classical two-

component (cyan) plant model for an example awake larva. Time courses were normalized 

to be 1 at 250 ms after saccade termination. C, same as B, but for a measured fixation. D, 

time constants of the distributed plant (black) and of the slide components of the neural 

drive (red circles). E, persistence of estimated neural drive assuming the best three- or 

four-component (red) or the classical two-component (cyan) plant model plotted against eye 

position persistence. Each point represents a fixation recorded from an awake larva. Dotted 

line indicates a one-to-one ratio of drive persistence to eye persistence.
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Figure 8. The relationship between the persistence of eye position and of neuronal firing in 
hVPNI neurons is consistent with the neural drive required for a plant with long timescale 
responses
A, illustration of the method used to recover firing rates of hVPNI neurons. First, the 

calcium impulse response function (CIRF) was fit to baseline subtracted saccade-triggered 

average (STA) Ca2+-sensitive fluorescence during a contralateral saccade (top). Only cells to 

which the CIRF fit was relatively good (R2 > 0.5), and for which fluorescence was correlated 

to eye position when convolved with the CIRF (corr > 0.5) were included in further analysis 

(166/195 cells). For these cells, STA fluorescence during an ipsilateral saccade was fit with a 

multiexponential model of post-saccadic firing convolved with the CIRF (bottom; Methods, 

‘hVPNI firing rate estimation’). If the ratio of the sum of squared errors of fits to the sum 

of squares of ipsilateral STA fluorescence (sum of squares ratio, SSr) was greater than 

0.007, the cell was excluded (15/167 cells excluded). B, examples of the worst, median and 

best quality fits to ipsilateral STA fluorescence of included cells (top) and corresponding 

inferred firing rate functions, normalized to equal 1 at 0.25 s after saccade time (bottom). 

C, distribution of firing rate persistence (sum of red shaded areas in B) across all included 

neurons. D, histogram of the ratio of firing rate persistence to eye position persistence. Grey 

line indicates the median ratio. Coloured lines indicate the median ratio of neural drive 

persistence to eye persistence across larvae assuming a distributed (red) or classical (cyan) 

plant model for each larva.
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Figure 9. The distribution of hVPNI firing patterns is sufficient to stabilize gaze when the plant 
has long timescale responses
A and B, time course (A) and coefficients and time constants (B) of a single summary plant 

model fit to the active state step responses from all awake larvae. C, predicted step response 

given the summary plant model (red) compared to the predicted response given the best 

plant model for each individual larva (black). Examples are the worst (top), median (middle) 

and best (bottom) of the nine reconstructed step responses, sorted by mean sguared error. D, 

schematic representation of steps used to estimate the neural drive during fixation as a linear 

combination of hVPNI firing rates. Saccade-triggered average eye positions during fixation 

from the six larvae from which Ca2+-sensitive fluorescence was recorded were deconvolved 

with the summary plant model to estimate the required neural drive. For each larva we 

calculated a regularized linear regression of estimated neural drive onto the firing rates of 

all recorded hVPNI cells (n = 151 cells). E, grey: estimated neural drive calculated for the 

fish with the least (left) and most (right) persistent average eye position during fixation 

using the summary plant model. Red: best linear fit of hVPNI firing rates to the estimated 

neural drive. Cyan: band containing the best 95% of linear fits to the estimated neural 

drive from 100 synthetic populations of mock cells whose firing rates were exponential 

decays with random time constants <1 or >20 s. F, regression weight for each hVPNI cell, 

averaged across fits to all six average eye positions, with cells sorted by increasing firing rate 

persistence.
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