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A B S T R A C T   

Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the 
central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described 
clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer’s, Parkinson’s 
disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images 
derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their 
role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large im-
aging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of 
use and to lower memory requirements. The models are trained and validated on a first research cohort including 
people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS 
patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 
0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming 
FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the 
method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a 
volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the seg-
mentation of the ChP both on research and clinical datasets.   

1. Introduction 

Choroid plexuses (ChP) are veil-like structures located in the brain 
ventricles and composed of a single layer of epithelial cells surrounding 
a core of capillaries and connective tissue. Their main role is the pro-
duction of CSF that is renewed several times a day, allowing the main-
tenance of brain homeostasis through the regulation of fluid and 
electrolyte balance (Khasawneh et al., 2018). They also contribute to the 
blood-cerebrospinal fluid barrier, as they integrate signals between the 
periphery and the central nervous system, and serve as a neuro- 
immunological interface in physiological and pathological conditions 
(Ghersi-Egea, 2018; Marques and Sousa, 2015; Schwartz and Baruch, 
2014). Finally, they endorse a secretory role, with more than 200 pro-
teins being secreted in the CSF, that may contribute to 

immunoregulation and neuroprotection (Lun et al., 2015). 
These key functions, at the cornerstone of neurodegeneration and 

neuroinflammation, have pushed forward a research field that aims at 
unraveling their involvement in neurological diseases such as Alz-
heimer’s, Parkinson’s disease (Gião et al., 2022; Tadayon et al., 2020), 
or multiple sclerosis (Ricigliano et al., 2021; Rodríguez-Lorenzo, 2020). 
On routine MRI sequences such as T1-weighted 3D acquisition, it has 
been described that ChPs are enlarged in acute and chronic neurological 
conditions (Althubaity, 2022; Ricigliano et al., 2021; Tadayon et al., 
2020), and this enlargement was recently shown to provide a proxy of 
brain neuroinflammation in preclinical models of multiple sclerosis and 
patients with multiple sclerosis (Fleischer, 2021; Ricigliano et al., 2021). 

To date, the gold standard for ChP segmentation on MRI remains 
manual annotation, a time-consuming approach that is cumbersome to 
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apply to large cohorts of subjects. Alternative automatic tools are 
needed and a few solutions for the automatic segmentation of the ChP 
have been proposed: i) FreeSurfer is the most widely used software for 
brain segmentation (Fischl, 2012), but the ChP automatic segmentation 
obtained with FreeSurfer correlated poorly with the ground truth 
manual segmentation (Ricigliano et al., 2021); ii) A Bayesian Gaussian 
Mixture Model (GMM)-based approach was shown to outperform Free-
Surfer, reaching a Dice coefficient above 0.7 when compared with the 
ground truth in a healthy control population, but that dropped below 0.6 
for diseased subjects (Tadayon et al., 2020); iii) A single 3D U-Net also 
showed promising performances but the study only included ten sub-
jects (Zhao et al., 2020); iv) finally, an axial multi-layer perceptron 
yielded very good results both in healthy controls and subjects with 
multiple sclerosis (Schmidt-Mengin, et al., 2021) but was dependent on 
the registration of MRIs to standard space and did not outperform a 
conceptually simpler approach based on the U-Net. Furthermore, with 
the increase in image resolution, training deep learning models can 
become a potentially challenging task as hardware limitations (in 
particular, GPU memory) emerge. 

In this study, we aim to develop a simple and highly reliable solution 
for ChP segmentation, that could be largely applied on T1-weighted MRI 
sequences acquired in the clinical setting for the diagnosis or follow-up 
of neurological diseases, and that would require minimal preprocessing 
steps on images. For this purpose, we have designed a 2-step 3D U-Net 
that consists of a first ChP segmentation from the whole image, followed 
by a second segmentation from patches containing ChP. Training and 
validation were performed in healthy controls and people with multiple 
sclerosis, with the last validation step achieved on clinical data obtained 
in subjects with Radiologically Isolated Syndrome (RIS), a preclinical 
form of MS. This newly developed method will be compared to a stan-
dard 3D U-Net (Çiçek et al., 2016) and to the widely used FreeSurfer and 
FastSurfer (Henschel et al., 2020) software packages. 

2. Materials and methods 

2.1. Datasets 

For this study, we used two different datasets: a research dataset and 
a clinical dataset. 

The research dataset (further denoted as dataset1) was constituted 
by gathering data from three prospective studies performed between 
May 2009 and September 2017 at the Paris Brain Institute (ICM). The 
dataset1 is composed of 141 participants: 44 healthy controls, 61 pa-
tients with relapsing-remitting multiple sclerosis (MS), and 36 patients 
with progressive MS. Images were acquired on two different Siemens 3 T 
MRI scanners (Trio and Prisma) with a 32-channel head coil (92 on Trio 
and 49 on Prisma). The sequence acquired is a 3D T1-weighted 
magnetization-prepared rapid gradient-echo imaging (MPRAGE) 
(repetition time = 2300 ms, echo time = 2.98 ms). The studies were 
approved by the local ethics committees and written informed consent 
was obtained from all participants (EudraCT no. 2008004174–40 and 
ClinicalTrials.gov identifiers NCT02305264 and NCT01651520). 
Further details on the dataset1 can be found in Ricigliano et al. (2021). 

The clinical dataset (further denoted as dataset2) was composed of 
27 pre-symptomatic MS cases fulfilling the 2009 diagnostic criteria for 
Radiologically Isolated Syndrome (RIS) (Okuda et al., 2009)followed at 
the outpatient Neurology clinics of Pitié-Salpêtrière and Saint-Antoine 
Hospital in Paris, France, between September 2013 and January 2021 
and for whom 3D-T1 weighted MRI scans were available. MRI was ac-
quired as part of a clinical routine using non-harmonized protocols on 
different MRI machines and at different radiological departments (either 
within or outside the hospitals). Consent for data collection and analysis 
according to French legislation for non-interventional research was 
obtained from all subjects (APHP-20210727144630). Further details on 
dataset2 can be found in Ricigliano et al. (2022). 

A summary of the demographics of both datasets can be found in 

Table 1 and a summary of different machines used for acquisitions can 
be found in Table 2. 

2.2. Choroid plexus manual segmentation 

Before the manual segmentation, all images were corrected for MRI 
field inhomogeneities using the N4 algorithm implemented in Advanced 
Normalization Tools (Tustison et al., 2010). On both datasets, the ChP in 
the two lateral ventricles were segmented by a trained neurologist and 
corrected by a senior neurologist with long-term expertise in MRI pro-
cessing (procedure named annotator 1). All segmentations were done 
using ITK-SNAP (Yushkevich et al., 2006). The portion of choroid 
plexuses located within the lateral ventricles of the brain was the only 
one segmented by the two annotators, as done in previous studies 
(Ricigliano et al., 2022). Indeed, the other parts, located along the roof 
of the 3rd and 4th ventricles, are hardly and inconsistently visualized. 
Manual annotation was performed on the axial non-enhanced 3D-T1w 
images, until the last visible portion within the temporal horn of the 
lateral ventricles on both sides, then verified and refined on the coronal 
and sagittal planes. Segmentations were used as ground truth to train the 
proposed model and evaluate its performance. Finally, for dataset2 only, 
ChP were segmented a second time by a trained neurologist (annotator 
2), independently from the previous annotator. An example of manual 
segmentation can be found in Fig. 2. 

2.3. Choroid plexus automatic segmentation 

2.3.1. Preprocessing 
First, images were reoriented to canonical voxel orientation, so that 

the left–right direction corresponds to the first dimension, the ante-
roposterior direction to the second dimension, and the infero-superior 
direction corresponds to the third dimension. Note that we did not 
perform any registration to a template. Images were then resampled to 
have an isotropic 1 mm3 voxel size and were cropped or padded to 
match an image dimension of (176, 240, 256), corresponding to the 
dimensions of the majority of the training dataset (denoted as 

Table 1 
Demographics. Healthy Controls (HC), presymptomatic multiple sclerosis (RIS), 
relapsing-remitting multiple sclerosis (RRMS), progressive multiple sclerosis 
(PMS), Expanded Disability Status Scale (EDSS).   

HC RIS All MS RRMS PMS 

No. of participants 44 27 97 61 36 
No. of women 23 17 49 31 18 
Age (y) 39 ±

14 
42 ±
11 

42 ± 12 37 ± 10 50 ± 11 

Disease duration (y) 
(min–max) 

N.A 0 4.8 
(0.1–23) 

4 
(0.1–23) 

6.5 
(0.3–22) 

EDSS score N.A 0 3 (0–7.5) 2 (0–6) 6 
(2.5–7.5)  

Table 2 
MRI Machines used for the acquisition of dataset2.  

Brand Model Count Total 

GE Optima MR450w (1.5T) 8 16 
SIGNA Explorer (1.5T) 3 
Signa Artist (1.5T) 3 
Signa HDxt (1.5T) 1 
Discovery MR750 (3T) 1  

Siemens Magnetom Skyra (3T) 5 9 
Magnetom Aera (1.5T) 2 
Magnetom Avanto Fit (1.5T) 1 
Magnetom Trio (3T) 1  

Phillips Ingenia (1.5T) 2 2  
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Fig. 1. 3D U-Net Architecture and 2-step method. Top row: Architecture of the 3D U-Net used in the architecture. Two bottom rows: description of the 2-step 
method. Middle row: description of step1, «High resolution» corresponds to images with a dimension of 176 × 240 × 256 with voxels of size 1 mm3; «Low reso-
lution» corresponds to images down-sampled to a dimension of 72 × 96 × 104. Step1 output is thresholded at 0.1 for visualization purposes. (2 column fitting image). 
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Fig. 2. Examples of manual and automatic segmentations on the testing sets from dataset1 and dataset2. Illustrative subjects with the highest, median, and lowest 
Dice are presented from top to bottom in each dataset box. Each line corresponds to one subject. The manual segmentation of annotators 1 and 2 are respectively in 
green and yellow. The prediction of the 2-step method trained with data augmentation is presented in red, thresholded at 0.5, and denoted as “prediction”. The 
reported Dice is between the prediction and the manual segmentation. When there are two annotators, the Dice shown is computed between the prediction and the 1st 

annotator. (2 column fitting image). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Yazdan-Panah et al.                                                                                                                                                                                                                        



NeuroImage: Clinical 38 (2023) 103368

5

“HighRes”). Voxel intensities were rescaled to the interval [-1, 1] 
excluding the lowest and highest 0.5 percentiles. 

2.3.2. Proposed method 
The method is summarized in Fig. 1. It is composed of two 3D U-Nets 

(Çiçek et al., 2016; Ronneberger et al., 2015) in cascade, denoted as 
step1 and step2. This approach will be denoted as “2-step” in the 
remainder of this manuscript. 

Step1 takes as input the whole image down-sampled to a lower size 
of 72 × 96 × 104 (denoted as “LowRes”). The output probabilities of the 
first model are used as locations for extracting patches. Patches of size 
48 × 48 × 48 are randomly selected around voxels with a probability 
higher than 80 % to be ChP from the image in its original resolution, 
with a limit of 500 patches, allowing potential overlap. 

Step2 takes said patches as input to segment the ChP. Segmented 
patches are finally merged to create the final segmentation mask. 
Patches are merged using a Hann windowing to reduce edge effects 
(Pielawski et al., 2020). Each patch is therefore multiplied by a Hann 
window and summed to the output image. In parallel, all Hann windows 
used to weigh the patches are summed at their corresponding location in 
an additional mask that will divide the final output to normalize it. 

The 3D U-Nets of both steps have the same architecture which is 
depicted in the first row of Fig. 1. The architecture slightly differs from 
that of the original 3D U-Net by Çiçek et al. (2016). The convolution 
blocks use group normalization as it is more reliable for smaller batch 
sizes (Wu and He, 2018) and a leaky ReLu is used instead of a ReLu to 
avoid “dead ReLu” effects. The proposed up-convolution was also 
replaced by an up-sampling, making the model slightly less memory- 
consuming by reducing the number of trainable parameters. The 
model has 16 output filters after the first convolution block and 4 levels. 

We compared our approach to a standard 3D U-Net applied to the 
whole image and performed the segmentation in a single step (this 
approach is denoted as “1-step”). Note that the architecture of this 
network is the same as that of the previous “2-step” approach. In 
particular, we made the same modifications to the original 3D U-Net of 
Çiçek et al. (2016). 

The loss function used is the sum of the Sørensen–Dice loss and the 
binary cross entropy loss (Jadon, 2020) (BCE). Considering two proba-
bilistic or binary segmentations X and Y, the Sørensen–Dice coefficient is 
defined as: 

Dice =
2
∑

imin(xi, yi)
∑

ixi +
∑

iyi
withxi, yi ∈ X,Y  

and the Sørensen–Dice loss as: 

DL = 1 − Dice 

Finally, the loss is equal to: 

Loss = DL+BCE 

The loss of the 2-step approach is then defined as follows: 

Loss2− step =

{
Lossstep1 if N = 0

Lossstep1 + Lossstep2 if N > 0  

where N is the number of patch locations found after step1, Lossstep1 is 
the Loss applied to the LowRes images and Lossstep2 is the Loss applied 
to the patches. Therefore, in the absence of patch location found 
following step1, the loss of step2 is ignored and the total loss is equal to 
the loss of step1. The loss of the 1-step approach is the Loss applied to the 
HighRes image. 

2.3.3. Implementation details 
The models were implemented using PyTorch (Paszke, 2019). An 

Adam optimizer (Kingma and Ba, 2017) was used with an initial 
learning rate of 1e− 3. The learning rate is halved when the validation 
loss reaches a plateau, defined as a change lower than 1e− 3 between 

two consecutive epochs. Experiments were performed on an Nvidia 
Tesla V100 32Go graphics card which allows the use of a batch size of 4 
LowRes images as input for step1 and a maximum of 16 patches per 
image extracted from the HighRes images resulting in a batch size of 64 
patches as input for step2. The 1-step approach taking as input HighRes 
images is trained with a batch size of 1, which is the maximum that 
could fit into memory. 

2.3.4. Optional data augmentation 
Augmentations were optionally applied. The augmentations were 

computed using TorchIO (Pérez-García et al., 2021) and are summarized 
in Table 3. Elastic deformations were not used as an augmentation 
method due to high computation times and limited availability of 
computing resources. This data augmentation procedure is applied to 
simulate artifacts and types of noises encountered when routinely 
working with MRI and virtually augment the size of our training set. 

2.4. Experiments 

2.4.1. Training and validation procedures 
The dataset1 was split into 72 subjects in the training set, 19 subjects 

in the validation set, and 50 subjects in the testing set. The testing set 
(from dataset1) was left untouched until the end and was only used to 
evaluate the performances. For both architectures, training was done 
with and without data augmentation. The training was performed dur-
ing 200 epochs for the 2-step method, and 100 epochs for the 1-step 
method. The dataset2 was not used for training and was only used as 
a second test set. 

The python package Weights&Biases (Biewald, 2020) was used for 
experiment tracking, visualization, and memory monitoring. 

2.4.2. Performance evaluation 
To evaluate the performance of an architecture, the following scores 

have been used: 

Dice = 2
∑

i
min(xi ,yi)∑

i
xi+

∑
i
yi

; Recall R =

∑
i
xiyi∑
i
yi

; Precision P =

∑
i
xiyi∑
i
xi

; 

Volume error rate VER =

∑
i
xi − yi∑

i
yi

Absolute volume error rate AVER =

|VER|where xi, yi ∈ X,Y are respectively the prediction and the ground 
truth. 

The recall, precision, volume error rate, and absolute VER, are 
common metrics extracted to evaluate performances in segmentation 
tasks. Just like the Dice coefficient, they are a representation of the 
similarity of our predicted mask with the ground truth. The recall nu-
ances this result by showing the percentage of true positives over the 
total number of positive voxels found. The higher the recall, the less 
likely we are to miss positive voxels and the more sensible the model is. 
Similarly, the precision nuances the information given by the Dice co-
efficient by evaluating the percentage of the predicted mask that is 
correct. The higher the precision, the less the model is likely to select 

Table 3 
Data augmentations applied.  

Augmentation Probability Characteristics 

Left-Right flip  0.5 – 
Affine transformations  0.3 max scaling = 0.3; max rotation = 15◦

Image anisotropy  0.3 can be applied along all axes; max down 
sampling factor = 2 

MRI motion artifact ( 
Shaw et al., 2019)  

0.3 max rotation = 15◦; max translation =
15 mm; max number of movements = 2 

MRI ghosting artifacts  0.3 number of ghosts = 2; can be along all 
axis 

MRI spike artifacts  0.3 number of spikes = 1; 
MRI bias field  0.3 maximum magnitude = 0.5; polynomial 

order = 3 
Gaussian Noise  0.3 mean = 0; standard deviation = 1 
Contrast modification  0.3 log(gamma) = 0.3  
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voxels wrongly. Finally, VER and AVER, as we are looking for a reliable 
method for choroid plexus volume estimation, are all the more relevant 
and informative for the future task this method might be applied for. 

Results were reported as mean ± standard error of the mean (SEM). 
To assess the influence of each experiment on the outcome Dice coeffi-
cient, a linear mixed effect model was fitted using the lme4 package 
(v1.1–31) in R version 4.2.2. For each linear mixed model, we tested the 
effect of data augmentation, model architecture, and their interaction. 
We, therefore, used a Bonferroni significance threshold of 0.017 cor-
recting for 3 tests. To assess statistical differences between the scores, 
paired Student T-tests with a Bonferroni correction for multiple com-
parisons were used. Note that statistical testing was only performed on 
the testing datasets. Finally, correlations between predicted volumes 
and manual segmentations are reported using Pearson’s r. 

2.4.3. Comparison with other approaches 
We compared the results obtained using our approach to those ob-

tained using: 1) the aforementioned 1-step approach; 2) FreeSurfer 
(Fischl, 2012) version 6.0.0; 3) FastSurfer (Henschel et al., 2020) version 
1.0.0. 

3. Results 

3.1. Memory usage, training time, and inference time 

The Nvidia Tesla V100 GPUs used have 32 GB of available memory. 
During the training of the two architectures, the 1-step method reached 
93.23 % of available memory with a batch size of 1 while the 2-step 
method reached 94.95 % of available memory with a batch size of 4 
for step1 and a batch size of 64 for step2. 

Without data augmentation, the 2-step method averaged at 1.57 ±
0.03 min/epoch (mn/e) versus 3.39 ± 0.01 mn/e. With data augmen-
tation, training times were increased to 4.56 ± 0.04 mn/e for the 2-step 
and 5.18 ± 0.01 mn/e for the 1-step method. Inferring on images takes 
approximately 30 s with the 1-step and 15 s with the 2-step on CPU and 
less than 10 s on GPU for both methods. All times include opening im-
ages, preprocessing, inferring, postprocessing, and saving inferred 
masks. 

Tests were also performed with float 16 precision, but this led to 
underflow errors and the apparition of outlying numbers. 

3.2. Segmentation performances 

Fig. 2 displays examples of manual and automatic segmentations for 
different subjects of the testing sets from dataset1 and dataset2, corre-
sponding respectively to low, average, and high Dice coefficients. 

Results on the validation set of dataset1 are reported in Table 4 and 
results on the testing set of dataset1 in Table 5. For all architectures, 
performances are comparable between the validation and testing sets, 
indicating that the validation set was not overfitted. The average Dice is 
around 0.7 for all deep learning methods. For all metrics, the proposed 
deep learning methods provided considerably better performances 
compared to FreeSurfer and FastSurfer. 

Results on dataset2 are reported in Table 6. Performances were in 
general lower than those obtained on dataset1. On dataset2, average 

Dice coefficients between all tested methods and annotator1 ranged 
from 0.61 to 0.67 and from 0.56 to 0.59 between all tested methods and 
annotator 2. On dataset1 however, Dice coefficients between predictions 
and manual segmentations ranged from 0.69 to 0.73. The 1-step and 2- 
step methods also tended to provide higher segmentation metrics on the 
dataset2 segmented by the first annotator compared to the second 
annotator (cf. Table 7, supplementary materials). These differences are 
significant for methods trained with data augmentation (p = 4.23E− 03 
for 1-step, p = 4.88E− 04 for 2-step; corrected statistical threshold at 
1.25E− 02). Finally, the automatic segmentation performance was of the 
same order of magnitude as the inter-rater variability (mean Dice = 0.64 
± 0.02 SEM for inter-rater agreement). 

A comparison between the different deep learning approaches (1- 
step, 2-step, with and without data augmentation) is presented in Fig. 3. 
Data augmentation lowers the Dice coefficient by 0.02 on dataset1 (p =
2.24e− 12) as estimated from the linear mixed-effect model. No other 
tests indicated a significant effect of the method, the data augmentation, 
or their interaction. 

4. Discussion 

This study presents a simple and reliable method for the automatic 
segmentation of ChPs called “2-step 3D U-Net”. The 2-step 3D U-Net 
provides excellent segmentation results that reach performances com-
parable to a regular 3D U-Net while being less memory hoarding. It 
advantageously requires minimal preprocessing, without any registra-
tion procedure. The 2-step 3D U-Net was demonstrated to be effective on 
heterogeneous clinical data, including healthy and non-healthy subjects, 
opening the perspective of broad applications aiming at measuring ChP 
volume in clinical and research datasets and for routine patient 
monitoring. 

ChP volumetric changes have indeed been associated with a variety 
of neurological disorders such as depression (Althubaity, 2022), stroke 
(Egorova et al., 2019), Alzheimer’s disease (Choi et al., 2022), Parkin-
son’s disease (Tadayon et al., 2020), and multiple sclerosis (Müller, 
2022; Ricigliano et al., 2021). Recently, ChP enlargement was even 
found to discriminate multiple sclerosis from neuromyelitis optica 
spectrum disorder (Müller, 2022) and proposed as an early imaging 
biomarker in preclinical forms of multiple sclerosis (Ricigliano et al., 
2022). There is therefore an increasing need for reliable segmentation 
methods of the ChPs to foster research in large datasets and further 
explore whether ChP volumetry could become a potential diagnostic or 
prognostic biomarker. 

To date, only a few automatic segmentation methods of the ChP have 
been proposed. Tadayon et al. (2020) have introduced an automatic 
procedure based on Bayesian Gaussian Mixture Models (GMM) that was 
subsequently tested on multiple datasets. Their pipeline included 4 
steps: segmentation of the lateral ventricles through FreeSurfer; appli-
cation of a Bayesian GMM to separate 2 classes; smoothing; and finally, a 
second Bayesian GMM aimed at discriminating the ChP from the back-
ground CSF through the selection of the class with the highest mean 
intensity value. This approach mostly relies on voxel intensity, and no 
spatial information was considered apart from the initial selection of 
voxels inside the lateral ventricles. Such an approach could therefore be 
susceptible to artifacts changing voxel intensities at high spatial 

Table 4 
Results on the validation set from dataset 1. Results are presented as mean ± standard error of the mean across the dataset. Volume Error Rate denoted as VER, absolute 
VER denoted as AVER. Best performances are denoted in bold face.  

Method Data Augmentation Dice Recall Precision VER AVER Pearson r 

1-step no 0.73 ± 0.01 0.73 ± 0.02 0.75 ± 0.02 0.04 ± 0.05 0.16 ± 0.03  0.76 
yes 0.71 ± 0.01 0.70 ± 0.02 0.74 ± 0.02 0.08 ± 0.04 0.16 ± 0.03  0.82  

2-step no 0.73 ± 0.01 0.70 ± 0.02 0.76 ± 0.02 0.11 ± 0.05 0.18 ± 0.04  0.73 
yes 0.70 ± 0.01 0.68 ± 0.02 0.74 ± 0.01 0.12 ± 0.04 0.16 ± 0.03  0.86  
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frequencies (such as motion, ghosting, and spiking). The GMM out-
performed FreeSurfer and provided a Dice coefficient that exceeded 0.7 
when segmenting ChPs on non-enhanced MRIs from the Human Con-
nectome Project (Van Essen et al., 2013). However, results dropped 
below 0.6 on subjects coming from the ADNI cohort (Petersen et al., 
2010). Furthermore, it was not tested on clinical routine data. 

The axial multi-layer perceptron, recently developed by Schmidt- 
Mengin et al, yielded performance comparable to a 3D U-Net, particu-
larly the 2-step U-Net presented in our study. However, this approach 
required a preprocessing of the image through Clinca’s “t1-linear” 
(Routier et al., 2021)which consists of a correction of MRI bias field 
through the N4ITK algorithm (Tustison et al., 2010) and registration to 
standard space, and its dissemination for routine use would imply time- 
consuming processing steps. Moreover, it is conceptually more complex 
than a U-Net while providing higher performances. 

Finally, Zhao et al. (2020) applied an optimized 3D U-Net. Their 
method was trained using only 10 MRIs from healthy females. The al-
gorithm was not tested on patients, known to present volumetric 
changes of the ChP. Their method reached a Dice coefficient of 0.732 ±
0.046 (mean ± standard error of the mean) in the healthy control 
population. No further testing of their algorithm was performed on other 
datasets, containing pathological subjects. 

Our 2-step 3D U-Net provided similar segmentation performances 
compared to a regular 3D U-Net, yielding a Dice coefficient of 0.70 vs 
0.73. However, the non-significance of p-values does not imply the 
absence of differences between the methods. A larger test set would 
provide more statistical power to detect those potential differences. 
Nevertheless, the overall segmentation performances are close, with the 
best method alternating between the 1-step and the 2-step according to 
the task at hand, and the standard errors of the mean remain small, 

Table 5 
Results on the testing set from dataset1. Results are presented as mean ± standard error of the mean across the dataset. Data augmentation does not apply to FreeSurfer 
and FastSurfer. Volume Error Rate denoted as VER, absolute VER denoted as AVER. Best performances are denoted in boldface.  

Method Data Augmentation Dice Recall Precision VER AVER Pearson r 

1-step no 0.73 ± 0.01 0.72 ± 0.01 0.75 ± 0.01 0.07 ± 0.03 0.18 ± 0.02  0.84 
yes 0.71 ± 0.01 0.68 ± 0.02 0.76 ± 0.01 0.17 ± 0.04 0.25 ± 0.04  0.77 

2-step no 0.72 ± 0.01 0.70 ± 0.01 0.76 ± 0.01 0.12 ± 0.03 0.19 ± 0.02  0.86 
yes 0.69 ± 0.01 0.65 ± 0.01 0.76 ± 0.01 0.20 ± 0.04 0.26 ± 0.04  0.78 

FreeSurfer 0.33 ± 0.01 0.42 ± 0.01 0.29 ± 0.01 − 0.29 ± 0.03 0.32 ± 0.02 0.65 
FastSurfer 0.35 ± 0.01 0.40 ± 0.01 0.32 ± 0.01 − 0.18 ± 0.03 0.25 ± 0.02 0.59  

Table 6 
Results on dataset2 (testing clinical dataset). Results are presented as mean ± standard error of the mean across the dataset. Volume Error Rate denoted as VER, 
absolute VER denoted as AVER. Best performances respective to each annotator are denoted in boldface.  

Method Data Augmentation Annotator Dice Recall Precision VER AVER Pearson r 

1-step no 1 0.61 ± 0.02 0.63 ± 0.02 0.63 ± 0.03 0.01 ± 0.06 0.24 ± 0.03  0.68   
2 0.56 ± 0.02 0.49 ± 0.02 0.69 ± 0.03 0.49 ± 0.10 0.60 ± 0.08  0.47  

yes 1 0.64 ± 0.01 0.58 ± 0.02 0.74 ± 0.02 0.32 ± 0.06 0.34 ± 0.05  0.64   
2 0.56 ± 0.02 0.44 ± 0.02 0.80 ± 0.01 0.94 ± 0.11 0.94 ± 0.11  0.48  

2-step no 1 0.62 ± 0.02 0.64 ± 0.02 0.61 ± 0.03 − 0.04 ± 0.05 0.19 ± 0.03  0.75   
2 0.56 ± 0.02 0.51 ± 0.02 0.68 ± 0.03 0.42 ± 0.09 0.51 ± 0.07  0.52  

yes 1 0.67 ± 0.01 0.62 ± 0.01 0.75 ± 0.02 0.22 ± 0.03 0.24 ± 0.03  0.84   
2 0.59 ± 0.02 0.47 ± 0.02 0.81 ± 0.01 0.80 ± 0.08 0.80 ± 0.08  0.62  

Inter-rater agreement 0.64 ± 0.02 0.78 ± 0.01 0.55 ± 0.02 − 0.29 ± 0.03 0.29 ± 0.03  0.64  

Fig. 3. Results on the independent testing set of dataset1 and dataset2. Lower and upper whiskers represent the minimum and maximum values observed in the 
dataset. Boxes are bound by the first quartile at the bottom and the third quartile at the top with the center line representing the median of the distribution. (2 column 
fitting image). 
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allowing us to believe that the overall performances of the models are 
comparable. It outperforms the segmentation provided by FreeSurfer by 
a vast margin. The poor performance of FreeSurfer could partly be due to 
the fact that their template was built using different guidelines. Indeed, 
it is difficult to define the ChP boundaries unambiguously, as illustrated 
by the inter-rater variability. However, visual inspections of FreeSurfer 
results revealed that there are clear areas of false positives. Thus, it is 
unlikely that its poor performance is only due to the template. Also, we 
did not consider SAMSEG (Puonti et al., 2016) which could be a way to 
improve the FreeSurfer-based ChP segmentation. This is left for future 
work. In addition, the models have been trained using both healthy 
subjects and MS patients and have been exposed to a wide range of ChP 
volumes. Interestingly, data augmentation reduced the loss of perfor-
mance on dataset2 compared to the models trained without it (Dice =
0.67 with data augmentation vs 0.59 without data augmentation for the 
2-step and 0.64 vs 0.56 respectively for the 1-step) and the 2-step 
method trained with data augmentation provided the best volumetric 
correlations on dataset2 (0.84 with annotator 1 and 0.62 with annotator 
2), emphasizing its optimal reliability for further volumetric analysis of 
ChPs in large cohorts of subjects. Of note, the first step applied in our 
protocol was the detection of ChP-containing patches, thus overcoming 
potential bias linked to class imbalance. By considering spatial infor-
mation in the image, preprocessing steps such as ventricle segmentation 
through FreeSurfer or registration to a standard space could be avoided. 
Another advantage of the 2-step method was the reduced memory 
consumption required during training, which allowed the use of larger 
batch sizes compared to the 1-step (4 vs 1). Taken together, the 2-step 
3D U-Net fulfills many prerequisites for large clinical applications. 

Our study has the following limitations. We acknowledge that the 
trained models learned slightly better segmentation patterns from 
annotator 1, which were available for both datasets, than the one from 
annotator 2, available only for dataset2, which may suggest a slightly 
reduced reproducibility of the method when heterogeneous real-life 
data are considered. Also, automatic volumetric analysis of ChPs may 
miss the presence of microcysts or calcifications, introducing a bias for a 
minority of subjects. Very few subjects in our datasets presented calci-
fications or cysts in the ChP so the performance of the methods in those 
specific cases could not be assessed. Training on a higher number of 
subjects well characterized for microcysts or calcifications will further 
benefit the model’s generalizability. Moreover, while the sequence used 
for segmentation, 3D-T1w MPRAGE MRI, is widely available in all im-
aging research protocols, it is, however, not the ideal sequence to 
visualize ChP. First T1w images enhanced with gadolinium allows 
following the ChP along the walls of the hippocampus. As contrast- 
enhanced T1w acquisition was not available for all MS subjects and 
was never performed in healthy subjects, we could neither assess the 
methods’ performance on this modality nor train the model to segment 
the ChP. Similarly, other T1w imaging modalities such as the spin-echo 
could not be studied due to unavailability in the dataset. Then, on fluid- 
attenuated inversion recovery T2-weighted (FLAIR) MRI, thanks to the 
fluid attenuation, ChP contrast with surrounding CSF is highly 
enhanced. However, our datasets did not consistently contain 3D FLAIR 
images. Nevertheless, 3D FLAIR is nearly becoming ubiquitous in im-
aging protocols and ChP segmentation using this sequence could be of 
great interest. Finally, no test–retest reproducibility assessment of the 
method was possible as no short-term rescanning of the subjects was 
available. 

In conclusion, our 2-step method allows excellent segmentation 
performances both on research and clinical datasets. Such a method 
could therefore be applied to a further study exploring the role of ChPs 
in various neurological diseases. Being an automated segmentation 
method, this protocol could be used to analyze a large amount of data, in 
cohorts where manual segmentation would be too time-consuming. This 
fast and easy-to-use tool would allow the extraction of a simple imaging 
biomarker with potential interest in many neurological diseases. 
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