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Pangenomic analysis identifies structural
variation associated with heattolerancein
pearl millet
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Pearlmilletis animportant cereal crop worldwide and shows superior heat
tolerance. Here, we developed a graph-based pan-genome by assembling

ten chromosomal genomes with one existing assembly adapted to different
climates worldwide and captured 424,085 genomic structural variations (SVs).
Comparative genomics and transcriptomics analyses revealed the expansion
of the RWP-RK transcription factor family and the involvement of endoplasmic
reticulum (ER)-related genesin heat tolerance. The overexpression of one
RWP-RK geneled to enhanced plant heat tolerance and transactivated
ER-related genes quickly, supporting theimportant roles of RWP-RK
transcription factors and ER system in heat tolerance. Furthermore, we found
thatsome SVs affected the gene expression associated with heat tolerance

and SVs surrounding ER-related genes shaped adaptation to heat tolerance
during domesticationin the population. Our study provides acomprehensive
genomicresource revealinginsightsinto heat tolerance andlayinga
foundation for generating more robust crops under the changing climate.

Globalwarming has severely affected crop productivity, whichseriously ~ temperature, wheat (Triticum aestivum) production is estimated to
threatens world food security'. The change in temperature fromthe  decreaseby 6%, rice (Oryzasativa) productionis estimated to decrease
historical averagein1900 is expected to exceed 2 °Cby theend of the by 3.2% and corn (Zea mays) production is estimated to decrease
twenty-first century’. With every 1°C increase in the global average by 7.4%’. Therefore, an understanding of heat tolerance in plants is
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urgently required to develop crops that can withstand rising global
temperatures and could thus be used to maximize agricultural pro-
ductionto help satisfy the food demands of anincreasing population.

Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus ameri-
canus (L.) Morrone) (2n=2x=14) is a C, cereal crop that isimportant
insafeguarding the security of food and forage in the arid and semiarid
tropics due toits superior tolerance to high temperatures*®. Itis also
astaple food of more than 90 million farmers living in poverty and is
grownonmore than 31.2million hectares’. Pearl milletis anideal model
forunderstanding how plants use heat-related genes and mechanisms
to thrive at warmer temperatures. However, few studies have investi-
gated the molecular mechanisms underlying the regulation of heat
stressresponses (HSRs) in pearl millet relative to other major crops'®"
and the underlying mechanisms are not well understood.

Recent studies revealed that many genes involved in environ-
mental stress responses are strongly affected by structural vari-
ations (SVs)>*; however, the causal relationship of SVs with HSRs
is poorly understood. SVs have roles in gene expression alterations
linked to important plant phenotypes®. However, the detection of
SVs is challenging when relying on short-read sequencing data'®".
This challenge has promoted the development of new approaches
for SV detection using graph-based pan-genomes that are based on
multiple high-quality assemblies”” ", Therefore, building graph-based
pan-genomic resources has the potential to advance the characteriza-
tionand understanding of the biological impact of SVs on phenotypic
variations and accelerate the breeding of pearl millet.

Inthis study, we generated de novo genome assemblies of ten pearl
milletaccessionsand constructed agraph-based pan-genome assembly
toidentify genomic SVs. We leveraged SVs, transcriptomics and in vivo
validation toreveal therelationship between SVs and gene expression
under heat stress conditions. With this approach, we identified SVs
that contributed to heat adaptation during crop domestication. By
integrating multi-omics analyses, we suggested a possible mechanism
in which the resistance of pearl millet to heat stress depends mainly
onthe endoplasmic reticulum (ER) and validated an RWP-RK (https://
www.ebi.ac.uk/interpro/entry/pfam/PF02042/) transcription factor
asapositive coregulator of heat tolerance along with the ER pathway.
Our findings advance the conceptual understanding of heat tolerance
in pearl millet, promise to expedite genomics-assisted breeding for
heat toleranceinthisimportant crop and will benefit comparative and
functional genomics studies of other crops.

Results

Genome assembly and pan-genomic analysis of representative
pearl millet accessions

We sselected tenrepresentative accessions from eight major geographi-
calregions based on the phylogenetic relationships of a394-line core
collection of pearl millet”?° (Fig. 1a,b, Supplementary Figs.1and 2
and Supplementary Table 1). We assembled their chromosome-level
genomes by integrating PacBio high-fidelity (HiFi) long-read sequences,
Bionano optical mapping data, high-throughput chromosome con-
formation capture (Hi-C) data and lllumina paired-end sequences
(Fig. 1a,b, Extended Data Fig. 1, Supplementary Table 2 and Sup-
plementary Note 1). These genomes ranged in size from 1.89 Gb to
2.00 Gb, with scaffold N50 values ranging from 193.80 Mb t0 286.98 Mb,
corresponding to 95.85-99.47% of the genome sizes estimated by
k-mer analysis (1.97-2.01 Gb), which is consistent with the genome
sizes predicted by flow cytometry (Extended Data Fig. 2). The contig
N50 values were substantially increased from 155 to 3,959-fold over
those of the previously published pearl millet reference genome’
(Table1and Supplementary Table 2).

To measure the quality of these ten newly assembled genomes,
we realigned high-quality paired-end reads against the assem-
blies and observed alignment rates ranging from 95.62% to 99.57%,
covering 94.92-99.90% of the genomes (Supplementary Table 2).

Additionally, more than 91.60% of the embryophyte Benchmarking Uni-
versal Single-Copy Orthologs (BUSCOs) were present in each genome
(Supplementary Table 2). The long terminal repeat (LTR) assembly
index (LAI) scores all exceeded 24 and thus met the criterion standard®
(Table 1). Further evaluation using Merqury showed a quality value
(QV) over 40 for our ten assemblies, which exceeded the Vertebrate
Genomes Project standard of QV40% (Supplementary Table 2). These
results demonstrate the accuracy, completeness and contiguity of
the ten pearl millet genome assemblies. In addition, we predicted an
average of 36,847 gene models for each assembly, among which more
than 99.30% showed matches with the known functional database
(Supplementary Table 2). Transposable elements (TEs) constituted
71.58% of each genome, ranging from 70.44%t0 72.62% (Supplementary
Tables 2-4 and Supplementary Note 1).

We constructed a pan-genome using 11 pearl millet assemblies,
including the previously released genome’. Among the total gene
family sets, 14,608 core gene families were obtained across all acces-
sions, accounting for more than half (46.60-52.08%) of the total sets;
dispensable families (39.75-49.94%), in which genes were present in
2-10accessions, constituted the second-largest proportion. The small-
est proportion consisted of private gene sets, which were only detected
inone genome and accounted for 0.73-8.73% of the total sets (Fig. 1c).

To further evaluate the representativeness of the pan-genome, we
compared the distribution of SNPs between the 11 accessions and the
aforementioned 394 core lines. They displayed a similar patternacross
the genome and showed strong significant correlations in SNP density,
nucleotide diversity (ir) and synonymous (ds) and nonsynonymous (dy)
substitution rates (SNP density, rho = 0.95; i, rho = 0.89; ds, rho = 0.98;
dy, rho=0.98) (Extended Data Fig. 3a,b). The number of added gene
families declined quickly, with only 301 (0.64% of all gene families; 301
outof47,344) additional gene families being identified when the eleventh
accessionwas included (Extended Data Fig. 3c,d). Moreover, the acces-
sions used to generate the pan-genome showed a similar Shannon’s diver-
sityindex (H) and mto the 394 accessions (H: 8.07782 versus 8.03436; i
0.0001327 versus 0.0001209). Ingeneral, theseresults suggest that the
pan-genome accessions are genetically diverse and representative of
the diversities of the pearl millet population. We further observed that
core genes were more functionally conserved and enriched in general
biological processes than the dispensable and private genes, as with
previous findings in other plants”*** (Fig. 1d, Extended Data Fig. 4 and
Supplementary Note 2). In total, we built a high-quality pan-genome
resource that will contribute to pearl milletimprovement.

Graph-based genome and SV identification

Atotal of 744,364 SVs were identified by realigning the assemblies
against the PI537069 reference genome as this accession comes from
the geographical origin (Northwest Africa) of pearl millet* and has a
relatively high assembly quality (Table 1and Supplementary Table 2).
These SVs included 622,584 presence and absence variations (PAVs)
consisting 0f 306,679 presence and 315,905 absence cases, 2,177 inver-
sions (INVs), 91,852 copy number variations (CNVs) and 27,751 translo-
cations (TRANS) (Fig. 2a and Supplementary Table 5). Approximately
37.94% of PAVs were less than2 kb inlength, INVs (68.11%) were concen-
trated within 100 kb, CNVs (62.53%) were enriched in the size range of
less than 4 kb and most TRANS (91.10%) were less than 20 kb in length
(Extended DataFig. 5a).

To build the graph-based genome, the SVs from all the pearl mil-
letaccessions were merged toyield 424,085 non-redundant SVs. PAVs
accounted for 74.70% of private SVs present in only one accession but
constituted arelatively high proportion (87.51%) of the non-private
SVs. Similar trends were observed for CNVs and TRANS (Fig. 2b). We
observed that the SVswere enriched inrepeat regions (Fig. 2c). Across
these genomes, 37-44% of SVs overlapped with genic and flanking
regions (5 kb) (Fig. 2d), suggesting potential roles of SVsin generegula-
tion. In addition, the SVs and graph-based genome were validated by
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Fig.1| Ten high-quality assembled genomes and pan-genome construction
in pearl millet. a, The pearl millet accessions are derived from geographically
representative regions (PmiG: Tift 22D2B1-P1-P5). The geographical map

was adapted from the one provided by the NASA Earth Observatory (https://
visibleearth.nasa.gov/images/147190/explorer-base-map/147191w/). b, Synteny
plotacross the ten genomes. ¢, Core gene clusters and pan-genome of pearl
millet. The histogramillustrates the core gene clusters (presentin all genomes),

dispensable gene clusters (present in 2-10 genomes) and private gene clusters
(presentin one genome). d, Composition of gene and nucleotide diversity (pi) in
core, dispensable and private genes. The center line represents the median; the
box limits represent the upper and lower quartiles; the whiskers represent
1.5times the interquartile range (IQR). Significant differences were tested by
two-tailed t-test (**P < 0.01, **P < 0.0005).

evaluating the performances of different SV calling tools, by conduct-
ing PCR and checking read coverage over the possible variant paths
(Extended DataFig. 5b, Supplementary Tables 6-8 and Supplementary
Note 3). Overall, this graph-based pan-genome is an essential genomic
resource supporting the study of SVs and will provide a prominent
reference for the discovery of SVsin pearl millet populations.

Expansion of the RWP-RK transcription factor family
contributes to heat tolerance

Pearl millet was shown to be very tolerant to high-temperature condi-
tionsbased onour phenotypicand physiological data(Fig.3a).Inparticu-
lar, the leaves of pearl millet seedlings only showed wilting after 21 d of
heattreatment (40 °Cinlight, 35 °Cin darkness) (Extended Data Fig. 6a).
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Table 1| Summary of genome assembly and annotation

Accession no. ContigN50 Scaffold N50  Contig length Scaffold Chromosome Repeatratio  Geneno. LAI
(Mb) (Mb) (Mb) length (Mb) anchoring rate (%) (%)
PI537069 61.62 266.84 1,908.34 1,913.80 96.68 71.58 35,486 27.90
PI521612 5.40 278.46 1,891.01 1,891.08 95.98 70.44 37,906 26.15
P1587025 5.15 25750 1,911.08 1.91.21 94.39 71.58 38,076 27.38
P1583800 3.10 261.45 1,937.87 1,937.98 97.52 72.21 35,826 27.53
Tifleaf3 25.57 27917 1,950.21 1,950.23 95.00 71.30 37,280 26.22
P1526529 7918 286.98 1,974.39 1,974.39 98.48 71.88 36,451 26.53
PI186338 3.80 284.64 1,999.44 1,999.53 95.30 72.63 36,343 26.47
PI343841 510 263.66 1,962.06 1,962.24 94.23 7217 36,312 26.76
P1527388 3.10 193.80 1,937.79 1,938.01 94.51 71.02 37,866 2779
PI1250656 4.20 276.63 1,895.51 1,895.77 951 70.72 36,923 2474
Tift 23D2B1-P1-P5/PmiG’ 0.02 0.88 1,556.18 1,793.24 NA 77.20 38,579 2.09
NA, not applicable.
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Fig. 2 |Identification of SVs. a, Composition of SVs in each genome. b, Comparisons of the proportions of private (present in only one accession) and non-private SVs
(presentin at least two accessions). ¢, Numbers of SVs in the repeat and non-repeat regions of each genome. d, Numbers of SVs overlapping with different genomic

featuresin each genome.

The relative water content, relative electrical conductivity (REC) and
malondialdehyde (MDA) content did not change significantly (P> 0.05)
until 21 d of heat treatment (Extended Data Fig. 6b,c), while in maize
leaves, the relative water content decreased and the MDA content
increased significantly under 4 h of heat stress (40 °C)*. The slower
responses might indicate better heat tolerance in pearl millet than
in maize.

To dissect the molecular mechanism underlying heat tolerance
in pearl millet, we first conducted comparative genomic analyses,
whichrevealed that expanded, positively selected and species-specific
gene families, as well as genes located near recently expanded LTR
TEs (LTRs) were enriched in stress-related pathways in pearl millet
(Extended DataFigs.2gand 7a,b and Supplementary Note 4). Notably,
onetranscription factor family (RWP-RK) wasidentified as expanding
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Fig.3|Expansion of the RWP-RK transcription factor family contributes

to heat tolerance. a, Comparison of MDA levels between the control (CK) and
heat treatment (H) groups of pearl millet (Tifleaf3). The error bars indicate the
mean +s.d.; n =3 biological replicates. Significant differences were tested by
two-tailed t-test (**P < 0.01, ***P < 0.0005; NS, not significant). b, Proportion

of RWP-RK transcription factor family members among all the genes in the 11
pearl millet genomes and ten other genomes. Ath, Arabidopsis thaliana; Bdi,
Brachypodium distachyon; Can, Capsicum annuum; Dex, Digitaria exilis; Dol,
Dichanthelium oligosanthes; Eco, Eleusine coracana; Hvu, Hordeum vulgare; Mes,
Manihot esculenta; Osa, O. sativa; Oth, Oropetium thomaeum; Pg|, P. glaucum
(pearl millet); Pha, Panicum hallii; Pmi, Panicum miliaceum; Sbi, Sorghum bicolor;
Sit, Setaria italica; Sof, Saccharum officinarum; Svi, Setaria viridis; Zma,

Z.mays. ¢, Comparisons of RWP-RK gene numbers overlapping with intact

LTR TEs among pearl millet, rice, sorghum and maize. Significant differences

were tested by one-tailed binomial test (*P < 0.05, **P < 0.01, ***P < 0.0005).

d, Estimated insertion times of LTR TEs encompassing the RWP-RK genes shown
inc. The center line represents the median; the box limits represent the upper
and lower quartiles; the whiskers represent 1.5 times the IQR; the dots represent
the outliers. e, Phenotypes of two transgenic lines and a control (WT) after 72 h
of heat treatment. f, POD and SOD activity after 12 h of heat treatment and MDA
content after 72 h of heat treatment in transgenic lines and WT plants. The error
bars represent the mean * s.d.; n = 3 biological replicates. Significant differences
were tested using a two-tailed ¢-test (*P < 0.05,**P< 0.01, ***P < 0.0005). g, Dual
luciferase assays (firefly luciferase to Renilla luciferase ratio) were applied to
verify that PMFOG00024.1 (RWP) could transactivate PMA2G00541.1 (541) and
PMA6G02031.1(2031). The error bars represent the mean + s.d.; n = 3 biological
replicates. Significant differences were tested using a two-tailed t-test and are
shown as Pvalues.
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inthe genomes of the 11 pearl millet accessions (Fig. 3b, Supplementary
Fig.3 and Supplementary Table 9). This family responded to biotic or
abiotic stresses”*°, supporting the potential roles of its members in
heat tolerance. We investigated LTRs located near the RWP-RK genes
and foundthatearly LTR expansion might be associated with RWP-RK
transcription factor family expansion and probably caused increases
in specific RWP-RK genes in pearl millet (Fig. 3c,d, Extended Data
Fig. 7c, Supplementary Fig. 3 and Supplementary Note 5).

To further characterize the roles of RWP-RK genes in response
to heat stress, we sequenced leaf and root transcriptomes after
high-temperature treatment (Supplementary Table 3). A total of ten
differentially expressed RWP-RK genes were predicted, including two
specific and eight nonspecific transcription factors (Extended Data
Fig.7d, Supplementary Table 10 and Supplementary Note 5). When over-
expressingan RWP-RK (PMFOG00024.1) inrice, we found that the leaves
of the transgenic lines (RWP-RKox) were less withered than the leaves
of wild-type (WT) plants under high temperature (Fig. 3e and Extended
DataFig. 7e). The RWP-RKox plants showed significantly higher peroxi-
dase (POD) and superoxide dismutase (SOD) activities and lower MDA
contents after exposure to heat stress conditions than the WT plants
(Fig. 3f), which provides a potential avenue for the future molecular
breeding of heat-tolerant crops. We also characterized this RWP-RK
transcription factorina coregulated network and used a dual luciferase
assays to verify that this transcription factor could transactivate two
stress-related genes, PMA2G00541.1 and PMA6G02031.1 (Fig. 3g, Sup-
plementary Table 11and Supplementary Note 5). Taken together, these
resultsindicate that the expansion of the RWP-RK transcription factor
family has potentially contributed to heat tolerance in pearl millet.

RWP-RK coregulates a fast heat response with ER-related
genes

To further dissect the molecular mechanism underlying heat toler-
ance in pearl millet, we sequenced the leaf and root transcriptomes
of Tifleaf3 under high-temperature treatments at eight time points
(dataset A) and selected six accessions to perform leaf transcriptome
sequencing under stress for 1 and 24 h (dataset B; Supplementary
Table 3). Based on gene functional enrichment analyses, the two tran-
scriptome datasetsrevealed differentially expressed genes (DEGs) that
were enriched mainly in ER-related pathways involved in the repair and
elimination of misfolded proteins (Fig. 4a, Extended Data Fig. 8a,b,
Supplementary Table12 and Supplementary Note 6.1). We analyzed the
RNAsequencing (RNA-seq) data from maize® and rice** and identified
greater proportions of upregulated ER-related and heat shock factor
(HSF) (https://www.ebi.ac.uk/interpro/entry/pfam/PF00447/) genes
in pearl millet than in these two crops under heat treatment (1 h and
24 h; Fig. 4b).

Inaddition, the aforementioned ten RWP-RK genes exhibited sig-
nificant correlations (Pearson’srho > 0.6, P< 0.05) withmost ER-related
genes (60.2%; 325 out of 540) and HSF genes (50%; 16 out of 32) in
response to heat stress (Supplementary Table 12), suggesting that
RWP-RK genes might coregulate the heat tolerance of pearl millet with
some ER-related genes and HSF genes. We further predicted potential
RWP-RK binding sites upstream of these genes and found that higher
proportions of ER-related genes had binding sites in pearl millet thanin
maize andrice (Extended DataFig. 8c). Thetransient coexpressionof the
aforementioned RWP-RK (PMFOG00024.1) and two ER-related genes,
encoding an immunoglobulin protein (BiP) (https://www.kegg.jp/
entry/K09490; PMA2G00107.1) and the oligosaccharyltransferase
complex (OST) (https://www.kegg.jp/entry/K12669; PMA4G03758.1),
further confirming that RWP-RK functions at least partially by transac-
tivating ER-related genes (Fig. 4¢). Collectively, these results indicate
that pearl millet may quickly respond to heat stress at the gene tran-
scription level via the coregulation of RWP-RK genes with HSF genes
and ER-related genes to eliminate proteins with temperature-induced
misfolding (Fig. 4d).

Several focal SVs are associated with heat-related gene

expression
Previous reports revealed that SVs could affect the transcription of
nearby genes'®"”**; our data showed that nearly half of SVs were near

genes (Fig. 2d). Therefore, we investigated the influence of SVs on the
expression of nearby genes that responded to heat stress. The results
showed that SVs were enriched in nearby genes showing changes in
gene expression in all accessions and that genes located near SVs are
probably more responsive to heat stress (Fig. 5a,b, Extended Data
Fig. 9a-d and Supplementary Note 7). We further validated two SVs
that could cause transcriptional changes in nearby genes via a tran-
sient gene expression experiment in tobacco (Nicotiana tabacum)
leaves and used PCR to confirm these two SVs (Fig. 5c-e, Extended Data
Fig.9e-hand Supplementary Note 8).

To identify potential SVs related to transcriptional changes of
particular heat-related genes, we distinguished four HR (Tifleaf3,
PI1583800, P1526529 and PI587025) and two HS (P1521612 and P1537069)
accessions based on the distinct phenotypes and physiological indi-
cators of these accessions when grown under heat treatment (Fig. 5f,
Extended Data Fig. 9i,j and Supplementary Note 6.2). Considering
that different breeds in the same group may use different genes to
respond to heat stress, we focused on 2,354 SVs present in only three
or all four HR accessions and nearby 2,769 genes. We designed an
analysis pipeline to screen out 44 candidate SVs potentially related to
the expression changes of 34 heat-related genes (Extended Data Fig.
9k, Supplementary Table 13 and Supplementary Note 7). Almost all
these genes (33 out of 34) were responsive to heat stress based on our
RNA-seq data and 11 genes (32.35%) were included in ER-related gene
pathways (Supplementary Table 14), suggesting potential contribu-
tions of the neighboring SVs to the HSR. Notably, we found four fixed
SVsbetweenthe HR and HS groupsin the vicinity of PMA1G04478.1and
PMA7G02533.1 encoding two HSP70 proteins (https:/www.kegg.jp/
entry/K03283) and PMA5G02838.1 encoding one heat shock
chaperonin-binding protein, which were associated with differ-
ences in gene expression in the HR group than those in the HS group
(Fig. 5g and Extended Data Fig. 91). Interestingly, PMA1G04478.1 and
PMAS5G02838.1inthe ER-related pathway were also identified and the
mainresponse of pearl millet to heat stress was found in this pathway
(Fig.5g and Supplementary Tables13 and 14). In general, the transcrip-
tion levels of these three genes, which have essential roles in the HSR,
were probably affected by their nearby SVs, further demonstrating
that these SVs might have important roles in the heat tolerance of
pearl millet.

Contributions of SVs to heat adaptation and domestication

To characterize the SVs underlying heat tolerance during adaptationin
apearlmillet population (SRP063925)’, we genotyped SVs by mapping
allof theresequences to our graph-based pan-genome and identified a
total of 124,532 SVs. We focused on the SVs with population frequency
differences (fdSVs) between accessions from tropical and temperate
zones by applying a sliding window methodology** (Supplementary
Note 7). In total, 1,471 genes were annotated against 269 selection
sweep regions harboring 4,411 fdSVs (Fig. 6a). Interestingly, we found
that 27 of these genes were significantly (P = 0.038; chi-squared test)
and functionally annotated as belonging to ER-related pathways (that
is, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
ko04141) (Supplementary Tables15and 16). From the 591 genes whose
expressionwas previously shown to be associated with SVs (Supplemen-
tary Table 13), we identified 25 genes near 27 fdSVs that were present
only in the HR group; their expression levels were significantly cor-
related with the presence of f{dSVs (Supplementary Table 17). Notably,
one of the fdSVs was positioned close to (360 bp) and upstream of
PMA2G02653.1, a gene encoding a protein in the zinc finger family
that has arole in the ER system® . This gene was enriched in Gene
Ontology (GO) terms associated with the response to temperature
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Fig. 4| Transcriptome analyses reveal that pearl millet responds to heat
stress via ER-related pathways. a, Functional enrichment of DEGs coexisting
inTifleaf3 under high temperature stress (40 °C and 35 °C) at eight time points
(1-144 h; dataset Ain Supplementary Table 3) and in six accessions (P1521612,
P1537069, P1526529, PI583800, P1587025 and Tifleaf3) under high temperature
stress (45 °Cunder light and 40 °Cin darkness) for 1hand 24 h (dataset Bin
Supplementary Table 3). b, Comparison of the proportions of upregulated ER-
related and HSF genes after 1 h and 24 h of heat treatment in pearl millet, maize
andrice. Heat-resistant (HR) and heat-susceptible (HS) rice samples, respectively.
¢, Dualluciferase assays were applied to verify that PMFOG00024.1 (RWP) could
transactivate the PMA2G00107.1 (107) and PMA4G03758.1 (3758) genes. The error
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bars represent the mean + s.d.; n =3 biological replicates. Significant

differences were tested using a two-tailed ¢-test and are shown as P values.

d, Proposed activation network of pearl millet in response to growth under heat
stress. After 1 h of high-temperature stress in six pearl millet accessions, many
misfolded proteins activated the expression of degradation-related genes in

the ER, such as genes encoding recognition proteins, including calnexin (CNX)
and calreticulin (CRT), and degradation-related proteins, including heat shock
proteins (HSPs), thereby correcting or degrading misfolded proteins to maintain
protein homeostasis in cells. Inaddition, the HSF and RWP-RK genes potentially
participate in this process to coregulate HSPgenes.

stress (GO: 0050826) and was also responsive to heat stress (Extended
DataFig.10a). We further identified this fdSV as presentin accessions
that were preferentially located in higher-latitude regions (Fig. 6a and

Supplementary Note 7). In general, these results revealed the contri-
butions of SVs possibly associated with the ER system to heat stress
adaptation.
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Fig. 5| Impact of SVs on genes and their contributions to heat tolerance in
pearlmillet. a, Enrichment of SVs near genes with altered expression in each
accession relative to PI537069. The asterisk indicates significance (g < 0.05). DEL,
deletion; Dup, duplication; INS, insertion. b, Proportions of DEGs among total
genes overlapping with SVs (SV genes) and those not overlapping with SVs (nSV
genes) inleaf tissue under heat treatment. ¢, Deletion near PMASG04793.1 with
expression changes in different accessions. TPM, transcripts per million. +SV

and -SV: accessions with and without SVs, respectively. The error bars indicate the
mean +s.d.; n =3 biological replicates. d,e, Transformation of the PMA5G04793.1
promoter in tobacco leaves. d, Glucuronidase (GUS) reporter gene expression
observed by histochemical staining. e, Quantitative detection of the GUS enzyme

inleaves inoculated with different recombinant vectors at different time points
using a microplate plate-based GUS fluorescence assay. The error bars indicate the
mean +s.d.; n =3 biological replicates. Significant differences were tested using
atwo-tailed t-test (***P < 0.0005). f, Phenotypic comparison of six accessions
under heat treatment for 96 h. r1-r4: Tifleaf3, PI583800, P1526529 and PI1587025
(HRgroup). sland s2: P1521612 and P1537069 (HS group). The HS plants were more
wilted than the HR plants. g, Three examples showing the presence of fixed SVs in
the HR groups (=3 accessions) near three heat-related protein genes. Descriptive
gene models are presented below the bar charts. The error barsindicate the

mean £ s.d.; n =3 biological replicates.

To characterize the domestication of pearl millet with a shift
toward higher heat tolerance, we used the above pearl millet popula-
tion (SRP063925) to identify 113 selection sweep regions harboring
3,952 fdSVs overlapping with 1,285 genes between the landrace and
improved cultivars relative to the wild accessions (Extended Data

Fig.10cand Supplementary Table 1). Functional enrichment analyses
showed that these genes were associated mainly with stress-related
GO terms, including temperature, abiotic stimulus and isoprenoid
biosynthetic process (Extended Data Fig. 10c). We also found that
79.3% of those genes (1,019 out of 1,285) exhibited transcriptional
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changes (Supplementary Table 18), indicating that fdSVs potentially
influence domestication genes under heat stress. In addition, 17 of
these genes near 16 fdSVs were present only in the HR group and the
fdSVs were significantly correlated with their gene expression levels;
among these genes, PMA2G02653.1 was also related to temperature
adaptation (Fig. 6a).

Additionally, we found that a 716-bp insertion (SV) was present
in a higher proportion of the wild accessions than the landrace ones
and improved cultivars (Fig. 6b). This insertion was positioned 2.1 kb
upstream of PMA5G03691.1, which encodes a coiled-coil 90B-like pro-
tein thatis probably responsible for pollen germination and is associ-
ated with the grain number per panicle (GNP) trait. The presence of

thisinsertion was possibly correlated with heat-induced gene expres-
sion (Extended Data Fig. 10d). We then conducted a genome-wide
association study (GWAS) examining the associations of the 124,532
PAVs and 1,455,924 SNPs with GNP in a population reported by Varsh-
ney etal.” (Supplementary Table 19). An association peak on chromo-
some 5 showed an overlap between PAVs and SNPs. This quantitative
trait locus corresponds to grain number’. In our study, we found
PMAS5G03691.1 and an insertion in the close vicinity of this quantita-
tive trait locus (Fig. 6¢, Supplementary Table 19 and Supplementary
Note 7). We next observed this insertion in 113 accessions with lower
GNP values than 116 accessions without the SV (Fig. 6¢). These results
suggested that this insertion was probably under positive selection
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Fig.7| A proposed mechanism by which heat tolerance is integrally related
to the transport system of the ER. After heat stress (H) for 21 d, only asmall
proportion of leaves exhibited wilting relative to the control (CK) group; leaves
showed physiological changes (MDA) for up to 21 d, suggesting that pearl millet
exhibits strong heat resistance. Significant differences were tested using a two-
tailed t-test (**P < 0.01). We leveraged multi-omics analyses to reveal a possible
mechanism of heat tolerance in the ER transport system: (1) compared with
maize and rice, pearl millet showed a higher proportion of ER-related genes that
were differentially expressed, indicating a quicker response to heat stress in
this system; (2) this heat stress led to the production of misfolded proteins that
could berecognized and degraded via the cooperation of ER-related proteins
suchas CRT, CNX, BiP, NEF, PDA6 and HSP. HSF genes might be involved in the

heat response because their expression is upregulated and they can coregulate
HSPgenes**, SVs surrounding 11 ER-related genes probably contributed to
this response. For instance, one SV was associated with the expression of an
ER-related gene, HSP70, which plays arole in the degradation of misfolded
proteins. Additionally, 27 genes enriched in the ER system were located in regions
with differentiated SV distributions between two populations in temperate
and tropical zones; (3) furthermore, an RWP-RK gene (PMFOG00024.1) from

an expanded transcription factor family was confirmed as a positive regulator
involved in heat resistance and was coregulated by ER-related and HSF genes.
We finally used dual luciferase assays to confirm that this PMFOG00024.1 gene
could transactivate genes encoding ER-related BiP (PMA2G00107.1) and OST
(PMA4GO03758.1).
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during domestication and influenced the responsiveness of nearby
genes to heat, possibly contributing to seed production in pearl mil-
let grown at higher temperatures. Furthermore, we identified a total
of 142 PAVs that were each associated with one or more traits (20
traitsin total), which might provide insights into the contributions of
these SVs to pearl millet molecular breeding (Supplementary Table 19
and Supplementary Note 7). Collectively, these results demonstrate
the utility of pearl millet graph-based pan-genome analysis for the
identification of both heat tolerance adaptation and its relationship
to domestication.

Resistance to heat in pearl millet depends on the ER system

We performed integrated multi-omics analyses supplemented with
cis-genetic functional verification to propose a possible mechanism
by which the superior heat tolerance of pearl millet is related to the
expansion and altered expression of genes involved in the ER system
(Fig. 7). In particular, the ER system showed a quicker response to
hightemperature in pearl millet thanin maize and rice. Abundant evi-
dence has shown that SVs participate in the heat tolerance response
by affecting gene regulation; for example, SVs between HR and HS
materials led to differential expression levels of 11 ER-related genes.
Several other distinctly differentiated SVsin ER-related genes were also
associated with the heat stress adaptation of pearl millet populations
at different temperatures. Moreover, by means of functional analy-
sis, we confirmed that one gene (PMFOG00024.1) from an expanded
RWP-RK transcription factor family acted as a positive regulator of heat
resistance; this transcriptionfactor also transactivated one ER-related
gene. These observations indicate that SVs and RWP-RK genes may
coregulate the quick response to heat stress with ER-related genes
in pearl millet.

Discussion

Pearlmilletis anideal model forinvestigating the mechanisms underly-
ing plant heat resistance’. We identified distinctly differentiated SVsin
ER-related genes that were associated with the heat stress adaptation of
pearl millet populations at different temperatures (Fig. 6a); however,
we did not find genesin SNP-based selection sweep regions that showed
significant enrichment in ER-related pathways. These findings indi-
cate that SV-based population analyses can capture genetic variations
complementary to SNPs, providing additional information about the
diversity losses caused by population bottlenecks during plant adap-
tation®®. In addition, the expansion of RWP-RK transcription factors
was likely related to LTR and these factors coregulated heat tolerance
with ER-related and heat stress-related genes (Figs. 3 and 4). RWP-RK
transcription factors have animportantrolein the nitrogen starvation
response and gametophyte development in plants**°. However, no
heat tolerance-related functions of these transcription factors have
beenreported. Our findings expand the possible functions of RWP-RK
transcription factors and illustrate a possible diversification in which
this family of transcription factorsis responsible for multiple stress con-
ditionresponsesin plants. This finding supports a previous hypothesis
that pearl millet probably includes abundant heat tolerance-related
genetic resources®.

The graph-based pan-genome resource offers several potential
tools to improve the breeding process in pearl millet. We developed
acomprehensive SV map of pearl millet to identify signals associated
with phenotypes (thatis, GNP) (Fig. 6¢), which enables us to investigate
potential mechanisms influencing nearby genes that are challenging to
detectbased only on SNP genotyping. This pan-genome also provides
anew window for identifying evolutionary processes, such as the for-
mation of adaptative SVs, to elucidate demographic and selection pro-
cessesin pearlmillet. The dispensable genome within the pan-genome
resource offers a pathway for identifying genes associated with traits
such as abiotic stress resistance or production, which would benefit
the selection of suitable materials for use as breeding targets in pearl

millet. In our pan-genome, PmiG showed a higher ratio of private gene
families relative to the other assemblies (Fig. 1c), possibly caused by
therelatively fragmented sequences generated by previous short-read
sequencing or assembly techniques™*~**, A similar result was reported
in a soybean pan-genome study”. The relatively lower contig N50
value intuitively suggested that the PmiG genome sequence is more
fragmented (Table 1), which would lead to a lower average length of
genes and coding sequences and a higher proportion of short genes
(<1kb) (Extended Data Fig. 4c,d). Thus, fragmentation of assembled
sequences would resultinincomplete prediction of genes, potentially
contributingto the private gene setin the PmiG. Nonetheless, the PmiG,
as the first published pearl millet genome, has been widely used as a
reference genome in the pearl millet community*****, Including it
in our pan-genome research will help to refer to the basis of previous
research and provide a smooth transition to the era of high-quality
pearl millet genome research.

In conclusion, our study uses a pan-genome approach coupled
with multi-omics to comprehensively investigate plant response
mechanisms to heat stress. This work provides an excellent reference
for future studies on stress tolerance, especially in non-model plants.
Our study also offers an approach for breeding crop varieties with
enhanced tolerance to various stresses that can cope with the diverse
challenges imposed by the changing climate.
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Methods

Sampling and sequencing

Ten pearl millet accessions (P1537069, P1521612, P1526529, P1587025,
PI583800, P1343841, P1186338, P1250656, P1527388 and Tifleaf3) were
obtained as representative plants from different geographical regions.
All ten accessions were planted in a greenhouse at a density of three
plants per pot (filled with nutrient soil), including nine plants of each
accession, and grown at atemperature of 26 °C during the light period
(14 h of light) and 22 °C during the dark period (10 h of darkness).
Thirteen-week-old leaves were collected and immediately frozen in
liquid nitrogen for the extraction of genomic DNA using a DNAsecure
Plant Kit (TIANGEN). Library construction and Illlumina, Hi-C, PacBio
and Bionano sequencing were performed at Novogene (Supplemen-
tary Note1l).

Genome survey

The genome size of pearl millet was estimated using k-mer frequency
analysis based on the Lander-Waterman algorithm*. We divided the
total length of sequence reads by the sequencing depth represented
by the peak value of the frequency curve. The following formula was
used to estimate genome size: (N x (L — k+1) - B)/D = G, where N is
the total number of sequence reads, L is the average length of the
sequence reads, k is the k-mer length (17 bp), B is the total number of
low-frequency k-mers (frequency < lin this analysis), Gis the genome
size and D is the overall estimated depth based on the k-mer distribu-
tion*®, Additionally, flow cytometry was used to confirm the estimated
genomessize according to areported method* witha BD FACSCalibur
flow cytometer and the fluorochrome propidiumiodide.

Initial assembly

The PacBio HiFi reads were used to assemble the initial contigs in the
Hifiasm (v.0.13-r308)°° package with default parameters. The Pruge_
haplotig (v.1.1.0)*' tool was used to process genomic heterozygous
regions to remove redundancy in the genomes using default param-
eters with several exceptions: -a 50.

Scaffolding with Bionano optical maps

Thefiltered raw DNA moleculesin BNX format were aligned, clustered
and assembled into a Bionano optical map using the Bionano Genom-
ics assembly pipeline. Then, a BNX file recorded the basic labeling
and DNA length information was converted with the AutoDetect in
Bionano Solve package (v3.5.1) (https://bionanogenomics.com/sup-
port/software-downloads/). Theinitial assemblies were aligned to the
Bionano dataand then analyzed with RefAligner in Bionano Solve pack-
age (v3.5.1). Thealignments were visualized withasnapshotin IrysView
inBionano Solve package (v3.5.1). Finally, genome maps were combined
with the initial assembly to produce hybrid scaffold genome maps
using the Bionano Solve package (v.3.5.1) with the parameters-B1-N1.

Pseudochromosome construction

Linkage information for the scaffold and initial assembly was
obtained by aligning high-quality Hi-C data to the preceding assem-
blies using the Burrows-Wheeler Aligner (BWA) software (v.0.7.8)*~.
Chromosome-scale scaffolds were anchored based on linkage infor-
mation, restriction enzyme sites and the string graph formulation
using the ALLHIC (v.0.9.8)* package with the following parameters: -K
7 -minREs 50--maxlinkdensity 3--NonInformativeRatio 0. Placement
and orientation errors showing obvious discrete chromatininteraction
patterns were adjusted manually. For those accessions without Hi-C
data, we used collinearity with the PI537069 assembly for clustering
and orientation to generate chromosome-level assemblies.

Genome assessment
To evaluate the assembly quality of the genomes, BUSCO (v.4.1.2; http://
busco.ezlab.org/)** and the CEGMA (v.2.5) (http://korflab.ucdavis.

edu/dataseda/cegma/)> were used to check the completeness of the
genome assembly or annotation. The draft assemblies were further
evaluated by mapping the high-quality lllumina paired-end reads to
the genome assembly using the BWA-MEM (v.0.7.8)** algorithm. The
quality of the genome assemblies was further evaluated using LTR TE
completeness based on the LAl tool wrapped in LTR _retriever (v.2.8)*
and using Merqury (v.1.3)*?with the default parameters.

Annotation of repetitive sequences

Transposons were annotated by combining two strategies, that is,
homologand de novo predictions. For the homology-based approach,
the Repbase TE library*® and the TE protein database (http://www.
repeatmasker.org/cgi-bin/RepeatProteinMaskRequest) were used
to mask TEs with the RepeatMasker (v.4.0.5)”” and RepeatProtein-
Mask (v.4.0.5)* tools. Under the de novo-based method, LTR_FINDER
(v.1.0.7) (https://github.com/xzhub/LTR_Finder)®, PILER (v.1.0)
(https://www.drive5.com/piler/)*’, RepeatScout (v.1.0.5) (https://
github.com/mmcco/RepeatScout)®® and RepeatModeler (v.1.0.8)
(http://www.repeatmasker.org/RepeatModeler.html)® were used to
build a de novo repeat library. This new library was used to mask TEs
with the RepeatMasker tool”’. We estimated the insertion times of the
intact LTR retrotransposons. Sequences from the 5’ and 3’ LTRs were
aligned with MUSCLE®? (v.3.8.31). Nucleotide variations (A) in the 5
and 3’ ends of intact LTR retrotransposons were calculated and DNA
substitution rates (K) were calculated using K = —0.75In (1 - 41/3). The
insertion time of these LTR retrotransposons was estimated based on
T=K/2r,whereris1.3 x 1078 persite and per year®.

Annotation of gene structure

Gene annotation was conducted by combining de novo-, homolog-and
transcriptome-based predictions. For the homolog-based approach,
we downloaded homologous proteins from the A. thaliana, Z. mays,
S.bicolor, O.sativa, S. italica and pearl millet genomes (Phytozome 13,
https://phytozome.jgi.doe.gov/pz/portal.html; NCBI, https://www.
ncbi.nlm.nih.gov/) and aligned them to the pearl millet genome with
Tblastn (v.2.2.26)** using an expected value of 1 x 107, Solar (v.0.9.6)
was used to combine the BLAST hits (Homo-set), which were used
to predict the exact gene structures of the corresponding genomic
regions with GeneWise (v.2.4.1)% (https://www.ebi.ac.uk/Tools/psa/
genewise). For the transcriptome-based approach, RNA-seq data
from Illumina were mapped to the assembled genome with TopHat
(v.2.0.13)%, followed by Cufflinks (v.2.1.1)°%. Inaddition, Trinity (v.2.1.1)’
was used to assemble the RNA-seq data and its output was used to
create pseudo-expressed sequence tags, which were then mapped to
the assembly. Gene models were predicted by using the Program to
Assemble Spliced Alignments (PASA) genome annotation tool’. This
gene set was denoted as the PASA-T-set and was used to train ab initio
gene prediction programs. For the de novo-based approach, five ab
initio gene prediction programs, including AUGUSTUS (v.3.2.3) (http://
augustus.gobics.de/)”, GENSCAN (v.1.0) (http://genes.mit.edu/GENS-
CAN.html)”?, GlimmerHMM (v.3.0.1) (http://ccb.jhu.edu/software/glim-
merhmm/)”, geneid (v.1.4) (http://genome.crg.es/software/geneid/)™
and SNAP (v.2013.11.29) (http://korflab.ucdavis.edu/software.html)”™
were used to predict coding regions from the repeat-masked genome.
Finally, EVidenceModeler (v.1.1.1)"* was used to combine all gene model
evidence obtained from these three strategies.

Functional annotation of protein-coding genes

Two protein sequence databases, Swiss-Prot (http://web.expasy.
org/docs/swiss-prot_guideline.html) and the NR Protein Sequence
database (ftp://ftp.ncbi.nih.gov/blast/db/) were used to annotate
protein-coding genes. Protein domains were predicted using Inter-
ProScan (v.4.8) and HMMER (v.3.1) (http://www.hmmer.org/) based
on the InterPro (v.32.0) (http://www.ebi.ac.uk/interpro/) and Pfam
(v.27.0) (https://pfam-legacy.xfam.org/) databases, respectively’” %,
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These two databases provide a portal for obtaining GO terms
(http://geneontology.org/ http://www.geneontology.org/page/
go-database)®. The pathways of the genes were identified via BLAST
searches against the KEGG database (v.53) (http://www.kegg.jp/kegg/
keggl.html)®** with an expected value cutoff of1x 107,

Pan-genome construction

We constructed a pan-genome using the 11 pearl millet assemblies. The
coreanddispensable gene setsamong the 11 pearl millet genomes were
estimated based on gene family clustering using OrthoFinder (v.2.3.1)%.
All protein sequences were subjected to homologous searches using
BLASTPwithan expected value of 1x 1075, Protein sequences were clus-
tered into paralogous and orthologous sequences using OrthoFinder
with aninflation parameter of 1.5.

SVidentification

To build a genetic variance atlas for the 11 pearl millet genomes, we
aligned the other ten genomes to the PI537069 reference genome using
MUMmer (v.4.0.0)%*. The alignment of the genomes was performed
using NUCmer® (--c 1000--maxgap=500) and the alignment block
filter was implemented using a delta filter in one-to-one alignment
mode (-1). Blocks longer than1,000 bp were used for further analysis.
We used the SV function of the MUMmer (SVMU) pipeline to automate
PAV discovery by parsing the results of NUCmer. From the SVMU results,
SV-basedinsertions or deletions (with the tag INS or DEL) were treated
as PAVs and CNVs were treated as CNVs. Inversion events (referring to
SVs more than 1 kb in length) were identified by SVMU. SyRI (v.1.6.3)
(https://github.com/schneebergerlab/syri)® was used to identify trans-
location regions. We also used PI537069 as a reference to construct a
graph-based genome with the vg tool (v.1.25.0) (https://github.com/
vgteam/vg)®. To genotype the population SVs, the lllumina short
reads (SRP063925) of each accession were mapped to the graph-based
genome using the vg tool with default parameters.

Transcription factor family identification and analysis

To identify and compare transcription factor families in pearl millet
and other species, we collected the protein sequences of A. thaliana
(TAIR10)¥, Z. mays (B73_RefGen_v4)*®, B. distachyon (v.3.1) (https://
phytozome-next.jgi.doe.gov/info/Bdistachyon_v3_1)*°, 0. thomaeum
(v.1.0)°°, P. hallii (PHallii_v3.1)", D. oligosanthes (ASM163321v2)%,
O.sativa (IRGSP-1.0)%, S. bicolor (Sorghum_bicolor NCBIv3)*, H.vulgare
(Hvulgare_ 462 r1)*, S. italica (Setaria_italica_v2.0)°, S officinarum
(v.1.0)”7, M. esculenta (v.1.0)°%, C.annuum (v.1.6)*’, P. miliaceum (v.2.0)'°,
E. coracana (v.2.0)'”, D. exilis (DiExil)'°> and S. viridis (v.2.0)'. The
iTAK tool (v.1.7a)'°* was used for transcription factor prediction with
default parameters. To avoid bias caused by differences in the number
of genes among the different plants'®®, we calculated the proportion of
transcription factor as Nyi/ Ny, Where Ny is the number of transcrip-
tion factors and N, is the total number of genes in the corresponding
plant. Moreover, we predicted the binding sites of RWP-RK transcrip-
tionfactorswiththe FIMOtool (v.5.3.2) (https://meme-suite.org/meme/
meme_5.3.2/doc/fimo.html)™%,

Contributions of SVs to nearby gene expression

To investigate whether the SVs could broadly influence nearby gene
expression, we used RNA-seq dataset B for the six accessions subjected
to 1 h of control conditions (Supplementary Table 3). The SVs were
divided into 11 categories: deletion of coding DNA sequence start
(DELCDSstart); deletion overlapping the 5-kb downstream region
(DELdown); deletion of exons (DELexons); deletion of the whole gene
(DELgene); deletion overlapping the 5-kb upstream region (DELup);
duplication (Dup);insertionin the 5-kb downstream region (INSdown);
insertionin exons (INSexons); insertioninintrons (INSintrons); inser-
tion in the 5-kb upstream region (INSup); and the presence of SVs
(PresenceSVs).

PAV-GWAS

To explore the usefulness of the graph-based genome and identify
SV-drivenalterations of genes controllingimportant agronomic traits,
we conducted a PAV-GWAS analysis. After PAV filtration (removal of
PAVs with aminor allele frequency < 0.05 or missing rate > 0.1), atotal of
124,532 PAVs were used to perform PAV-GWAS in 242 accessions. Asso-
ciation analysis was conducted using the GEMMA (v.0.94.1) software
package'”. For the mixed linear model analysis, we used the equation
y=Xa+SB+Ku+e, whereyrepresentsthe phenotype, Xrepresents the
genotype, Sis the structure matrix and Kis the relative kinship matrix.
Xaand SBrepresent fixed effects and K and erepresent random effects.
The top three principal components were used to build the S matrix
for population structure correction. The matrix of simple matching
coefficients was used to build the K matrix.

Determination of physiological indicators

Seeds (2.00 g) of Tifleaf3 were cultured in a plasticbox (10 x 15 x 6 cm)
under growth conditions of 14 hlight at 26 °Cand 10 hdarknessat 22 °C.
The 13-day-old seedlings (V3 stage: third leaf visible at the vegetative
stage) were divided into three groups: a high-temperature treatment
group (45 °Cunder light for 14 hand 40 °Cindarkness for10 h), aheat
treatment group (40 °C under light for 14 h and 35 °C in darkness for
10 h) and a control group (26 °C under light for 14 hand 22 °Cin dark-
ness for10 h). After1,24,96 and 144 h,and 11,16, 21,26,31,36 and 41d
of heat treatment or control conditions, leaves were subjected to the
measurement of relative water content, relative conductivity and
MDA content. In addition, the materials (P1537069, P1521612, P1526529,
PI1587025, P1583800 and Tifleaf3) used for pan-genome sequencing
were cultured under the same conditions described above and divided
into a high-temperature treatment group and a control group. After
treatment for 1, 24, 60 and 96 h, leaves were collected for the deter-
mination of relative water content, electrical conductivity and MDA
content. Transgenic rice and WT rice were cultured at 26 °C under
light for 14 hand 22 °C in darkness for 10 h each day for 45 d and then
divided into two groups: a high-temperature treatment group (45 °C
under light for 14 hand 45 °Cin darkness for10 h) and a control group
(26 °Cunderlight for14 hand 22 °Cin darkness for 10 h). MDA content
and POD and SOD enzyme activities were quantified in the plants after
12hand 72 h of heat treatment.

Measurement of POD, MDA and REC

Leaves (0.1g) were ground and 1.5 ml of PBS solution (150 mM) was
added. The mixtures were centrifuged at 12,879.36g for 20 min at
4 °C. The supernatant was then collected. For the determination of
MDA activity, 0.5 ml of enzyme extract was added to 1 ml of reaction
solution (20% trichloroacetic acid and 0.5% thiobarbituric acid) and
the mixture wasincubatedina 95 °Cwater bath for 30 min. Thereafter,
the mixture was placedinanicebath atroomtemperature (25°C) and
centrifuged at12,879.36gfor 10 min. The absorbance was recorded at
532 nm and 600 nm using a spectrophotometer (Sorvall ST 16). For
the determination of POD activity, a 1.5 ml reaction system was used.
First, 925 pl sodium acetate (100 mM) was added, after which 0.5 ml
guaiacol (0.25%) and 25 pl enzyme extract were added. After mixing,
50 pl of hydrogen peroxide (0.75%) was added to the mixture. The
absorbance wasrecorded at470 nmevery 10 s. SOD enzymatic activity
was determined as described by Dhindsa et al.'°, Starting with 50 pl of
crude enzyme solution, 1.1 ml of 50 mM phosphate buffer, 100 pl of
0.06 mMriboflavin, 100 pl of 195 mM L-methionine, 50 pl of 0.003 mM
EDTA and 100 plof1.125 mM nitroblue tetrazolium were added. In addi-
tion, two tubes without enzyme extract were included as controls. The
reactionwas performed under 3000 Ix light for 30 minand thereaction
was terminated in the dark. Absorbance was recorded at 560 nm. For
the measurement of REC, 0.1 g samples of fresh leaves were collected
withsix biological replicates. The leaves were wrapped using gauze and
placed in a 50-ml Eppendorftube and 20 ml of pure water was added
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to completely cover the leaves. The tube was placed in an incubator
at room temperature (25 °C). After 25 h, the S1 EC was measured and
the sample was kept in a boiling water bath for 30 min. The S2 EC was
measured when the water had cooled toroom temperature (25 °C). The
REC was calculated using the following equation: REC = S1/S2 x 100%.

Transcriptomic analyses of pearl millet under high
temperature

Seeds (2.00 g) of six accessions of pearl millet were cultivated in a
10 x 15 x 6 cm plastic basin filled with quartz sand and placed in
a growth chamber (26 °C under light for 14 h and 22 °C in darkness
for 10 h). The culture conditions were as described by Sun et al.'*’.
The V3 stage seedlings were equally divided into two groups: a
high-temperature treatment group and a control (CK) group. The con-
ditions of the high-temperature treatment group were 14 hunder light
at45°Cand10 hindarkness at40 °C, while the CK group was cultured
under unchanged conditions (26 °Cand 22 °C). After1and 24 h of treat-
ment, leaves were collected and stored at —80 °C. Inaddition, the seeds
(2.00 g) of Tifleaf3 were grown under similar conditions and seedlings
were divided into treatment and control groups as described above.
The culture conditions of the heat-treated group were 14 hunder light
at40 °Cand10 hindarkness at 35 °C; the control group was kept under
unchanged conditions (26 °Cand 22 °C). After treatmentfor1,3,5,7,24,
48,96 and 144 h, the roots and leaves of the seedlings were collected
and stored at -80 °C. A total of 168 samples were collected and three
biologicalreplicates were set for eachtreatment and control. Each repli-
cate consisted of the mixed tissues of 16 seedlings. To obtain the materi-
als used for the annotation of gene structure, the ten accessions were
plantedinagreenhouse, with nine plants of eachaccession (26 °Cunder
lightfor 14 hand 22 °Cin darkness for 10 h). We collected leaves (three
biological replicates), stems (one sample) and roots (one sample) 5
weeks after the planting of each accessionto build 30 RNA-seq libraries.
ATotal RNAKit (QIAGEN) was used to extract RNA from these samples
to build a complementary DNA library (NEBNext Ultra Directional
RNA Library Prep Kit for Illumina) in preparation for RNA-seq. After
sequencing, the raw data were filtered with FastQC (v.0.11.9) (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/)"'. Transcripts
were quantified with the Kallisto (v.0.46.2)" software using PI537069 as
areference. Finally, DEGs (|log,(group 1/group 2)| 21, P,4; < 0.05) were
identified with DESeq2 (v.1.26.0)"*. GO and KEGG enrichment analyses
were performed using the OmicShare tools (http://omicshare.com/
tools) (P<0.05). Moreover, for the processing of published maize and
rice transcriptomic data, we downloaded raw reads from maize in the
V3stage under 38 °C (14 hunder light and 10 hin darkness) stress and
normal conditions (25 °C; 14 h under light and 10 h in darkness)* and
raw datafromriceinthe V3 stage grown under either 45 °C (13 hunder
lightand 11 hindarkness) stress or normal culture condition (25 °C;13 h
under lightand 11 hin darkness)*’. The same methods and parameters
were applied to the RNA-seq analysis of published maize and rice data.

Transgenic plant validation

The PMFOG00024.1gene sequence was synthesized via syntheticgene
sequence generation and was introduced to the pBWA (V)HS-CCDB
vector under the control of the 35S promoter. Three hundred rice
seeds without mildew spots that showed normal buds were sterilized
with 75% alcohol for 1 min, soaked in sodium hypochlorite for 20 min,
washed with sterile water three times and then placed into a culture
medium to culture calluses. The culture was conducted under light at
26 °Cfor20 d.Inaddition, asingle Agrobacterium colony was cultured
in medium in a shake flask to obtain an Agrobacterium resuspension
with an OD,, of 0.2. The calluses were added to the Agrobacterium
suspension step. After 10-15 min of infection, calluses were picked,
placed inacocultivation medium and incubated at 20 °C for 48-72 h.
Subsequently, cultured calluses were transferred to aselection medium
containing hygromycinand cultured for 20-30 d (26 °Cin darkness) for

thefirstselection. After the first selection, 180 calluses were transferred
to a new culture medium and cultured for 7-10 d (26 °C in darkness)
for the second selection step. Ninety callus tissues were obtained and
differentiation and rooting wereinduced. Finally, atotal of 20 seedlings
were obtained. Theresistant calluses were differentiated into seedlings
and PCR detection was performed using the primers listed in Sup-
plementary Table 20. The PCR-positive seedlings were transplanted
into the soil (26 °C under light for 14 h and 22 °C in darkness for 10 h).
When they reached the four-leaf stage, quantitative PCR with reverse
transcription was performed with the primers RWPI and RWP2, with
three technical repeats for each sample (Supplementary Table 20).

Dual luciferase assays to assess the interaction between
RWP-RK and ER-related genes

The open reading frames of RWP-RK (PMFOG00024.1) were inserted
into the pGreenll62-SK vector to generate effector plasmids. The pro-
moter sequence of PMA2G00107.1 was synthesized by Hzykang and
then cloned into the pGreenll 0800-LUC vector to generate reporter
plasmids. Effector and reporter plasmids were expressed in tobacco
leaves, mediated by Agrobacterium injection. Tobacco leaves in the
injection area were collected and fluorescence activity was measured
using aluciferase assay kit (cat. no. DL101, Vazyme Biotech). The prim-
ers used in this section are shown in Supplementary Table 20.

Tobacco leaf transformation assays to assess the impact of SVs
on gene expression

The promoter sequences were clonedinto the T vector using the 5 min
TA/Blunt-Zero CloningKit (cat.no.C601, Vazyme Biotech). We used PCR
(enzyme mix, cat. no. P520, Vazyme Biotech) to add the vector sequence
at the end of the promoter fragment and obtained the PBI121-GUS
linearized vector (Supplementary Table 20). Circularization was per-
formed accordingto theinstructions of the CloneKit (cat no. MC40101,
Monad). Therecombinant vectors were injected into Nicotiana bentha-
mianalleaf cells using an Agrobacterium-mediated transfection system
(GV3101). GV3101-pBI121-35s-GUS, GV3101-pBI121-Promoter-GUS and
GV3101-pBI121-Promoter_SV-GUS were cultured to an OD,, of 0.6
before injection. Two hundred microliters of liquid from each treat-
mentwasinfiltrated into the tobacco leaves. Gloves were changed after
the infiltration of each construct to prevent contamination. Tobacco
was pretreated at a high temperature for 24 h (40 °C for 8 hand 35 °C
for16 h) and then cultured under the same conditions for 2 d after injec-
tion. The blank group was cultured at 25 °C (8 hunder lightand 16 hin
darkness) and sampled by injection. The histochemical staining and
quantitative analysis of GUS in three independent biological replicates
were performed as described by Jefferson et al.'>.

PCRvalidation of SVs

Genomic DNA was extracted from fresh leaves using a DP360 kit (TIAN-
GEN) and PCR was performed using 2x Phanta Flash Master Mix (cat.
no.P520, Vazyme Biotech). Five SVs were analyzed by PCR genotyping
(condition: followed by 35 cycles of denaturation at 98 °C for 10 s,
annealing at 60 °C for 5 s and extension at 72 °C for 5 s kb™*) using the
primersindicated in Supplementary Table 20.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The raw sequencing data and transcriptome data of PI186338,
P1250656, P1343841, P1521612, P1526529, P1527388, P1537069, PI583800,
PI587025 and Tifleaf3 have been deposited in the NCBI Sequence Read
Archive under BioProject accession no. PRJNA749489, PRINA689619
and PRJNA756390. The assemblies of ten pearl millet have been depos-
ited in NCBI GenBank under the accession no. JAMZRY000000000
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(P1343841), JAMOAQO00000000 (PI250656), JAMKQL0O0O0O000000
(PI1186338), JAMKQKO000000000 (P1527388), JAJHQD0O0O0O0O0O0000
(P1587025), JAIFIROO0O000000 (P1537069), JAINUPOO0O0O0O000O0
(Tifleaf3), JAINUOOOOOO0O00O (PI583800), JAINUNOOOOOOOOO
(P1526529) and JAINUMOOOOOO0O0O0O (P1521612). These assemblies
are also available at http://117.78.45.2:91/download. The raw genome
assembly data are available under accession no. PRINA749489. The
transcriptomic dataare available under accession nos. PRINA749489,
PRJNA689619 and PRJNA756390. The public RNA-seq data used
were downloaded from the NCBI and the BioProject accession no. is
PRJNA520822. The public resequencing data used were downloaded
from the NCBI and the accession no. is SRP063925. Source data are
provided with this paper.

Code availability
All the analysis tools used in this study have been published before as
described in the Methods and Reporting Summary.
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Extended Data Fig. 1| High quality assembled genomes in pearl millet.
a, Genome landscape of pearl millet (P1537069). Track ‘a”: the seven
chromosomes at the Mb scale; track ‘b’: chromosomal distribution of gene

models in which the gene density ranged from 201 to 503,365 bp/Mb; track ‘c’:

chromosomal distribution of TEs for which the density was 58,334 to
945,223 bp/Mb; track ‘d’: TE/LTR distribution, ranging from 122,500 to
920,183 bp/Mb; track ‘e”: GC content along the assembled genome,
whichranged between 20% and 60%/Mb; track ‘f” and ‘g”: numbers of SNPs
(5t027,243/Mb) and indels (1to 5,952/Mb); track ‘h’: number of SVs

(6t0422/Mb); track ‘i": collinear blocks of the pearl millet (P1537069) genome.

b, Hi-C contact matrices of PI537069 and Tifleaf3 assemblies. ¢, Collinearity
between the PI537069 and Tifleaf3 genomes. The contigs of Tifleaf3 were
connected with Hi-C data only. This plot showed good synteny of the
pseudochromosomes of Tifleaf3 and another assembly based on Hi-C data
from P1537069. d, Synteny of eight contig-level assemblies with the PI537069
chromosome-level assembly. e, Assessment of the contig connections based
onHiFireads. Here the four examples show a long HiFi read across two contigs.
f, Insertion times of LTRs in pearl millet and three related species, Cenchrus
purpureus (Cpu), Panicum hallii (Pha) and Setaria viridis (Svi). g, Functional
enrichment analyses of genes encompassed by intact Copia and Gypsy TEs.
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Extended Data Fig. 2| Estimation of genome size using flow cytometry.
Estimation of genome size using flow cytometry. a-j, Histogram of relative
fluorescence intensities from flow cytometric analysis of Propidiumiodide
(PI)-stained nuclei of Tifleaf-3, PI521612, P1526529, P1537069, PI583800,
P1587025, P1186338, P1250656, P1343841, P1527388, which were isolated,
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stained and analyzed simultaneously (two biological repeats). The Oryza sativa
cv.Nipponbare genome (2n = 2x = ~420 Mb) served as an internal reference
standard. The average ratio of peak value between pearl millet to O. sativa was
equal 4.5, hence the estimated average genome size of pearl millet was ~ 1890 Mb.
Source dataare provided as a Source Datafile.
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Extended Data Fig. 3| Evaluation of the representativeness of the pearl millet
pan-genome. a, Distribution of genetic variations from 11 genomes and 394
re-sequenced pearl millet accessions. Track ‘a’: the seven chromosomes at the Mb
scale; track ‘b’: SNP density; track ‘c’, ‘d’, and ‘e’ represent nucleotide diversity (1),
nonsynonymous (dy), and synonymous (d) substitution rates, respectively.

b, Correlation of SNP density, 1, dy, and ds from the 11 de novo assembled
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tested by two-tailed Pearson correlation test and shown by p value. ¢, Number of
newly added gene families when adding more accessions. The median number
of new gene families is 301 when the last accession comes in. Center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. d, The
variation in gene families in the core and pan-genomes along with additional
pearl millet genomes.
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Extended Data Fig. 4 | Characterization of core, dispensable, and unique
gene sets. a, nRNA length, exon length, and ka/ks values of the three gene
categories. Center line, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range; and dots represent outliers. Significant differences
were tested by two-tailed t-test (***P < 0.0005). b, Gene Ontology (GO) (left) and
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stress conditions. a, Phenotypic changes in pearl millet (Tifleaf3) under heat
stress (40°C/35°C) at eight time points. Scale bar indicates 10 cm. b-c, Relative
conductance (b) and relative water content (c) of the Tifleaf3 accession at 11 time

1.00 -

0.95 %%

o
8
&P
fgo
o

Relative Water Content
o
1
(&
1

0.80

0.75

S, S0 S S0 0 10 00 D D0 10 D D D O D 1O 1D
NN . DX N N )
¢ \{./Q\/{"/Q\Q-/\Z‘/ {-/Q"{-/‘?‘/+/\Z‘/~l—/*2‘/~l—/*2‘/~l—/~?‘/~l~/*2*/

points under control and heat treatments. Error bars, mean +s.d.; n = 5Sbiological
replicates for b, and n = 3 biological replicates for c. Significant differences
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candidate SVs potentially associated with |
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Extended Data Fig. 9 | Potential contributions of structural variations (SVs)
to heat tolerance in pearl millet. a, Proportion of genes with expression fold
changes over 1compared to total gene expression. nSV-genes and SV-genes:
genes not located near SVs (over 5 kb) and genes located near SVs (within 5 kb),
respectively. b, Composition of genes close to SVs overlapping with transposons
(TE-SV-genes) or not overlapping with transposons (nTE-SV-genes). c-d, These
two panels are similar to panel abut compares TE-SV-genes to nSV-genes. e, One
example shows the presence of a fixed SV in the HR group near PMA6G05740.1.
The lower panel shows the gene expression changes in PMA6G05740.1 under

24 hheat treatmentin the HR and HS groups. Error bars, mean +s.d.;n=3
biological replicates. TPM: transcripts per million. ‘+SV’and ‘-SV’: accessions
withand without SVs, respectively. f-g, Transformation of the PMA6G05740.1
promoter in tobacco leaves. f: GUS phenotype observed by histochemical
staining. Scale bar indicates 1 cm. g: Quantitative detection of GUS enzyme levels
witha fluorescence microplate in leaves. Error bars, mean +s.d.; n = 3 biological
replicates. Significant differences were tested by two-tailed ¢-test (*P < 0.05,

***P < 0.0005; n.s., not significant). h, PCR validation of two SVs positioned in

upstream regions of PMA5G04793.1and PMA6G05740.1. Each experiment is
performed once. The images were cropped from the images in the Source data
file.i, Malondialdehyde (MDA) levels of four heat-resistant (HR) and two heat-
susceptible (HS) accessions. Error bars, mean +s.d.; n = 3 biological replicates.
Significant differences were tested by two-tailed ¢-test (**P < 0.01, ***P < 0.0005).
Jj, Functional enrichment analyses of genes specifically found in the HR group.

k, Pipeline of identifying focal candidate SVs potentially related to expression
changes of nearby heat-related genes. 1, Comparisons of the expression (TPM)

of five genes between accessions with (+SV) and without SVs (-SV). These five
genes are from panel e in this figure and from Fig. 5c and g. PMASG04793.1,
PMA1G04478.1,and PMA7G02533.1: n = 9 biological replicates for ‘+SV’and -SV,
respectively; PMASG02838.1 and PMA6G05740.1: n =12 biological replicates for
‘+SV’and n = 6 for -SV’. Center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; and dots represent outliers. Significant
differences were tested by two-tailed ¢-test (*P < 0.05, **P < 0.01, **P < 0.0005).
Source data are provided as a Source Data file.
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Extended Data Fig. 10 | Contributions of structural variations (SVs) to

heat tolerance adaptation and domestication. a, Expression patterns of
PMA2G02653.1. Significant differences were performed by DESeq2 to determine
fold change (FC) of gene expressions between control and heat-treatment
groups (two-tailed Wald test). The FC was determined by * (0 < [log2FC|<1,
FDR-adjusted P< 0.05) or **(|log2FC|>=1, FDR-adjusted P < 0.05). The blue and
red */** represent gene down- and upregulation, respectively. b, Comparison

of the latitudinal distributions of the two SV-related haplotypes of pearl millet
accessions. Center line, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range; and dots represent outliers. Significant differences
were tested by two-tailed t-test and shown by p value. ¢, SV-based selection
sweep analyses. A total of 3,952 SVs with population frequency differences
(fdSVs) were identified in both comparisons and harbored 1,285 genes. The
black dotted line represents a cut-off window in which the top 1% of data points
were selected as the sweep region. The right panel represents the functional
enrichment analyses of the 1,285 genes. d, Expression levels of one candidate
gene (PMASG03691.1)-related haplotype. Significant differences were performed

by DESeq2 to determine fold change (FC) of gene expressions between control
and heat-treatment groups (two-tailed Wald test). The FC was determined by *
(0 <|log2FC|<1, FDR-adjusted P < 0.05) or ** (|log2FC|>=1, FDR-adjusted P < 0.05).
Theblue and red ** represent gene down-and upregulation, respectively. e, PAV-
GWAS of SVs associated with grain number/panicle (GNP). Control: condition
without stress. Early: early drought stress inhibiting irrigation from one week
before flowering until maturity. Late: late drought stress conducted during early
grain-filling by inhibiting irrigation from 50% flowering time until maturity. The
regions marked by grey box indicate the GNP-related QTL could be captured by
different conditions. f, PAV-GWAS of SVs associated with the grain number/m?
(GNM2) trait. g, Comparison of GNM2 between accessions with SVs and without
SVs. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; and dots represent outliers. Significant differences were
tested by two-tailed t-test and shown by p value. h, PAV-GWAS of SVs associated
with the tiller number/plant (Till) trait. PmiG: Tift 23D2B1-P1-P5. The dotted-line
represents the significance threshold of -log10 (p value) > 5.
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Data collection  No software was used in data collection.

Data analysis Flow cytometry analysis: Kaluza (v2.1.3).
Initial assembly: Hifiasm package (v0.13-r308), Pruge_haplotig (v1.1.0), Bionano Solve (v3.5.1).
Pseudochromosome construction: BWA (v0.7.8), ALLHIC package (v0.9.8).
Genome assessment: BUSCO (v4.1.2), CEGMA (v2.5), BWA (v0.7.8), Merqury (v1.3), LTR_retriever (v2.8).
Annotation of repetitive sequences: RepeatMasker (v4.0.5), LTR_FINDER (v1.0.7), Piler (v3.3.0), RepeatScout (v1.0.5), RepeatModeler (v1.0.8),
MUSCLE (v3.8.31).
Annotation of gene structure: TblastN (v2.2.26), Solar (v0.9.6), GeneWise (v2.4.1), TopHat (v2.0.13), Cufflinks (v2.1.1), Trinity (v2.1.1), PASA,
Augustus (v3.2.3), GENSCAN (v1.0), GlimmerHMM (v3.0.1), EVidenceModeler (v1.1.1), SNAP (v2013.11.29), geneid (v1.4).
Functional annotation of protein-coding genes: InterProScan (v4.8), HMMER (v3.1), InterPro (v32.0), Pfam (v27.0).
Comparative genomic analysis across species: BLASTP (v2.2.26), Orthofinder (v2.3.1), MUSCLE (v3.8.31), RAXML (v8.0.19), MCMCTree
program (v4.5).
Pan-genome construction: Orthofinder (v2.3.1).
SV identification: MUMmer (v4.0.0), SyRI (v1.6.3), vg (v1.25.0).
Validation of structural variations: SyRI (v1.6.3), Assmeblytics, smartie-sv, vg (v1.25.0), HISAT2 (v2.2.1).
TF family identification and analysis: Fimo (v5.3.2), iTAK tool (v1.7 a).
PAV-GWAS: GEMMA (v0.94.1), LightGBM.
RNA-seq: FastQC (v0.11.9), Kallisto (v0.46.2), DESeq2 (1.26.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw sequencing data and transcriptome data of P1186338, PI250656, PI343841, PI521612, PI526529, PI527388, PI537069, PI583800, PI587025, and Tifleaf3
have been deposited in the NCBI Sequence Read Archive under BioProject accession numbers PRINA749489, PRINA689619, and PRINA756390. The assemblies of
ten pearl millet have been deposited in NCBI GenBank under the accession numbers JAMZRY0O00000000 (PI1343841), JAMOAQO00000000 (P1250656),
JAMKQLO00000000 (P1186338), JAMKQKO00000000 (P1527388), JAJHQDO00000000 (P1587025), JAIFIROO0000000 (P1537069), JAINUPOOO000000 (Tifleaf3),
JAINUOO00000000 (P1583800), JAINUNOOOOOOOOO (P1526529), and JAINUMOOOO0000O0 (P1521612). These assemblies are also available at a website
(http://117.78.45.2:91/download). The raw genome assembly data are available under accession number PRINA749489. The transcriptomic data are available
under accession numbers PRINA749489, PRINA689619, and PRINA756390. The public RNA-seq data used was downloaded from NCBI and the bioproject accession
numbers is PRINA520822. The public re-sequence data used was downloaded from NCBI and the accession number is SRP063925. Source data are provided with
this paper.
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Reporting on sex and gender not applicable

Population characteristics not applicable
Recruitment not applicable
Ethics oversight not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Bionano: 1 sample; Hi-C: 2 samples; Pacbio HiFi: 10 samples; lllumina: 228 samples. no sample size calculation was performed. We built the
pan-genome based on 11 representative accessions where 10 samples are de-novo assembled in our study and one sample downloaded from
a published study. We used Bionano and Hi-C sequencing for PI537069 accession, aiming to obtain a high-quality assemble that could be used
as the reference genome for the SV discoveries in the downstream analysis. For the 228 samples of lllumina sequencing, we did bulk RNA-seq
analyses including leaf and root tissues and eight time points underlying heat stressful conditions (Supplementary Table 1: Overview of RNA-
seq).

Data exclusions  For PAV-GWAS we excluded samples without phenotype data. For temperature adaptation analyses, we excluded samples without latitude
data.

Replication Three biological and three technical replicates for Dual-luciferase assays. Two biological and one technical replicates for Tobacco leaf
transformation assays. One biological and technical replicate for PCR validation. Three biological replicates for physiological analysis. Two
replicates for flow cytometry.

Randomization Plants were randomly allocated in the greenhouse. tobacco leaves were randomly collected from individuals with same growth stages. For
evaluation of contig connections, we randomly picked several to present in the Extended Fig. 1e. To further validate the SVs, we performed a
PCR genotyping to validate three SVs randomly picked from the SV pool. For RNA-seq, the leaves or roots of 16 seedlings with consistent
growth were randomly selected and stored in cryogenic vials. For Physiological indicators, the leaves of plants with consistent growth were
randomly selected and stored in cryogenic vials.

Blinding The experiments were conducted blindly. All genotypes were only labeled by numbers when planting, so the investigators did not know the
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Plots
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g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation About 20mg leaves, add 1ml MGB, add 500ul lysis buffer, 25ul 50pug/ml Pl and 25ul 50ug/ml RNase, mix and shade before
use.

Instrument Beckman CytoFLEX.

Software CytExpert (version:2.3.0.84).

Cell population abundance CytoFLEX flow cytometer automatically collects cells and counts the number.

Gating strategy Use FSC-A/SSC-A to select cells, use PE-A/PE-H to exclude cell debris, and select the location of the positive result of Pl
staining.

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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