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ABSTRACT

Introduction: To design and evaluate a deep
learning model based on ultra-widefield images
(UWFIs) that can detect several common fundus
diseases.
Methods: Based on 4574 UWFIs, a deep learn-
ing model was trained and validated that can
identify normal fundus and eight common
fundus diseases, namely referable diabetic
retinopathy, retinal vein occlusion, pathologic
myopia, retinal detachment, retinitis pigmen-
tosa, age-related macular degeneration, vitreous
opacity, and optic neuropathy. The model was

tested on three test sets with data volumes of
465, 979, and 525. The performance of the three
deep learning networks, EfficientNet-B7, Den-
seNet, and ResNet-101, was evaluated on the
internal test set. Additionally, we compared the
performance of the deep learning model with
that of doctors in a tertiary referral hospital.
Results: Compared to the other two deep
learning models, EfficientNet-B7 achieved the
best performance. The area under the receiver
operating characteristic curves of the Effi-
cientNet-B7 model on the internal test set,
external test set A and external test set B were
0.9708 (0.8772, 0.9849) to 1.0000 (1.0000,
1.0000), 0.9683 (0.8829, 0.9770) to 1.0000
(0.9975, 1.0000), and 0.8919 (0.7150, 0.9055) to
0.9977 (0.9165, 1.0000), respectively. On a
data set of 100 images, the total accuracy of the
deep learning model was 93.00%, the average
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accuracy of three ophthalmologists who had
been working for 2 years and three ophthal-
mologists who had been working in fundus
imaging for more than 5 years was 88.00% and
94.00%, respectively.
Conclusion: High performance was achieved on
all three test sets using our UWFI multidisease
classificationmodel with a small sample size and
fast model inference. The performance of the
artificial intelligence model was comparable to
that of a physician with 2–5 years of experience
in fundus diseases at a tertiary referral hospital.
The model is expected to be used as an effective
aid for fundus disease screening.

Keywords: Ultra-widefield images; Deep
learning; Fundus diseases; Artificial intelligence

Key Summary Points

Why carry out this study?

Compared with conventional color
fundus photography, ultra-widefield
images (UWFIs) have the advantages of no
pupil dilatation, a wide imaging range,
and fast acquisition, which are suitable for
fundus disease screening.

We aim to develop a more clinically
applicable deep learning model for
multidisease classification, as few studies
have done so previously.

What was learned from the study?

The UWFI multidisease classification
model that we designed on the basis of a
small sample size performed well with fast
model inference. Its performance was
comparable to that of doctors with
2–5 years of experience at a tertiary
referral hospital.

The model is expected to be applied in
developing countries and remote areas to
assist in fundus disease screening.

Further expansion of the sample size and
number of diseases and optimization of
the model are needed in the future to
achieve higher performance.

INTRODUCTION

Retinal and optic nerve diseases are major cau-
ses of severe vision loss and blindness world-
wide and can irreversibly affect a patient’s
vision [1]. Failure to diagnose and treat the
disease in a timely manner can often result in
reduced quality of life and increased financial
burden for patients. The availability of oph-
thalmologists specializing in fundus diseases is
often inadequate, especially in developing
countries and some underdeveloped areas,
which can delay treatment for patients. In
recent years, deep learning has been gradually
applied to screen, diagnose, classify, and guide
the treatment of retinal diseases, which can
greatly reduce the human and material resour-
ces required for conventional screening modal-
ities [2, 3]. Artificial intelligence (AI) models for
multidisease classification based on conven-
tional retinal fundus images have gradually
matured [4–6]. However, color fundus photog-
raphy (CFP) has a small imaging range and a
time-consuming pupil dilation preparation.
Ultra-widefield fundus images (UWFIs) have a
wide imaging range, acquiring 200� fundus
images in a single scan, and has the advantages
of being noncontact, pupil-dilation-free, and
easy to use [7]. The technique offers the benefit
of much more rapid screening of fundus
diseases.

The UWFI-based deep learning model has
performed well in the identification of various
single diseases and lesions, such as diabetic
retinopathy (DR), retinal vein occlusion (RVO),
retinal hemorrhage, and glaucomatous optic
neuropathy (GON) [8–12]. In particular, by
taking advantage of the wide range of UWFIs,
excellent performance in identifying retinal
detachment (RD) and peripheral retinal degen-
eration, such as lattice degeneration and retinal
breaks, can be achieved using deep learning
models [13–16]. However, there has been rela-
tively little research into deep learning models
that better meet clinical needs for the identifi-
cation of multiple fundus diseases. Antaki et al.
[17] applied automatic machine learning in
Google Cloud AutoML Vision to implement a
multiclassification task for UWFIs. Zhang et al.
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[18] improved the performance of deep learning
models in classifying UWFIs by optimizing
image preprocessing. However, in both of these
studies, only normal eyes and three fundus
diseases were identified. Recently, Cao et al. [19]
proposed a UWFI-based four-hierarchical inter-
pretable eye diseases screening system that can
identify 30 common fundus diseases and
lesions. We also carried out some work on
multidisease identification with UWFIs. In this
study, we developed an end-to-end deep learn-
ing UWFI disease classification model using a
small sample size to identify normal eyes and
eight retinal or optic nerve diseases, which were
then tested externally at two hospitals.

METHODS

The study was conducted in accordance with
the Declaration of Helsinki and was approved
by the Clinical Research Ethics Committee of
Renmin Hospital of Wuhan University (ethics
number WDRY2021-K034). The ethics com-
mittee waived informed consent, as none of the
UWFIs contained any personal information
about the patients included.

Image Acquisition and Data Sets

We obtained the original set for this study by
reviewing the UWFIs (Optos Daytona and Optos
200TX, Dunfermline, UK) of patients who
attended the Eye Center, Renmin Hospital of
Wuhan University from 2016 to 2022. One
trained physician excluded fundus images with
a small imaging field (fundus image obscured by
eyelids and eyelashes or the examiner’s finger;
more than 1/3 of the image not visible), signif-
icant refractive media opacity, and obvious
signs of treatment, such as laser photocoagula-
tion, silicone oil, or gas filling. Three attending
physicians with more than 5 years of fundus
imaging experience classified the images sepa-
rately, and images with the same classification
were included directly in the data set. Images
that were classified differently at first were
adjudicated by two senior physicians with more
than 25 years of experience. Images for which
two senior physicians could not agree on a

classification were directly excluded. Normal
fundus and eight clinically common fundus
diseases were selected for model construction,
namely, DR, RVO, pathologic myopia, RD,
retinitis pigmentosa (RP), age-related macular
degeneration, vitreous opacity, and optic neu-
ropathy (including possible GON, optic nerve
atrophy, and papilledema or optic disc edema).
The images were labeled and classified accord-
ing to the diagnostic imaging features of the
disease (see Table S1 in the electronic supple-
mentary material for details).

Only one image per eye was included for
each patient, and images where multiple dis-
eases were present were placed into multiple
categories simultaneously. The original images
were divided in a ratio of approximately 9:1 and
used for model development and internal test-
ing. Given the unbalanced amount of data
across the disease species in the model devel-
opment data set, random augmentation of the
data was performed for a smaller number of
disease species, including random horizontal
and vertical flips, random rotations, and ran-
dom Gaussian blurs, so that more balanced data
could be used to better fit the neural network.
After augmentation, the data were divided into
a training set and a validation set at a ratio of
9:1. As there was no publicly available data set,
we acquired UWFIs from Wuhan Optics Valley
Central Hospital and UWFIs from Tianjin
Medical University Eye Hospital as two external
test sets sequentially: external test set A and
external test set B. The distribution of images
for each disease in the data set is shown in
Table 1. The workflow for developing the deep
learning model for multidisease recognition in
UWFI is shown in Fig. 1.

Deep-Learning Model Construction

Several convolutional neural networks with
high performance in multilabel classification
tasks, including EfficientNet-B7, DenseNet, and
ResNet-101, were selected for this study, and
pretrained models of ImageNet were used to
initialize the model parameters. In training, we
designed an end-to-end multilabel prediction
model directly using the normal eye as a
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Table 1 Characteristics of the model training set and test sets of deep learning model

Label, n (%) Data set for model training Test sets (n = 1969)

Original images
(n = 4574)

Post-augmentation
images (n = 6854)

Internal test
set (n = 465)

External test
set A (n = 979)

External test
set B (n = 525)

Normal fundus 825 (18.0) 825 (12.0) 83 (17.8) 280 (28.6) 96 (18.3)

Referable diabetic

retinopathy

784 (17.1) 784 (11.4) 78 (16.8) 123 (12.6) 74 (14.1)

Retinal vein

occlusion

723 (15.8) 723 (10.5) 72 (15.5) 69 (7.0) 89 (17.0)

Pathologic myopia 557 (12.2) 776 (11.3) 56 (12.0) 105 (10.7) 88 (16.8)

Retinal

detachment

545 (11.9) 741 (10.8) 55 (11.8) 135 (13.8) 49 (9.3)

Age-related

macular

degeneration

239 (5.2) 717 (10.5) 27 (5.8) 41 (4.2) 33 (6.2)

Retinitis

pigmentosa

296 (6.5) 761 (11.1) 30 (6.4) 32 (3.2) 29 (5.5)

Vitreous opacity 277 (6.1) 755 (11.0) 28 (6.0) 96 (9.8) 38 (7.2)

Optic neuropathy 328 (7.2) 772 (11.3) 36 (7.7) 98 (10.0) 29 (5.5)

Fig. 1 Workflow for developing the deep learning model for multidisease recognition in UWFI
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classification. The original UWFI image size was
3900 9 3072 pixels and was nonsquare. All
input images were first preprocessed so that the
model had an image input size of 224 9 224
pixels. After multiple convolution and block
modules, an additional self-attentive layer was
added to balance the feature dimensions of the
images, mainly by means of a 1 9 1 convolu-
tion layer that rebalanced the weights of the
input feature maps to achieve global percep-
tion. We set the Adam optimizer using Cross-
Entropy as the loss function. The training
performance of each epoch was evaluated using
the validation set, and the EarlyStopping strat-
egy was set to stop training when there was no
significant change in the validation set loss for
10 consecutive epochs.

Human Physicians Versus Deep-Learning
Models

To compare the accuracy of the proposed fun-
dus disease classification between doctors with
different seniority and deep learning models,
100 images were randomly selected from the
external test set of Wuhan Optics Valley Central
Hospital for testing. There were 20 normal
fundus images in this data set and 10 images for
each of the remaining diseases. Three fundus
doctors with 2 years of experience and three
fundus doctors with more than 5 years of
experience from the Renmin Hospital of Wuhan
University (a tertiary referral hospital) were
invited to participate in this comparison.

Model Performance Evaluation

The performance of the classification models on
the test set was assessed using receiver operating
characteristic (ROC) curves, area under the ROC
curve (AUC), sensitivity, specificity, accuracy,
and Matthews correlation coefficient (MCC). All
data are presented as numerical values with 95%
confidence intervals. In addition, the data sets
were trained on ResNet-101 and DenseNet
models, and the performance of EfficientNet-B7
was compared with the aforementioned two
models. To obtain the logical interpretability of
the models, the information learned by our
deep learning models was visualized using class
activation mapping (CAM) plots, an important
technique in convolutional neural networks,
which can be obtained by rearranging the fea-
ture maps derived from the last layer of convo-
lution. All statistical analyses were performed
using Python 3.7.11.

RESULTS

A total of 4574 original UWFIs were included in
this study for training and validation of the
model, which was then tested using an internal
test set and two external test sets with data set
volumes of 465, 979, and 525. The average
AUCs of the EfficientNet-B7, ResNet-101, and
DenseNet models on the internal test set were
0.9880, 0.9784, and 0.9830, respectively. Effi-
cientNet-B7 achieved the best performance on
the internal test set compared to the DenseNet
and ResNet-101 models (Fig. 2, Supplementary
Table S2). Therefore, the EfficientNet-B7

Fig. 2 Receiver operating characteristic curves for the three deep learning models on the internal test set
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network was chosen for the construction of the
deep learning model.

Performance of the EfficientNet-B7 Model
on the Test Set

The AUCs of the EfficientNet-B7 model on the
internal test set, external test set A, and external
test set B were 0.9708 (0.8772, 0.9849) to 1.0000
(1.0000, 1.0000), 0.9683 (0.8829, 0.9770) to
1.0000 (0.9975, 1.0000), and 0.8919 (0.7150,
0.9055) to 0.9977 (0.9165, 1.0000); the corre-
sponding sensitivity values were 0.8611
(0.8529, 0.8661) to 1.0000 (1.0000, 1.0000),
0.6633 (0.6452, 0.6702) to 1.0000 (1.0000,
1.0000), and 0.5946 (0.5932, 0.6226) to 0.9896
(0.9875, 0.9930); the specificity values were
0.9755 (0.9736, 0.9763) to 1.0000 (1.0000,
1.0000), 0.9861 (0.9856, 0.9870) to 0.9989
(0.9987, 1.0000), and 0.9531 (0.9522, 0.9550) to
1.0000 (1.0000, 1.0000); the accuracy values
were 0.9644 (0.9637, 0.9675) to 1.0000 (1.0000,
1.0000), 0.9528 (0.9513, 0.9550) to 0.9979
(0.9988, 0.9988) and 0.9579 (0.9563, 0.9600) to
0.9923 (0.9925, 0.9938); and the MCCs were
0.8035 (0.8250, 0.8380) to 1.0000 (1.0000,
1.0000), 0.7508 (0.7714, 0.7943) to 0.9691
(0.9630, 0.9796), 0.7026 (0.7037, 0.7246) to
0.9235 (0.9263, 0.9398). The AUC, sensitivity,
specificity, accuracy, and MCC for each disease
on the three test sets are shown in Table 2. The
ROC curves for each disease are plotted in Fig. 3.

Heatmap Features for Model Identification

The CAM shows a heatmap of the distribution
of contributions to the predicted output.
Ranging from blue to red, redder colors indicate
greater contributions to the network from the
corresponding regions of the original image.
The original images of the nine true-positive
fundus disease classifications and the heatmaps
overlaying the areas suggestive of contribution
are shown in Fig. 4. On the basis of the CAM
plot, the AI model is largely consistent with the
clinician’s identification of the overall area of
lesion features, while identifying lesions in
more detail remains difficult. However, some
images were misclassified (Fig. 5). In some of theT
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images, the deep learning model made obvious
errors in identifying areas that contribute to the
diagnostic value.

Human Doctors Versus Deep-Learning
Models

On a data set of 100 images, the total accuracy
of the deep learning model was 93.00%, the
average accuracy of the three ophthalmologists
who had been working for 2 years was 88.00%,
and the average accuracy of the three ophthal-
mologists who had been working in fundus

imaging for more than 5 years was 94.00%. The
average sensitivity and specificity of the afore-
mentioned three groups were 92.22% and
99.07%, 88.15% and 98.52%, and 93.89% and
99.26%, respectively. The performance of the AI
model ranged between the ophthalmologists
who had worked in tertiary referral hospitals for
2 years and the others who had worked for more
than 5 years.

Fig. 3 Receiver operating characteristic curves for the EfficientNet-B7 model on the internal test set and the two external
test sets

Fig. 4 True positive UWFI images of the nine labels on
the internal test set (green boxes) and the corresponding
CAM heatmap (red boxes). The heatmap shows a

progressively higher contribution to the predicted output
from blue to red (color bar below). CAM, class activation
mapping
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DISCUSSION

The UWFI-based multidisease classification
model designed in this study achieved high
sensitivity, specificity, and accuracy in the
identification of normal fundus and the classi-
fication of eight common fundus diseases,
achieving good performance on both the
internal test set and the two external test sets. In
addition, the model matched the capabilities of
experienced fundus clinicians at tertiary referral
hospitals. The model could be used in the future
to assist in the screening and diagnosis of fun-
dus diseases in developing countries and remote
areas.

According to statistics, the number of oph-
thalmologists has increased at an average rate of
2.6% per year from 2010 to 2015. However, this
rate is still lower than the 2.9% annual growth
rate of the global aging population. In addition,

the estimated average density of ophthalmolo-
gists varies widely across the world. Approxi-
mately 17% of the global population in 132
countries has access to less than 5% of the
world’s ophthalmologists [20]. Of these, there
may be even fewer ophthalmologists specializ-
ing in fundus diseases than for cataracts and
refractions. At the same time, there is an
imbalance in medical resources between devel-
oped and remote areas. It is more difficult to
achieve early screening and referral for fundus
diseases in remote areas. In recent years, there
has been a rapid development in the direction
of deep learning, which can correct the lack of
manpower and relevant expertise as an alter-
native screening tool for eye diseases [21].

Conventional CFP has an imaging range of
approximately 30–60� and is currently the most
widely used clinical imaging modality for reti-
nal imaging. Earlier studies have constructed

Fig. 5 Misclassified UWFI images. The figure shows the true label and the predicted mislabel
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recognition models for individual common
fundus diseases [22, 23]. In recent years, several
teams have demonstrated good performance
with multiclassification task models derived
from CFP [4–6, 24]. Real-world applications of
these AI platforms with broader clinical appli-
cability will greatly enhance the early screening
and diagnosis of fundus diseases. Nevertheless,
conventional CFP has a limited imaging range
and can miss information from the peripheral
retina. For instance, the detection of peripheral
retinal diseases that can significantly affect
vision, such as RD and RP, is limited in con-
ventional CFP [4]. UWFI has the advantages of
no pupil dilatation, a wide imaging range, and
fast acquisition [25]. UWFI is now widely used
in clinical work, almost replacing conventional
CFP in many hospitals, and with the increasing
popularity of UWFI, it will be more likely to
achieve rapid screening of fundus diseases.
Several teams have already tried to combine
deep learning with UWFI for fundus screening.
Japanese scholars have used convolutional
neural networks to separately classify multiple
single diseases from normal eyes [12, 26–28].
However, these models only demonstrate the
feasibility of deep learning in identifying single
diseases on UWFIs and are somewhat far from
clinical application. Li et al. used high-quality
annotated data to focus AI on the identification,
classification, and localization of fundus lesions
[10, 13, 15]. Good performance on diseases,
such as peripheral retinal degeneration, retinal
tears, RD, and GON, were achieved using their
model, which takes advantage of the ultra-
widefield of view of UWFIs.

There are still relatively few UWFI-based
multidisease AI models for the fundus [17–19].
Recently, in parallel to our present study, Cao
et al. [19] innovatively constructed a four-hier-
archical interpretable eye diseases screening
system using UWFIs. In the study, extensive
image-level and lesion-level labeling was per-
formed, the images were divided into 21
anatomical regions based on the anatomical
location of the optic nerve head and macular
fovea, and a lesion atlas mapping module was
constructed to distinguish abnormal findings
and determine their anatomical locations. The
model is optimized by combining lesion

mapping and diagnostic annotations, and dif-
ferent models are used to classify the lesions
according to different disease types. Not only
can it provide disease diagnosis but pathological
and anatomical information can also be output.
Ultimately, excellent performance is achieved
using this model for the identification of 30
diseases and lesions and can be applied to
multimorbidity beyond the training sample. In
our study, an end-to-end model was applied
with much lower engineering complexity,
which offers significant advantages in terms of
training time and model inference speed. The
EfficientNet network is one of the most accurate
models in the field of image classification and
uses a joint adjustment technique of depth,
width, and resolution of the input image with
low parameters, high accuracy, and a flexible
training strategy [29]. The model helps us to
achieve higher accuracy with a relatively small
sample size. The model achieves similar accu-
racy rates compared to clinicians and allows the
use of computers to reduce the time required to
classify diseases in the UWFI. In the future, we
will continue to expand the sample size and
disease categories in the hope of building a
UWFI AI diagnostic model with more disease
categories and greater accuracy.

There are also some limitations in this study.
First, the number of images included in the
training and test sets of this study is relatively
small. As a result of the limited amount of data,
the number of included disease classifications is
still not broad enough; for example, optic
papilledema, possible GON, and optic nerve
atrophy were grouped under one classification
of optic neuropathy because of the small num-
ber of optic nerve disease images. The number
of diseases in the classification needs to be fur-
ther increased in the future by using an
increased sample size. Second, we actively
excluded images with obvious treatment traces
from the study, and the generalizability of the
model may be reduced. In clinical applications,
eyes with treatment traces are not rare, and the
model may be incorrect for the recognition of
these UWFI images. Third, the accuracy of this
study is not high enough for the identification
of some diseases, such as optic nerve disease and
vitreous opacity. Fourth, disease labeling is
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primarily based on image features and relies on
physician experience. Fifth, our model still
cannot give multiple diagnoses for a single
image, and we need to optimize or build other
models in the future. Finally, the greatest
advantage of UWFI is the detection of periph-
eral and total retinal lesions with slightly less
sensitivity for less significant optic nerve or
macular disease; human physicians face the
same problem when reading the images.

CONCLUSIONS

Overall, the UWFI multidisease classification
model we designed achieves a balance of small
sample size and high accuracy and has relatively
fast performance. The performance of the AI
model was comparable to that of a physician
with 2–5 years of experience in fundus diseases
at a tertiary referral hospital. The model is
expected to be used as an effective aid for fun-
dus disease screening. In the future, we will
incorporate a larger volume of data and more
disease types to improve the generalization of
the model performance and to validate it in
primary care facilities and physical examination
centers.
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