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Abstract
Standard Data Envelopment Analysis (DEA) models consider continuous-valued and known input and output statuses for 
measures. This paper proposes an extended Slacks-Based Measure (SBM) DEA model to accommodate flexible (a measure 
that can play the role of input and output) and integer measures simultaneously. A flexible measure’s most appropriate role 
(designation) is determined by maximizing the technical efficiency of each unit. The main advantage of the proposed model 
is that all inputs, outputs, and flexible measures can be expressed in integer values without inflation of efficiency scores 
since they are directly calculated by modifying input and output inefficiencies. Furthermore, we illustrate and examine the 
application of the proposed models with 28 university hospitals in Germany. We investigate the differences and common 
properties of the proposed models with the literature to shed light on both teaching and general inefficiencies. Results of 
inefficiency decomposition indicate that “Third-party funding income” that university hospitals receive from the research-
granting agencies dominates the other inefficiencies sources. The study of the efficiency scores is then followed up with a 
second-stage regression analysis based on efficiency scores and environmental factors. The result of the regression analysis 
confirms the conclusion derived from the inefficiency decomposition analysis.

Keywords  Data envelopment analysis · Integer-valued measures · Flexible measures · University hospitals · Productivity 
analysis

1  Introduction

Data Envelopment Analysis (DEA) is a nonparametric 
approach introduced by Charnes, et al. [1] to estimate the 
relative efficiency of a set of homogeneous Decision-Making 
Units (DMUs) where utilize similar inputs to generate similar 

outputs. This basic model (from now referred to as CCR) has 
come up with a fruitful area for efficiency evaluation. DEA 
models can be categorized as radial and non-radial. The CCR 
represents the radial models where they cope with relative 
changes of input and/or output factors so that, the efficiency 
score imitates the proportional maximum output (input) 
expansion (reduction) rate which is common to all outputs 
(inputs). However, in many practical applications, not all 
inputs/outputs operate proportionally. Consider the hospitals 
as an instance, we utilize beds, physicians, and nurses as 
inputs where they may not change proportionally. There might 
be several non-radial slacks left that play an imperative role 
in reporting managerial efficiency, but they are not taken 
into account in the radial model. The Slacks-Based Measure 
(SBM) approach, on the other hand, disregards proportional 
changes and evaluates efficiency by considering the input 
excess and output shortfall (slacks) directly [2]. Both non-
radial and radial DEA models have been well-documented 
from the theoretical perspective in the literature [3]. In 
addition to the theoretical development of DEA models, their 
application is significantly growing since it is well-known as 
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a reliable methodology, e.g., for healthcare [4–8]. However, to 
our knowledge, most of the previous studies done in the field 
of teaching hospital performance assessment use the basic 
DEA models and pay no attention to two principal challenges 
that exist in the real-world situation: integer-valued amounts 
and flexible measures. In the following subsections, these two 
issues are adequately addressed.

1.1 � Integrality‑constrained DEA

Conventional DEA models consider that inputs and outputs 
are continuous values. However, we face many real situa-
tions in which one or some of the inputs/outputs are una-
voidably integer values, for instance, the number of beds 
(as input) and outpatients (as output) in the hospital perfor-
mance assessment. Usually the first step in DEA application, 
after identifying the list of inputs and outputs, is determin-
ing the suitable technology or the Production Possibility Set 
(PPS). These technologies are grouped as non-convex and 
convex. The non-convex Free Disposal Hull (FDH) [9] and 
the convex Constant and Variable Returns to Scale (CRS 
and VRS respectively) technologies are the most common 

choices. FDH targets are always feasible when some of the 
inputs/outputs are integer-valued since they project the units 
whose efficiency is to be evaluated onto one of the existing 
DMUs. In contrast, the PPS in both CRS and VRS assumes 
feasible operating points that are a convex combination of 
evaluating units without essentially considering any integral-
ity constraint of some inputs/outputs. While imposing the 
integrality constraints by rounding off the optimum solution 
of the large integer values may have not a major effect on 
the optimality, it is not the case with small integer values 
where a few units less or more can make a significant differ-
ence in the optimality [10–12]. Assuming the integer-valued 
inputs/outputs as continuous values and arbitrarily rounding 
up (or down) of them may easily cause infeasibility (i.e., an 
operation point out of the PPS) or to a dominated (inferior) 
operating unit as mentioned by [13]. As illustrated by a sin-
gle input single output example in Fig. 1, DMUs B and C are 
inefficient and their reference set includes DMUs A and D. 
The input excess of DMUs B and C are 1.5 and 2.67. That 
means 1.5 and 2.67 units reduction in the input of DMU 
B and C, respectively, project them on the green marks B′ 
and C′ on the efficient frontier (blue dashed line). However, 

Fig. 1   An example of infeasibil-
ity in the presence of integer-
valued input under the VRS 
setting

1 3

139



M. Zarrin 

if they are integer-valued, arbitrarily rounding up the input 
excess of C to 3.0 causes infeasibility, in other words, the 
red mark C′′ where is out of the PPS. As it is clear from the 
graph, an arbitrary rounding down the input excess of B to 
1.0 (B′′) does not approach the efficient frontier.

1.2 � Flexible measure DEA

The usual setting for a DEA study is to evaluate DMUs, 
such as hospitals, according to specific input and output 
factors. The output represents the result of the DMU, while 
the input is intended to describe what led to the creation of 
that output. However, there exist some situations where some 
measures can play the role of either output or input. Consider, 
for example, the number of graduates or trainee nurses in a 
university hospital. These measures can constitute either input 
(two available human resources to the hospital) or output 
(trained staff, henceforth an advantage resulting from teaching/
research funding). These measures are known as flexible or 
dual-role measures in DEA literature. In cases of ambiguity, 
it is imperative to adhere to the most equitable treatment 
possible for a particular DMU in order to decide the status 
of a variable. This ambiguity is further compounded if one 
views performance measurement from the perspective of an 
administrative organization as a manager. As with university 
hospitals, deciding whether graduates are to be regarded as 
an input or an output can have a tremendous impact on the 
funding received by each individual candidate. Therefore, these 
hospitals have a financial interest in using the least controversial 
and most fair method possible to assess efficiency.

The use of a factor as both an input and an output is not 
completely unheard of in the DEA framework. The status 
of flexible variables in DEA settings can be determined by 
at least three approaches. The first approach treats flexible 
measures on both the input and output sides simultaneously. 
For example, Beasley [14] treats “research funding” on both 
the input and output sides at the same time in university 
efficiency measuring. Later, Cook, et al. [15] show that this 
treatment is not completely appropriate. Second, and perhaps 
most obvious, is to consider the issue from the standpoint of 
individual DMUs. A DEA model is run specifically for each 
DMU to determine the optimal role of each flexible measure. 
It could then be decided based on the majority choice among 
the DMUs what the overall input versus output status of 
any flexible measure is. In this case, it would seem to be the 
least controversial way to choose to apply a simple majority 
decision rule [16]. As a third alternative, it is possible to 
consider the situation from the viewpoint of the manager of 
a collection of DMUs. Specifically, consider defining each 
flexible variable as an input or output so that the average or 
aggregate efficiency of the set of DMUs is maximized. An 
approach such as this would be useful if ties are encountered 
on a case-by-case basis [15–17].

This study aims to develop an SBM DEA model that 
includes integer- and continuous-valued inputs, outputs, and 
flexible measures at the same time. Each flexible measure 
in the proposed model can be viewed as input, output, or 
both. The flexible measure’s optimal role for the DMU being 
evaluated is dedicated to maximizing its technical efficiency. 
As a result, both the input surplus and output shortfall 
(slacks) may be present in the optimal solution set for each 
inefficient DMU. For efficient DMUs, flexible measures can 
be viewed both as input and output without affecting the 
degree of efficiency, since they are the ones with no slacks 
in their optimal solution. The proposed model has another 
advantage in that all three classes of measures can only take 
integer-valued slacks.

The rest of this paper is structured as follows. The 
literature on theoretical and application issues is reviewed 
in Section 2. In section 3, we review the advances in SBM 
DEA models in the presence of integer-valued and flexible 
measures. Then, we propose a new model as well as a new 
efficiency index. Section 4 presents the case study of the 
German university hospitals and the results of running the 
proposed models (efficiencies and slacks) and the developed 
ones in the literature. We also analyze the obtained results 
from the models and investigate the inefficiencies sources 
in this section. Finally, we wrap up our study and findings 
in Section 5.

2 � Literature review

This section provides an overview of the theoretical and 
application literature. We begin by examining studies related 
to the measurement of university hospital performance. 
Afterward, we review the theoretical development of the 
DEA models for integer-valued and flexible measures.

From a practical perspective, this study focuses on the 
performance evaluation of university hospitals. As reported 
in the health economics literature, teaching and university 
hospitals are more expensive than non-teaching counterparts 
(e.g., acute and general hospitals) since they engage in not 
only patient care but also in medical education and research. 
Therefore, this teaching/researching mission should be 
appropriately captured by defining proper measurements in 
the performance assessment process. One of the first studies 
in this field is conducted by Grosskopf, et al. [18]. They 
compare the patient service provision of both non-teaching 
and teaching hospitals by the means of the basic DEA model. 
They apply the DEA model to a dataset that includes 556 
non-teaching and 236 teaching hospitals in the US. Their 
results specify around 10% of the teaching hospitals can 
efficiently compare with non-teaching counterparts. Later, 
Grosskopf, et al. [19] evaluate the relative scale and technical 
efficiencies of 254 US teaching hospitals. They find that 
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intensified competition results in superior efficiency deprived 
of cooperating teaching intensity. Ozcan, et al. [20] evaluate 
the performance of Brazilian teaching hospitals considering 
both medical care and teaching/research. They conclude their 
study by indicating the required changes for the inefficient 
teaching hospitals as some recommendations for public 
financing and teaching ratios. In another study, Lobo, et al. 
[21] study the efficiency of 104 teaching hospitals in Brazil. 
They use a two-stage weighted DEA model followed by 
logistic regression analysis in the second stage to examine the 
effect of non-discretionary variables (e.g., ownership type) on 
the efficiency scores. The result of the regression shows no 
significant relationship between ownership and efficiency. In 
the case of the German hospital market, recently, Schneider, 
et al. [22] conduct a study on efficiency analysis of German 
hospitals (including both teaching and non-teaching) with a 
focus on investigating the relation between medical urgency 
and efficiency. Their results show a lower efficiency for 
teaching hospitals compared to the non-teaching ones. This 
is because the same set of input/output with the non-teaching 
hospitals is only used in their DEA model and the teaching 
function is not apprehended.

The integer DEA models have not attracted too much 
attention even though this situation can happen frequently in 
real-case applications. One reason for this may be the com-
mitment of the DEA researchers to Linear Programming (LP) 
models since most LP DEA models can be proficiently solved 
even for big datasets using non-commercial solvers. To our 
knowledge, Lozanoand Villa [23] introduce the first DEA 
model whose inputs and outputs are intuitively constrained 
to take integer values only. They model their problem as a 
Mixed-Integer Linear Programming (MILP) for assessing 
efficiency of DMUs. Kuosmanenand Matin [11] develop a 
new axiomatic foundation (namely, “natural disposability” 
and “natural divisibility”) for DEA subject to the integral-
ity constraints. They derive a new DEA PPS that fulfills 
the minimum extrapolation principle under their advanced 
axioms. They also present an MILP formula for assessing 
efficiency scores of Iranian university departments under 
the CRS assumption. Later, Kazemi Matinand Kuosmanen 
[24] extend their axiomatic foundation for the integer DEA 
under VRS, non-increasing, and non-decreasing returns to 
scale. Khezrimotlagh, et al. [25] critique these two models 
and show that the input targets obtained from the model pro-
posed by Kuosmanenand Matin [11] and Kazemi Matinand 
Kuosmanen [24] may not be less than those computed by 
the model developed by Lozanoand Villa [23]. Jie, et al. [26] 
provide a technical note on the model proposed by Kuos-
manenand Matin [11] and improve their model into a recti-
fied model. They show that the new model can effectively 
answer the problem of a counter case studied by Khezrimot-
lagh, et al. [25]. Since additive models target slacks directly 
in reporting the efficiency, they reveal higher discrimination 

power especially in the presence of integer values. Du, et al. 
[12] propose new models based on Andersen and Petersen’s 
technique [27] in which slacks are directly investigated in 
order to compute efficiency and super-efficiency scores when 
inputs and outputs are integer-valued.

For the purpose of incorporating flexible measures, Cookand 
Zhu [16] present a modification of the standard CCR DEA 
model and illustrate its application in two practical problem 
settings. They develop their model using the MILP approach 
to suggest both a specific DMU model and an aggregate model 
as methods to originate suitable descriptions for flexible meas-
ures. However, their technique may report incorrect inefficiency 
indices attributable to a computational problem as a result of 
utilizing a large positive number in their model. This situa-
tion is addressed by Toloo [28]. He revises Cook and Zhu’s 
model so that it does not need to introduce a large positive 
number. The methodology classifies flexible measures either 
as input or output according to their contribution to technical 
efficiency optimization (optimum solution) based on MILP 
housing both possibilities simultaneously. Afterward, several 
studies try to propose further refinements [17, 29–31]. Some 
of the researchers also try to provide an ensuing and instruc-
tive discussion on the infeasibility issues of these models such 
as Amirteimooriand Emrouznejad [32] and Sedighi Hassan 
Kiyadeh, et al. [33]. The flexible SBM (FSBM) models have 
recently been addressed by some studies. Amirteimoori, et al. 
[34] introduce an FSBM for calculating the efficiency score 
where flexible measures are present. They show that if a DMU 
is perceived as efficient the flexible measure can play both input 
and output roles. Tohidiand Matroud [35] develop an alternative 
non-oriented model to classify the status of flexible measures 
and determine returns to scale setting.

There are as well situations in the real world where certain 
measures can play either input or output roles and can only take 
integer values, for instance, the number of graduates. Such real 
situations result in new unified DEA models in which both inte-
ger-valued amounts and flexible measures are simultaneously 
addressed. Kordrostami, et al. [36] contribute to this topic by 
proposing an additive slacks-based approach which is also treat-
able under both VRS and CRS environments. However, additive 
models do not directly calculate the efficiency score of the DMU 
under evaluation in their objective function. Therefore, the final 
efficiency score can be (post) calculated using the SBM DEA 
model’s definition. However, as pointed out by Khezrimotlagh, 
et al. [37] the score of SBM for the additive model may not result 
in an appropriate efficiency score. The SBM model measures 
the maximum possible slacks to minimize the efficiency score, 
whereas the additive model measures the maximum possible 
slacks without concerning the minimum efficiency score [2]. 
Therefore, the proposed model by Kordrostami, et al. [36] which 
is based on Du, et al. [12] may not report all inefficiencies (effi-
ciency scores) correctly. Another issue that can be recognized is 
the way the flexible measures have been addressed in the FSBM 
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models such as in Amirteimoori, et al. [34]. They address the 
flexible measures in a way that deviates from the standard SBM. 
Since flexible measures can simultaneously be designated as 
input and output in the objective function, the averages in both 
the numerator (input excess) and denominator (output shortfall) 
are respectively computed using the fixed numbers of inputs 
plus the flexible measures and the fixed numbers of outputs plus 
the flexible measures regardless of the optimum solution where 
the status of the flexible measure is determined. Consequently, 
the efficiency score is overestimated compared to the efficiency 
score obtained from the standard SBM. Furthermore, the flex-
ible measure may be differently classified for some DMUs. 
Boďa [38] addresses this issue by proposing a modified model 
that distinguishes the same efficient and inefficient DMUs as 
Amirteimoori, et al. [34], however, realizes different projections 
for inefficient DMUs which means different classifications of 
flexible measures.

This study proposes an SBM model in which both flex-
ible and integer measures are simultaneously presented. The 
main advantage of the proposed model is all input, output, and 
flexible measures can take integer-valued quantities without 
fluctuating the efficiency level. In addition, the mathemati-
cal reformulation of the proposed models considers two main 
properties of the SBM DEA model: units-invariant and mono-
tone decreasing in slacks. Furthermore, the technical efficiency 
score is directly calculated in the proposed SBM model and 
inflation of scores is prevented by modifying the input and 
output inefficiencies. The proposed model is developed based 
on the MILP approach then, can be easily solved by most 
non-commercial and open-source solvers. Furthermore, slack 
values of inputs, outputs, and flexible measures calculated by 
the proposed model are reported and compared with those 
obtained from Kordrostami, et al. [36]. However, the same effi-
cient and inefficient DMUs are detected as Kordrostami, et al. 
[36], the projections for inefficient DMUs and, consequently, 
classifications of flexible measures are different from each 
other. We also propose a new objective function for the model 
developed by Kordrostami, et al. [36] so that the new additive 
efficiency index falls between zero and one. The applicability 
of the introduced models is illustrated and scrutinized via a 
real-case dataset of German university hospitals. The main 
practical goal is to indicate the magnitude and source of inef-
ficiencies for the university hospitals. This might support both 
local and national health authorities in decision-making pro-
cesses including resource allocation, utilization, and planning.

3 � Slacks‑based measure data envelopment 
analysis

We first present progress made in integer-valued and flex-
ible DEA models in literature before moving on to the final 
proposed model. By doing this, readers should be able to 

better understand how the models have evolved over the past 
two decades. Moreover, it allows us to point out how our 
proposed model advances other models by investigating their 
differences and commonalities. To begin with, it is worth 
mentioning the notations used in this paper as follows:

Sets and indices:

•	 N: set of DMUs, N = {1, …, n}
•	 I: set of real-valued inputs, I = {1, …, m}
•	 O: set of real-valued outputs, O = {1, …, s}
•	 K: set of real-valued flexible measures, K = {1, …, p}
•	 II: set of the integer-valued inputs, II = {1, …, mI}
•	 INI: set of the non-integer valued inputs, INI = {1, …, mNI}
•	 OI: set of the integer-valued outputs, OI = {1, …, sI}
•	 ONI:  set  of the non-integer-valued outputs, 

ONI = {1, …, sNI}
•	 KI: set of integer-valued flexible measures, KI = {1, …, pI}
•	 KNI: set of non-integer-valued flexible measures, 

KNI = {1, …, pNI}
•	 j: index of DMUs, j ∈ N = {1, …, n}
•	 i: index of inputs i ∈ I = II ∪ INI

•	 r: index of outputs r ∈ O = OI ∪ ONI

•	 k: index of flexible measures k ∈ K = KI ∪ KNI

Parameters:

•	 xij: real-valued amounts of input i utilized by DMUj
•	 yrj: real-valued amounts of output r produced by DMUj
•	 zkj: real-valued amounts of flexible measure k utilized/

produced by DMUj

Decision variables:

•	 λj: coefficients of the convex linear combination
•	 sx

i
 : real-valued amounts of input i (excess)

•	 s
y
r : real-valued amounts of output r (shortfall)

•	 sz
1k
, sz

2k : real-valued amounts of flexible measure k slack 
designated as input and output, respectively

•	 s̃x
i
 : integer-valued amounts of input i (excess)

•	 s̃
y
r : integer-valued amounts of output r (shortfall)

•	 s̃z
1k
, s̃z

2k : integer-valued amounts of flexible measure k 
slack designated as input and output, respectively

•	 d̃
k
, d

k
 : binary variables to indicate the role of integer- and 

non-integer valued flexible measure k, (respectively)

Auxiliary variables:

•	 x̃ij : integer-valued reference point for input i utilized by 
DMUj

•	 ỹrj : integer-valued reference point for output r produced 
by DMUj
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•	 z̃kj : integer-valued reference point for flexible measure k 
utilized/produced by DMUj

•	 s′
z

1k
, s′

z

2k : auxiliary variables for real flexible measure k 
as input and output, respectively

•	 �x
i
 : auxiliary variable for the real input i (excess)

•	 �
y
r : auxiliary variable for the real output r (shortfall)

•	 �z
1k
, �z

2k : auxiliary variables for real flexible measure k as 
input and output, respectively

•	 s̃′z
1k
, s̃′z

2k : auxiliary variables for integer flexible measure 
k as input and output, respectively

•	
∼

�
x

i  : auxiliary variable for the integer input i (excess)
•	

∼

�
y

r : auxiliary variable for the integer output r (shortfall)
•	

∼

�
z

1k
,
∼

�
z

2k : auxiliary variables for integer flexible measure 
k as input and output, respectively

•	 ak′ , ãk′ : auxiliary binary decision variables

Now, assume we have n DMUs, DMUj ∀ j = 1, …, n, that 
utilize m inputs (real-valued inputs), xij, ∀ j, i = 1, …, m to 
produce s outputs (real-valued outputs) yrj, ∀ j, r = 1, …, s. 
The inputs and outputs can take only positive values1 i.e., 
x, y > 0. Then, the SBM DEA model proposed by Tone [2] 
can be formulated as:

where ρSBM
h

 is the SBM efficiency score of the unit under 
evaluation DUMh. λ = (λ1, …, λn) is called the inten-
sity vector which identifies the reference sets for DMUh. 
sx =

(

sx
1
,… , sx

m

)

 and sy =
(

s
y

1
,… , s

y
r

)

 are respectively repre-
senting the input and output slacks. Note that Model (1) and 
the following models are formulated under the CRS setting, 
however, they can be reformulated under the VRS setting by 
simply adding 

∑n

j=1
�j = 1 to the set of constraints.

[SBM]

(1.1)ρSBM
h

= Min
1 − m−1

�

∑

i∈I

sx
i

xih

�

1 + s−1
�

∑

r∈O
s
y
r

yrh

�

(1.2)s.t. xih =
∑n

j=1
�jxij + sx

i
, ∀i ∈ I

(1.3)yrh =
∑n

j=1
�jyrj − sy

r
, ∀r ∈ O

(1.4)�j, s
x
i
, sy

r
≥ 0, ∀j, i, r

3.1 � Integer‑valued SBM DEA model

Suppose that some of the inputs and outputs are only valid 
in integer form. The input set I = II ∪ INI, where II shows the 
index of the integer-valued inputs and INI shows the index 
of the rest of the inputs (non-integers). Similarly, the output 
set O = OI ∪ ONI. To analyze the efficiency score of DMUs 
in the presence of integer-valued quantities, Model (1) can 
be straightforwardly formulated based on the PPS defined 
by Du, et al. [12]. Accordingly, the Integer-valued SBM 
(ISBM) DEA model can be written as follows:

where ρISBM
h

 shows the efficiency score of DMUh in the 
presence of integer measures. Du et al. [11] ‘s model does 
not offer a zero-to-one integrated efficiency score, as in the 
standard additive DEA model. Model (2) differs from the Du, 
et al. [12] model in its definition of the efficiency index (the 
objective function), which mirrors SBM’s efficiency score [2]. 
Variables s̃x

i
 and s̃yr are respectively non-radial slacks for integer-

valued inputs and outputs while variables x̃ih and ỹrh ∈ ℤ
+

are the integer-valued reference points (targets) for inputs and 
outputs of DMUh, respectively. The slack variables s̃x

i
 and s̃yr 

signify the absolute difference between the reference points ( ̃xih 
and ỹrh ) and the integer-valued inputs and outputs. As shown 
in Fig. 1, under the VRS setting, the integer DEA targets may 

[ISBM]

(2.1)s.t. ρISBM
h

= Min

1−m−1

�

∑

i ∈ INI
sx
i

xih
+
∑

i ∈ II
s̃x
i

xih

�

1+s−1

�

∑

r ∈ ONI
s
y
r

yrh
+
∑

r ∈ OI
s̃
y
r

yrh

�

(2.2)xih =
∑n

j=1
�jxij + sx

i
, ∀i ∈ INI

(2.3)yrh =
∑n

j=1
�jyrj − sy

r
, ∀r ∈ ONI

(2.4)x̃ih ≥
∑n

j=1
𝜆jxij, ∀i ∈ II

(2.5)x̃ih = xih − s̃x
i
, ∀i ∈ II

(2.6)ỹrh ≤
∑n

j=1
𝜆jyrj, ∀r ∈ OI

(2.7)ỹrh = yrh − s̃y
r
, ∀r ∈ OI

(2.8)𝜆j, s
x
i
, sy

r
, s̃x

i
, s̃y

r
≥ 0, ∀j, i, r, k

(2.9)x̃ih, ỹrh integer∀i ∈ II , r ∈ OI

1  A difficulty arises with zero value measures since the slacks-based 
ratios are then divided by zero. To handle this problem Tone [2] pro-
vides some insights on how to deal with zeros. 
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not lie within the feasible area (the convex hull). That is why 
the modeling of the relationship between the convex linear 
combination and the integer-valued targets i.e., Eqs. (2.4) and 
(2.5) for integer-valued inputs, and Eqs. (2.6) and (2.7) for 
integer-valued outputs are slightly different from real-valued 
counterparts in Model (1). In other words, by defining the 
integer-valued reference points ( ̃xih and ỹrh ) we guarantee the 
feasibility of the integer DEA model [12].

3.2 � Flexible SBM DEA model

Consider p flexible measures shown by zkj, ∀ j = {1, …, n}, 
k = {1, …, p} whose statuses (input or output) are unknown. 
To incorporate these measures, Model (1) can be reformu-
lated based on the SBM model proposed by Amirteimoori, 
et al. [34] for classifying the flexible measures as follows:

where sz
1k

 and sz
2k

 are the slacks vectors responding to the 
flexible measures treating as inputs and outputs, respectively. 
sz
1k

> 0 results in designating zko as input and sz
2k

> 0 means 
zko plays the role of output in the PPS. Since zkh must be 
either designated as input or output, the unique status of it 
in the PPS is indicated by Eq. (3.5). The nonlinearity of this 
constraint can be handled by introducing a large positive 
number M and a binary decision variable dk, ∀ k that assures 
one and only one of the variables sz

1k
 and sz

2k
 takes positive 

(non-zero) values simultaneously. Then, Eq. (3.5) can be 
replaced with the following equivalent linear constraints:

[FSBM]

(3.1)s.t. ρFSBM
h

= Min
1−(m+(p−

∑p

k=1
dk))

−1
�

∑

i∈I

sx
i

xih
+
∑

k∈K

sz
1k

zkh

�

1+(s+
∑p

k=1
dk)

−1
�

∑

r∈O

s
y
r

yrh
+
∑

k∈K

sz
2k

zkh

�

(3.2)xih =
∑n

j=1
�jxij + sx

i
, ∀i ∈ I

(3.3)yrh =
∑n

j=1
�jyrj − sy

r
, ∀r ∈ O

(3.4)zkh =
∑n

j=1
�jzkj + sz

1k
− sz

2k
, ∀k ∈ K

(3.5)sz
1k
⋅ sz

2k
= 0, ∀k ∈ K

(3.6)�j, s
x
i
, sy

r
, sz

1k
, sz

2k
≥ 0,∀j, i, r, k

(3.5.1)sz
1k

≤ M ⋅

(

1 − dk
)

, ∀k ∈ K

(3.5.2)sz
2k

≤ M ⋅ dk, ∀k ∈ K

This condition should be reflected in the objection 
function Eq. (3.1) as well. In other words, if sz

1k
> 0,∀k 

(dk = 0, ∀ k) then sz
2k

= 0 (dk = 1, ∀ k) and the total number 
of inputs is (m + p) in the numerator consequently, the total 
number of the outputs in the denominator is (s). However, 
this issue is skipped by Amirteimoori, et al. [34], and the 
number of inputs and outputs they utilize are (m + p) and 
(s + p), respectively. In other words, they consider the num-
ber of flexible measures at the same time in both numerator 
and denominator of the objective function. This results in 
overestimating the efficiency score since the second term 
of both numerator and denominator is underestimated. This 
issue can be solved by redefining the efficiency score as 
Eq. (3.1). However, the objective function of Model (3) is 
non-linear. A linear counterpart of Model (3) is proposed 
by Boďa [38]. He modifies the FSBM model proposed by 
Amirteimoori, et al. [34] and proposes the following model:

[mFSBM]

(4.1)ρmFSBM
h

= Min
1 −

�

∑

i∈I

�x
i

xih
+
∑

k∈K

�z
1k

zkh

�

1 +
�

∑

r∈O
�
y
r

yrh
+
∑

k∈K

�z
2k

zkh

�

(4.2)s.t. xih =
∑n

j=1
�jxij + sx

i
, ∀i ∈ I

(4.3)yrh =
∑n

j=1
�jyrj − sy

r
, ∀r ∈ O

(4.4)zkh =
∑n

j=1
�jzkj + sz

1k
− sz

2k
, ∀k ∈ K

(4.5.1)sz
1k

≤ M ⋅

(

1 − dk
)

, ∀k ∈ K

(4.5.2)sz
2k

≤ M ⋅ dk, ∀k ∈ K

(4.6)
∑p

k�=0
k� ⋅ ak� =

∑p

k=1
dk

(4.7)
∑p

k�=0
ak� = 1

(4.8)
−
(

1 − ak�
)

⋅M + �x
i
⋅

(

m + p − k�
)

≤ sx
i
≤
(

1 − ak�
)

⋅M + �x
i
⋅

(

m + p − k�
)

, ∀k� , i

(4.9)−
(

1 − ak�
)

⋅M + �y
r
⋅

(

s + k�
)

≤ sy
r
≤
(

1 − ak�
)

⋅M + �y
r
⋅

(

s + k�
)

, ∀k� , r

(4.10)
−
(

1 − ak�
)

⋅M + �z
1k
⋅

(

m + p − k�
)

≤ sz
1k

≤
(

1 − ak�
)

⋅M + �z
1k
⋅

(

m + p − k�
)

, ∀k� , k

(4.11)−
(

1 − a
k�

)

⋅M + �z
2k
⋅

(

s + k
�
)

≤ s
z

2k
≤
(

1 − a
k�

)

⋅M + �z
2k
⋅

(

s + k
�
)

, ∀k� , k
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where the optimal solution of the model determines the 
source of overestimating efficiency scores 

∑K

k=1
dk . This issue 

can be fixed by introducing an auxiliary binary variable 
ak� ,∀k

� = {0,… , p} which controls the optimized number of 
flexible measures indicated as outputs 

∑p

k=1
dk . Constraints 

(4.6) to (4.13) ensure that the decision variables 
�x
i
=
�

m +
�

p −
∑p

k=1
dk
��−1

⋅ sx
i
,∀i   , 

�
y
r =

�

r +
∑p

k=1
dk
�−1

⋅ s
y
r ,∀r   , 

�z
1k
=
�

m +
�

p −
∑p

k=1
dk
��−1

⋅ sz
1k
,∀k   ,  a n d 

�z
2k
=
�

s +
∑p

k=1
dk
�−1

⋅ �z
2k
,∀k . Therefore, the efficiency 

score is calculated based on the correct total number of 
inputs and outputs. Eqs. (4.6) and (4.7) ensure the above-
mentioned equalities are accomplished only and only for 
k� =

∑p

k=1
dk (equivalently, a∑p

k=1
dk
= 1 ) in Constraints (4.8) 

to (4.11) otherwise, they turn into free limits. The conditions 
defined for flexible measures in Model (3) are valid in this 
model as well. Let dk = 1 then sz

1k
= 0,∀k , sz

2k
> 0,∀k , and 

the flexible measure zko is designated as output. In contrast, 
if dk = 0 then zko plays the role of input.

3.3 � Integer‑valued flexible SBM DEA model

In the presence of both integer and flexible measures 
(K = KI ∪ KNI), Kordrostami, et al. [36] develop the additive 
model proposed by Du, et al. [12] to assess the relative effi-
ciency. Our first step towards assessing the model’s proper-
ties is to write the model as follows:

(4.12)
�j, s

x
i
, sy

r
, sz

1k
, sz

2k
, s�

z

1k
, s�

z

2k
, �x

i
, �y

r
, �z

1k
, �z

2k
≥ 0, ∀j, i, r, k

(4.13)dk, ak� ∈ {0, 1}, ∀k, k�

[FISBM]

(5.1)

τFISBM
h

= Max
∑

i ∈ INI

sx
i

xih
+
∑

i ∈ II

s̃x
i

xih

+
∑

k ∈ KNI

sz
1k

zkh
+
∑

k ∈ KI

s̃z
1k

zkh
+
∑

r ∈ ONI

s
y
r

yrh

+
∑

r ∈ OI

s̃
y
r

yrh
+
∑

k ∈ KNI

sz
2k

zkh
+
∑

k ∈ KI

s̃z
2k

zkh

(5.2)s.t. xih =
∑n

j=1
�jxij + sx

i
, ∀i ∈ INI

(5.3)yrh =
∑n

j=1
�jyrj − sy

r
, ∀r ∈ ONI

(5.4)zkh =
∑n

j=1
�jzkj + sz

1k
− sz

2k
, ∀k ∈ KNI

(5.5)sz
1k
⋅ sz

2k
= 0, ∀k ∈ KNI

where τFISBM
h

 is the maximum summation of slacks. Similar 
to Model (2), a new integer decision variable z̃ko,∀k is intro-
duced which represents integer-valued projection points for 
flexible measure k of DMUo. To calculate the efficiency 
score, Kordrostami, et al. [36] calculate the optimum value 
of slacks s∗ =

(

s∗x, s∗y,
∼
s
∗x

,
∼
s
∗y

, s∗z
1
, s∗z

2

)

 and the determined 
status of flexible measure d∗ obtained from Model (5). Then, 
they use the SBM’s scalar measure as a posteriori efficiency 
index based on a set of optimal solution from Model (5) as 
follows:

This model (as an additive model) deals directly with 
both integer- and real-valued input excesses and output 
shortfalls. However, it has no ratio efficiency term (scalar 
measure) per se. Model (5) is able to discriminate inefficient 
from efficient DMUs by looking for slacks, but it is unable 
to assess the real degree of inefficiency [3, 37]. 

(5.6)x̃ih ≥
∑n

j=1
𝜆jxij, ∀i ∈ II

(5.7)x̃ih = xih − s̃x
i
, ∀i ∈ II

(5.8)ỹrh ≤
∑n

j=1
𝜆jyrj, ∀r ∈ OI

(5.9)ỹrh = yrh − s̃y
r
, ∀r ∈ OI

(5.10)z̃kh =
∑n

j=1
𝜆jzkj + s̃�z

1k
− s̃�z

2k
, ∀k ∈ KI

(5.11)z̃kh = zkj − s̃z
1k
+ s̃z

2k
, ∀k ∈ KI

(5.12)s̃�z
1k
⋅ s̃�z

2k
= 0, ∀k ∈ KI

(5.13)s̃z
1k
⋅ s̃z

2k
= 0, ∀k ∈ KI

(5.14)s̃�z
1k
⋅ s̃z

2k
= 0, ∀k ∈ KI

(5.15)s̃z
1k
⋅ s̃�z

2k
= 0, ∀k ∈ KI

(5.16)𝜆j, s
x
i
, sy

r
, sz

1k
, sz

2k
, s̃x

i
, s̃y

r
, s̃z

1k
, s̃z

2k
≥ 0,∀j, i, r, k

(5.17)x̃ih, ỹrh, z̃kh integer∀i ∈ II , r ∈ OI , k ∈ KI

(6)

𝜁∗FISBMh =

1−(m+(p−
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k=1
d∗
k ))
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⎢

⎢

⎢
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+
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s∗ z
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⎤

⎥
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yrh
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⎥
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⎦
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Mathematically speaking, min
[

1−sx∕m

1+sy∕s

]

≢ max
[

sx

m
+

sy

s

]

 . For 
example, consider sx + sy = 0.2 + 0.4 = 0.8 which is greater 
than sx + sy = 0.4 + 0.3 = 0.7 but 1−s

x

1+sy
=

1−0.2

1+0.4
= 0.5 is not less 

than 1−s
x

1+sy
=

1−0.4

1+0.3
= 0.46 . Therefore, we introduce a modified 

SBM DEA model (hereafter mFISBM) in an attempt to 
define the efficiency index directly based on the slacks and 
in the presence of integer and flexible measures as Model 
(7).

[mFISBM]

(7.1)

ρmFISBM
h
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s.t. (5.2)–(5.15)

(7.2)
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(7.8)
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(7.9)
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)

⋅M +
∼

𝛿
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≤ s̃y
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𝛿
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where similar to Model (4), the set of decision variables 
{δx, δy, δz}, and their equivalents for integer-valued measures 

(i.e., 
{

∼

�
x

,
∼

�
y

,
∼

�
z
}

 ) make sure that the efficiency score is cal-

culated based on the correct total number of inputs and out-
puts in the objective function by setting the boundaries of 
Constraints (7.4) to (7.7) and Constraints (7.10) to (7.13) via 
introducing the binary decision variable set 

{

dk, ak′ , d̃k, ãk′
}

 . 
The nonlinear Constraints (5.12) to (5.15) can be equiva-
lently reformulated as the following set of linear 
constraints:

The modified flexible integer-valued SBM DEA model 
introduced here has all properties of the SBM DEA model 
originally developed by Tone [2]. The mFISBM is units-invar-
iant, i.e., the value of ρ∗mFISBM

h
 (≤1) is autonomous of the units 

in which the inputs, outputs, and flexible measures are assessed. 
It can as well be confirmed that ρmFISBM

h
 is monotone decreasing 

in all input excesses, output shortfalls, and flexible slacks. To 
such an extent, a larger value results larger performance score 
in the attainment of the efficient frontier/facet. ρ∗mFISBM

h
= 1 

means sx∗ = 0, sy
∗ = 0, s

z

1

∗
= 0, s

z

2

∗
= 0,

∼
s

x∗

= 0,
∼
s

y∗

= 0,
∼
s

z

1

∗

= 0, and
∼
s

z

2

∗

= 0 , i.e., no 
real and integer input excesses, no real and integer output short-
falls, and no real and integer flexible measure slacks in any 
optimal solution. DMUh 

(

xh, yh, zh,
∼
xh,

∼
yh,

∼
zh

)

 is inefficient if 
ρ∗mFISBM

h
< 1 . This condition means we have the following 

expression for inefficient DMUh 
(

xh, yh, zh,
∼
xh,

∼
yh,

∼
zh

)

 : 
xh = Xλ∗ + sx∗, yh = Yλ∗ − sy∗, zh = Y�∗ + sz

1

∗
− sz

2

∗ where 
sz
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∗
.sz
2

∗
= 0  ,  

∼
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X�∗ +
∼
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 ,  
∼
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Y�∗ −
∼
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 , 

(7.12)
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i
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r
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(7.15)x̃ih, ỹrh, z̃kh integer∀i ∈ II , r ∈ OI , k ∈ KI

(7.16)dk, ak� , d̃k, ãk� ∈ {0, 1},∀k, k�

(5.12.1)s̃z
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≤ M ⋅
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)
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(5.13.1)s̃z
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(5.14.1)s̃�z
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)
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(5.15.1)s̃�z
2k

≤ M ⋅ d̃k, ∀k ∈ KI
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∼
zh =

∼

Y�∗ +
∼
s
z

1

∗

−
∼
s
z

2

∗

 where 
∼
s
z

1

∗

.
∼
s
z

2

∗

= 0 . Straightforwardly, 
DMUh can become efficient by omitting the slacks i.e., 
xh ← xh − sx∗, yh ← yh + sy∗, zh ← zh − s

z

1

∗
+ s

z

2

∗
∶ s

z

1

∗
⋅ s

z

2

∗
= 0 , 

∼
xh ←

∼
xh −

∼
s
x∗

  ,  
∼
yh ←

∼
yh +

∼
s
y∗

  , 
∼
zh ←

∼
zh −

∼
s

z

1

∗

+
∼
s

z

2

∗

∶
∼
s

z

1

∗

⋅

∼
s

z

2

∗

= 0 . These operations can be 
called mFISBM-projections as the SBM-projection in Tone [2].

The set of DMUs with the corresponding λ∗ > 0 is called 
reference-set to DMUh as the SBM DEA model. Further-
more, a DMU is FISBM-efficient if and only if it is mFISBM-
efficient (see Appendix 1). Similar to the SBM model [2], 
the formulation of ρmFISBM

h
 in Model (7) can be interpreted 

as the product of input and output inefficiencies or the sec-
ond term of numerator and denominator, correspondingly. 
Then, the numerator and denominator evaluate, respectively, 
the mean reduction rate of inputs and mean expansion rate 
of outputs considering the optimal role of flexible measures 
as well. It should be noted that when ρ∗mFISBM

h
= 1 , the status 

of the real- and integre-valued flexible measures cannot be 
declared for DMUo. As explained by Boďa [38], this is the 
case of indefinite and it reports technical efficiency score 

where no matter what L-tuple of {0, 1} is taken for 
{

d,
∼

d

}

.

The non-oriented mFISBM DEA model can be reformu-
lated as input-oriented (IO) by setting the denominator of Eq. 
(7.1) to one and excluding Constraints (7.4), (7.6), (7.10), 
and (7.12) from the system. In the same way, the output-ori-
ented (OO) mFISBM DEA model can be written but, in this 
case, we maximize the denominator and set the numerator 
to 1, and remove Constraints (7.5), (7.7), (7.11), and (7.13) 
from the model. The oriented mFISBM technical efficiency 
scores are optimal values ρ∗mFISBM−IO

h
and 1∕ρ∗mFISBM−OO

h
 

where ρ∗mFISBM−IO
h

and1∕ρ∗mFISBM−OO
h

≥ ρ∗mFISBM
h

 . Then, 
there is no need for the Charnes–Cooper transformation 
(explicitly, no need for dealing with multiplying the scalar 
variable t > 0 in slacks) since both objective functions are 
linear and the optimum solutions are directly reported by 
the models.

When dealing with large case studies, there may be a 
concern about the size (total number of decision variables 
and constraints) of Model (7) compared to Model (5). This 
could be problematic from the perspective of computational 
complexity. To handle this issue, we propose Model (8) with 
less size than Model (7) as follows (hereafter revised FISBM 
or rFISBM):

[rFISBM]

(8.1)

ΩrFISBM
h

= Min 1−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

i ∈ INI

s∗ x
i

xih
+
∑

i ∈ II

s̃∗ x
i

xih
+
∑

k ∈ KNI

s∗ z
1k

zkh
+
∑

k ∈ KI

s̃∗ z
1k

zkh

+
∑

r ∈ ONI

s∗ y
r

yrh
+
∑

r ∈ OI

s̃∗
y
r

yrh
+
∑

k ∈ KNI

s∗ z
2k

zkh
+
∑

k ∈ KI

s̃∗ z
2k

zkh

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

m+s+p

Model (8) is also units-invariant and provides an inte-
grated efficiency index ( ΩrFISBM

h
 ) ranging from 0 to 1 (see 

Appendix 2). ΩrFISBM
h

can be also called monotonically 
decreasing with respect to input, output, and flexible slacks 
so that a larger value represents a smaller slack ratio then, 
better performance in reaching the efficient frontier. How-
ever, unlike ρmFISBM

h
 , ΩrFISBM

h
 cannot be construed as the 

product of input and output inefficiencies. Therefore, the 
efficiency index calculated by Model (8) cannot be recom-
mended when the investigation of inefficiency sources is the 
goal of performance evaluation.

3.4 � Decomposition of inefficiency

Using optimal slacks s∗ =
(

s∗x, s∗y,
∼
s
∗x

,
∼
s
∗y

, s∗z
1
, s∗z

2

)

 and the 
optimal role of integer- and non-integer valued flexible 

measures 
(

∼

d
∗

, d∗
)

obtained from the models, we can decom-

pose the inefficiency scores as input and output inefficien-
cies. These two terms are informative for identifying the 
sources of inefficiency and the magnitude of their influence 
on the efficiency score. In other words, the greater the inef-
ficiency, the lower the efficiency score since the inefficiency 
value is subtracted from the maximum viable efficiency 
score (=1).

3.5 � Analysis of environmental variables

An environmental factor refers to factors that can influence 
the efficiency of a teaching hospital but are not traditional 
variables that can be controlled by the manager. A health 
care organization’s environment may be affected by a vari-
ety of factors, including patient needs, a local economy, the 
location of its facilities, or institutional constraints related 
to access to capital. The environment in which hospitals 
operate may seriously bias conclusions if the environment 
is not adequately accounted for. There must be appropriate 
factors identified in advance so as to determine whether or 
not the conditions of the environment in which a hospital 
operates affect the relative efficiency scores. Due to the lack 
of data and difficulty in identifying or delineating catchment 

s.t. (5.2)–(5.17) .

(9)
Input inefficiency ∶

⎡

⎢

⎢

⎢

⎢

⎣

∑

i ∈ INI

s∗ x
i

xih
+
∑

i ∈ II

s̃∗ x
i

xih
+
∑

k ∈ KNI

s∗ z
1k

zkh
+
∑

k ∈ KI

s̃∗ z
1k

zkh

⎤

⎥

⎥

⎥

⎥

⎦

mNI+mI+
�

pNI−
∑pNI

k=1
d∗
k

�

+
�

pI−
∑pI

k=1
d̃∗
k

�

(10)
Output inefficiency ∶

⎡

⎢

⎢

⎢

⎢

⎣

∑

r ∈ ONI

s∗
y
r

yrh
+
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r ∈ OI

s̃∗
y
r

yrh
+
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k ∈ KNI

s∗ z
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zkh
+
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⎤
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⎥

⎥
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sNI+sI+
∑pNI

k=1
d∗
k
+
∑pI

k=1
d̃∗
k
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areas for university hospitals, we use state-specific values. 
Five factors identified to model the environment in which 
the university hospitals operate are:

•	 Population Density. This factor can influence inputs 
and outputs and thus efficiency. This might be, for 
example, due to the fact that the lower population 
density surrounding hospitals could lead to less staff 
availability and limited access to education and medical 
care.

•	 Mortality Rate. This factor indicates the number of 
deaths per million population. As a result of this fac-
tor, we can speculate that a higher mortality rate may 
be linked to more hospitalizations or a higher previous 
illness rate.

•	 Population over 65 (% of the total population). As a 
demographic indicator, this figure is suitable for investi-
gation, since a higher proportion of older people might 
result in a higher probability of illness and lower employ-
ment rates.

•	 Education Index. This factor shows the extent to 
which a federal state’s education system contributes 
to economic growth and prosperity. It can be taken 
from the Education Monitor report published by the 
Cologne Institute for Economic Research. Since it is a 
comprehensive assessment spectrum, from the number 
of dropouts to new doctoral graduates, this metric seems 
to be suitable for examining whether different existing 
educational structures of the various states can influence 
the teaching performance of the university hospitals 
under study.

•	 Gross Domestic Product per Capita (GDP/Capita). One 
reason this economic indicator deserves attention is 
that starting and completing a medical degree program 
(which usually takes six years in Germany) often depends 
on the financial circumstances of the aspiring students 
and their parents. In addition, this indicator is suitable for 
capturing the financial support provided by the federal 
state, and thus the teaching resources available across 
German states.

By applying a two-stage analysis, we first solve DEA by 
taking into account the inputs, outputs, and flexible vari-
ables, then regress the efficiency scores (as the depend-
ent variable) on the environmental variables (Ferrier and 
Valdmanis 1996). The efficiency scores are often fitted 
with a censored Tobit regression model since they are 
bounded on both ends of the distribution (0 ≤ Efficiency 
Score ≤ 1). The environmental factors for each university 
hospital can be defined as a (1 × r) vector E. The Tobit 
regression is then projected as 𝛿j = Ej� + 𝜀j . The inde-
pendent variable (the efficiency score of DMUj or Effj) can 
be given by Eq. (11).

where, δ̂j is the efficiency score obtained from Model (7) 
and Model (8). β is an (r × 1) vector of coefficients that need 
to be estimated in the stage associated with each contextual 
(environmental) variable through the maximum (log-)like-
lihood estimation approach. εj is a truncated normal ran-
dom variable. Simarand Wilson [39], however, show that 
using efficiency scores as the dependent variable violates the 
classical regression assumption that variables are independ-
ent and identically distributed, which invalidates standard 
approaches to inference. In this case, it is unwise to draw 
firm conclusions from conventional statistical tests. Instead, 
it may be considered exploratory, which variables appear to 
be most influential on performance.

4 � Application: The case of German 
university hospitals

In this section, we use a dataset of 28 public university 
hospitals in Germany2 in 2017. The data collection was 
carried out in different research steps including homepages 
of the hospitals and direct contact (e-mail/telephone inquir-
ies) to the responsible departments and proved to be very 
cumbersome. For inputs, we consider the number of beds, 
physicians, and nurses. The number of beds is an integer-
valued input measure. However, physicians and nurses are 
in full-time equivalent (FTE) units, i.e., real values. The 
number of outpatients and case-mix adjusted discharges 
for inpatients are designated as integer and real outputs, 
respectively. However, these two outputs as the major out-
puts for general hospitals, do not provide teaching function. 
Therefore, we use the number of medical students as the 
integer-valued output of the university hospitals. The total 
number of students enrolled in the university hospital’s 
medical degree programs is reflected in this factor. Since 
they are not yet trained to practice medicine alongside 
physicians at a population level, they cannot work in any 
specialties. This makes them ineligible to be considered 
as input (trained staff) for university hospitals. However, 
the degree to which teaching contributes to the training of 
highly skilled personnel is also an important component 
in the academic mission performance of a university hos-
pital. Therefore, the total number of medical students is 
considered as an output [20]. We also introduce two more 

(11)Effj =

{

𝛿j if 𝛿j ≤ 1

0 if 𝛿j > 1

2  There exist 35 German university hospitals together with their 
medical faculties. However, due to the lack of availability of data for 
seven units, they have been excluded from the analysis. A complete 
list of German university hospitals is available at https://​www.​unikl​
inika.​de/.
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flexible measures to represent the teaching function in the 
efficiency assessment: the number of graduates and third-
party funding income. Graduates who have completed their 
doctorate in medicine (trained) in a university hospital can 
play the role of either input (an available and qualified 
resource who can work under the supervision of the facul-
ties or physicians so can affect their productivity) or output 
(accomplished staff, then a benefit resulting from teach-
ing funding). Third-party funding income can be similarly 
interpreted in the efficiency evaluation of university hos-
pitals; as input (a form of earnings received) or as output 
since most research-granting agencies are willing to assign 
funds to the university hospitals with the supreme impact.

Table 1 represents the data of 28 university hospitals 
with 3 inputs, 3 outputs, 2 flexible measures as well as 5 
environmental factors. In the last four rows of the table, 
the descriptive statistics are reported. The university hos-
pitals considered in this study have on average 1475 beds 
which are categorized as the large hospital. They employ 
more than 25,000 and 34,000 FTE physicians and nurses, 
respectively. From the output perspective, in total over 2.8 
million adjusted inpatient admissions and over 11.4 million 
outpatient visits occurred. The teaching measures show that 
about 11 thousand graduates and about 84 thousand medical 
students in these hospitals where have received over €1.5 
billion from the research-granting agencies.

The results of efficiency analysis of the teaching universi-
ties obtained from Model (5) [36], and the proposed Models 
(7) and (8) are respectively reported in Tables 4, 5, and 6 in 
Appendix 3. All three models are run under the CRS setting 
and implemented in IBM ILOG CPLEX Optimization Studio. 
As might be expected, they exhibit differences and share 
properties in common. University hospitals 2, 6, 8, 15, 21, 
23, and 27 are characterized by all three models as efficient 
DMUs with the optimum slacks of zero. As claimed in The-
orem 1, Model (7) will characterize a DMU as efficient if 
and only if Model (5) characterizes it as efficient. To inter-
pret the integrality, we run the relaxed form of Model (7) in 
which the integrality is relaxed. Then, we examine the result 
of an inefficient unit, say university hospital #9. The opti-
mum objective value of the integrality-relaxed Model (7) 
ρ∗relaxed

9
= 0.7799 obtained with the intensity optimum 

weights 
{

�∗
2
= 0.3189, �∗

5
= 0.1753, �∗

23
= 0.0550

}

 and 
other λ∗ are equal to zero. This set of optimum weights 
results in the reference input (number of beds) 
∑28

j=1
�∗
j
xBeds,j = 1,269.0274 which dominates the integer-

valued input target obtained from Model (7), x̃Beds = 1280 . 
Model (7) implies that x̃Beds = 1280 (or 330 units reduction 
in beds) is a feasible target where is not outside of the real 

PPS. However, there exist some situations in which the inte-
ger-valued reference input is not feasible. For example, con-
sider university hospital #4. The optimum efficiency score 
obtained from the integrality-relaxed Model (7), 
ρ∗relaxed

4
= 0.8201 . This yields with the intensity optimum 

weights 
{

�∗
6
= 0.7795, �∗

12
= 0.0245, �∗

23
= 0.0516

}

 (others 
are equal to zero). This reports the reference input (“Beds”) 
∑28

j=1
�∗
j
xBeds,j = 1,173.5570 which does not dominate the 

integer-valued input target x̃Beds = 1049 . The result is due to 
the designated status of the flexible measures in the final 
PPS. For the DMU4, the real flexible measure “Third-party 
funding income” is detected as input in the non-integer PPS 
while it plays the role of output in the integer PPS. There-
fore, the PPS may not be comparable in some situations 
where flexible measures can play different roles. Slacks of 
the convex PPS (produced by the non-integer DEA) are usu-
ally real-valued amounts and the optimal integer input/out-
put slacks reported by the models are not constantly a round-
ing up or down of the real-valued slacks. As reported in 
Table 5 in Appendix, for example, DMU4, the integer slacks 
of “Beds” s̃∗

Beds
= 146 which is not equal to the rounded up 

or down of its convex (non-integer) slack s∗
Beds

= 121.44 . 
Incontestably, for university hospital #19, s̃∗

Beds
= 39 differs 

expressively from its corresponding non-integer slack 
s∗
Beds

= 259.58.
In Tables 4, 5, and 6 in Appendix 3, d∗

k
 and d̃∗

k
 indicate 

the roles of “Third-party funding income” and “Graduates” 
in the final PPS, respectively. In Model (5), 19 out of the 
28 university hospitals treat these two flexible measures 
as output i.e., the majority treats both as output. The same 
results are reported by Model (7) where 18 and 20 DMUs 
determine the status of both “Third-party funding income” 
and “Graduates” as output, correspondingly. However, 
Model (8) assigns different optimal designations for these 
two flexible measures so that only 9 and 7 university hospi-
tals identify the role of “Third-party funding income” and 
“Graduates” respectively as output, i.e., the majority of 19 
and 21 DMUs treat them as input. This can explain the dif-
ference between the efficiency scores calculated by Models 
(5) and (7) with those calculated by Model (8) as illustrated 
in Fig. 2. The inefficiency scores obtained from all three 
models are asymmetrically distributed since the medians 
of inefficiency scores are not in the middle of the boxes, 
and the whiskers are not about the same on the upper and 
lower sides. These boxes are also advantageous for offer-
ing a visual indicator of the variability of inefficiencies. 
The minimum of 0.6263, the first quartile at 0.7660, and a 
standard deviation equal to 0.1095, all signify the limited 
discriminative power of Model (8)‘s inefficiencies in this 
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case. However, the situation changes with Models (5) and 
(7) where the longer boxes show more dispersed and scat-
tered inefficiency scores. Since the median lines of Model 
(5) (=0.6434) and Model (7) (=0.6760) are close to each 
other, there is likely to be no difference between the effi-
ciency scores of these two models. On the other hand, the 
median line of Model (5) which sits above 0.8534, repre-
sents the possibility of a difference between the inefficiency 
scores calculated by this model and the others. No ineffi-
ciency score is detected as the outlier. In other words, the 
lowest inefficiency score computed by the models is within 
one and a half interquartile range of its 25th-percentile, and 
the maximum efficiency score (1.0) is within one and a half 
of its 75th percentile.

To analyze the magnitudes and sources of inefficiency 
regarding the corresponding inputs/outputs for each inef-
ficient university hospital, the inefficiency scores can be 
decomposed using the optimal solution obtained from the 
models as exhibited in Table 2. This decomposition pro-
vides managers or policy-makers with enlightening infor-
mation about how to become an efficient DMU by examin-
ing the magnitudes and sources of inefficiency. For each 
inefficient university hospital e.g., DMU3, we can use the 

optimal slacks obtained from the input-oriented form of 
Model (7) to calculate input and output inefficiencies via 
Eqs. (9) and (10), respectively. This indicates the excesses 
in inputs (Input Ineffieicncy = 0.070) dominate shortages 
in outputs (Output Ineffieicncy = 0.0122 ). As might be 
expected, the majority of the inefficiency sources identi-
fied by this model are input inefficiency (17 out of 21) 
since we run an input-oriented model. This also explains 
why most of the output slacks and correspondingly out-
put inefficiencies are equal to zero. Those four university 
hospitals (namely, 5, 12, 16, and 24) in which the output 
inefficiency is identified as the main source of inefficiency 
share one significant property in common. They all have 
a considerable amount of slacks of the flexible measure 
“Third-party funding income” that is designated as out-
put ( d∗

k
= 1 ) in the optimum solutions obtained from all 

three models (see Tables 4, 5, and 6 in Appendix 3). This 
indicates the significant shortage in the third-party fund-
ing income dominates other inefficiencies. However, this is 
different for Model (5) where 18 out of 21 inefficiencies are 
attributed to output inefficiency. In other words, most uni-
versity hospitals are input efficient. Part of the clarification 
for the distinct results is that Model (5) is additive and its 

Fig. 2   Efficiency scores calcu-
lated by Models (5), (7), and (8)
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objective function maximizes the summation of slacks (see 
Eq. (5.1)) instead of targeting input/output inefficiencies. 
Therefore, the real degree of inefficiency of the university 
hospitals can not be assessed.

Now turning to the teaching function, we can see from 
the reported slacks in Tables 5 and 6 that “Third-party 
funding income” as one of the teaching proxies has the 
maximum ratio of slacks (either input excesses or out-
put shortfalls) in all university hospitals except DMU7 in 
Model (7) where excesses in inputs (“Beds”, “Physicians”, 
and “Nurses”) dominate other inefficiencies. This specifies 
in almost all the evaluating university hospitals in Ger-
many, teaching inefficiency dominates the general ineffi-
ciency. As is now apparent the same result is not seen in 
the optimum solutions calculated by Model (5) in Table 4 

in Appendix 3. In this model, the slacks of “Third-party 
funding income” are as well substantial while shortages in 
“Outpatients” are identified as the dominator. This dispar-
ity can be due to the fact that Model (5) is additive and its 
objective function cannot be explained as the inefficiency 
ratio.

We now investigate the influence of the environmental 
factors on the efficiency scores, by regressing the efficiency 
scores obtained from Model (7) and Model (8) against 
environmental factors, as shown in Table 3. The environ-
mental factors appear to be statistically insignificant, and 
someone would argue for their exclusion from the DEA 
analysis on this basis. As a result of the bias in standard 
errors, the statistical significance may be misestimated 

Table 2   Results of the inefficiency decomposition analysis

Model (5) Model (7)

DMU Input Inefficiency Output Inef-
ficiency

Dominant Input Inefficiency Output Inef-
ficiency

Dominant

1 0.0000 0.6605 Output Inefficiency 0.3092 0.0000 Input Inefficiency
2 0 0 Efficient 0 0 Efficient
3 0.0292 0.1511 Output Inefficiency 0.0700 0.0122 Input Inefficiency
4 0.0752 0.2428 Output Inefficiency 0.1673 0.0021 Input Inefficiency
5 0.0265 0.2363 Output Inefficiency 0.0645 0.1207 Output Inefficiency
6 0 0 Efficient 0 0 Efficient
7 0.0129 0.6903 Output Inefficiency 0.2678 0.0000 Input Inefficiency
8 0 0 Efficient 0 0 Efficient
9 0.2034 0.0318 Input Inefficiency 0.2183 0.0000 Input Inefficiency
10 0.0249 0.6076 Output Inefficiency 0.2410 0.0000 Input Inefficiency
11 0.0881 3.6791 Output Inefficiency 0.1835 0.0348 Input Inefficiency
12 0.0074 1.0592 Output Inefficiency 0.1505 0.4298 Output Inefficiency
13 0.1966 0.2590 Output Inefficiency 0.2813 0.0000 Input Inefficiency
14 0.1704 0.1366 Input Inefficiency 0.1853 0.0000 Input Inefficiency
15 0 0 Efficient 0 0 Efficient
16 0.0203 0.4655 Output Inefficiency 0.1334 0.2007 Output Inefficiency
17 0.1082 0.2251 Output Inefficiency 0.1644 0.0000 Input Inefficiency
18 0.0884 0.3586 Output Inefficiency 0.1705 0.0000 Input Inefficiency
19 0.0636 0.6312 Output Inefficiency 0.1731 0.0000 Input Inefficiency
20 0.1411 0.4423 Output Inefficiency 0.3012 0.0000 Input Inefficiency
21 0 0 Efficient 0 0 Efficient
22 0.2009 0.4104 Output Inefficiency 0.3737 0.0000 Input Inefficiency
23 0 0 Efficient 0 0 Efficient
24 0.1272 0.4113 Output Inefficiency 0.1335 0.1383 Output Inefficiency
25 0.0480 0.4826 Output Inefficiency 0.1682 0.0000 Input Inefficiency
26 0.2039 0.1230 Input Inefficiency 0.2469 0.0000 Input Inefficiency
27 0 0 Efficient 0 0 Efficient
28 0.0128 0.3692 Output Inefficiency 0.1577 0.1149 Input Inefficiency
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- the omission would represent the same as committing 
a Type I error. Both regression models reveal matching 
results. In general, the education index of each federal state 
has a positive impact on the efficiency of university hos-
pitals (but not statistically significant). Assuming a higher 
education index relates to better academic infrastructure, 
this can be expected to facilitate attainment and access to 
education in general. Additionally, a greater proportion 
of the population over 65 years of age negatively impacts 
the efficiency scores of university hospitals. It can also be 
expected that the employment rate will be lower as an older 
population has less available trained staff and expertise.

Despite its small impact, GDP per capita shows a posi-
tive impact on the performance of university hospitals. 
Assumedly, a higher GDP would also allow for more teach-
ing resources to be available. This analysis confirms what 
we found in the study of inefficiency decomposition, which 
indicated that third-party funding income can play a prin-
cipal role in inefficiency sources for German university 
hospitals.

While German hospitals are credited with reducing hos-
pital and health care expenditure inflation under the Diag-
nostic Related Group (DRG) based payment system, other 
significant objectives may be jeopardized by these financial 

constraints. The university hospital is one type of organiza-
tion that can be particularly hard hit by budget restrictions. 
Aside from caring for patients, these hospitals are responsi-
ble for training the German medical workforce and conduct-
ing medical research. Though both of these endeavors are 
critical, they are rarely adequately compensated. The results 
of this study also show how important it is to get more third-
party funding incomes (as teaching and research objectives) 
in order for German university hospitals to become more 
efficient. In a market where there are few sources of financ-
ing, teaching hospitals are in a more competitive position 
than their non-teaching counterparts. As reported by the 
German Rectors’ Conference (2016),3 to a varying extent, 
German university hospitals have structural underfunding, 
which is aggravated by a severe investment lag in building 
fabric and research infrastructure. Therefore, a substantial 
and guaranteed increase in their funding allocations is neces-
sary. They aim to establish a well-organized and adequately 
funded university healthcare system, which does not exist 

Table 3   Results of analyzing the environmental variables

Regression Model Coefficients Estimate Std. Error z Value Pr(>| z| ) Significant 
(α = 5%)

Model _ 7~Population _ Density + Mortal-
ity _ Rate + Population ≥ 65 + Educa-
tion _ Index + GDP

Population Density 0.0001 0.0001 1.2910 0.1970 No
Mortality Rate 0.0000 0.0002 −0.0560 0.9550 No
Population ≥ 65 −0.0140 0.1609 −0.0870 0.9310 No
Education Index 0.0104 0.0118 0.8800 0.3790 No
GDP/Capita 0.0000 0.0000 −0.2460 0.8050 No
(Intercept) 0.6322 0.7925 0.7980 0.4250 No
Log(scale) −1.3400 0.1654 −8.1020 0.0000 Yes
Observations 28
Log Likelihood −8.47
Akaike Inf. Crit. 30.95
Bayesian Inf. Crit. 40.27

Model _ 8~Population _ Density + Mortal-
ity _ Rate + Population ≥ 65 + Educa-
tion _ Index + GDP

Population Density 0.0000 0.0000 1.1790 0.2385 No
Mortality Rate 0.0000 0.0001 −0.0890 0.9295 No
Population ≥ 65 −0.0046 0.0792 −0.0580 0.9540 No
Education Index 0.0051 0.0058 0.8780 0.3800 No
GDP/Capita 0.0000 0.0000 −0.5440 0.5863 No
(Intercept) 0.8620 0.3901 2.2100 0.0271 Yes
Log(scale) −2.0490 0.1651 −12.4150 0.0000 Yes
Observations 28
Log Likelihood 6.52
Akaike Inf. Crit. 0.97
Bayesian Inf. Crit. 10.29

3  Source: https://​www.​hrk.​de/​resol​utions-​publi​catio​ns/​resol​utions/​
besch​luss/​detail/​unive​rsity-​medic​ine-​as-​an-​integ​ral-​part-​of-​the-​unive​
rsity/ (Accessed 01-Aug-2022)
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at the moment. Rather, the current framework places hospi-
tals at risk of overshadowing and dominating the research 
concerns of university medicine due to the economic com-
petition they face. A clear set of regulations should be 
implemented in order to curtail the cross-subsidization of 
university hospitals with funds allocated for research and 
teaching. This means healthcare policymakers need to recon-
sider the funding structures and strategic plans of German 
university hospitals and investigate how third-party funding 
has evolved over time.

It is not easy to evaluate our findings in the light of other 
studies since there are no recent and comparable studies on 
the university hospital performance assessment, especially 
in Germany. However, studies dealing with the efficiency of 
university hospitals (as discussed in Section 2) have already 
pointed out differences in efficiency between teaching and 
non-teaching hospitals. Generally speaking, university hos-
pitals are not able to compete with non-teaching counter-
parts since they pursue different goals.

5 � Conclusions

In this study, we advance the SBM DEA model proposed 
by Tone [2] to consider the real circumstances of the inte-
ger nature of certain measures whose status can be flexibly 
designated. Besides, we develop a revision to the additive 
model developed by Kordrostami, et al. [36] to make the 
model report a non-negative inefficiency index with an upper 
limit of one. Then, the optimal solutions derived from the 
proposed and revised models are investigated in compari-
son with Kordrostami’s solutions. This is illustrated by the 
performance analysis of 28 university hospitals in Germany. 
In this case study, in addition to the patient care function, 
the teaching function of the units is captured in the PPS 
by introducing two flexible measures containing one real-
valued (“Third-party funding income”) and one integer-
valued (“Graduates”) as well as one integer-valued output 
(“Students”). In this application, the inclusion of the inte-
grality constraints leads to more valid slacks, i.e., ensures 
to lie within the integer PPS and not be dominated by any 
other feasible units. The proposed model describes more 
reliable and discriminated inefficiency scores from which 
a more successful ordering of the university hospitals can 
be originated.

From a practical viewpoint, the decomposition of 
inefficiencies provides hospital managers, local and national 
health authorities some informative insights on the source 
and magnitude of the inefficiency of German university 
hospitals. The significant shortage in the third-party funding 
that university hospitals receive as a form of revenue is 
identified as the main source of inefficiency. Having this 
fact in mind that most research-granting organizations 
(e.g., German Research Foundation) consider the university 
hospitals with the greatest impact, it can be concluded that 
targeting research missions might boost the efficiency 
of German university hospitals. Furthermore, hospitals’ 
operating environments may seriously bias conclusions if 
they are not adequately taken into account. Therefore, we 
define five environmental factors in advance to analyze 
whether the hospital’s operating environment affects its 
relative efficiency scores via Tobit regression analysis. 
The results obtained from the second-stage regression 
analysis confirm that third-party funding income can have 
a positive impact on the efficiency of German university 
hospitals. A reconsideration might therefore be required 
in the university hospital performance management. The 
enormous public funds that flow into medical education 
should be allocated more according to efficiency aspects. 
Now that health care is under increasing pressure to be more 
efficient due to the introduction of a more results-oriented 
reimbursement system, similar instruments should also 
be used for the reimbursement of the academic mission. 
The proposed SBM DEA model could be used as an 
accompanying controlling and monitoring instrument. At 
the same time, in order to avoid cross-subsidies between 
academic and patient care missions in university hospitals, 
more transparency is urgently needed by applying a 
performance assessment approach that allows both missions 
to be efficiently combined under one roof. Since high-
quality teaching cannot be separated from patient care, this 
realization can give politicians a clear mandate to find a 
solution to this dilemma. The proposed model could be 
a suitable monitoring approach for this path, taking into 
account further comparative parameters and the necessary 
modifications in the dataset used in the analysis such as 
identifying new measures.

Different teaching hospitals view their three missions 
(i.e., patient care, teaching, and research) differently. 
Some might operationalize these three missions equally. 
In the application of the proposed DEA model, the role of 
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research is absent due to the lack of data. Furthermore, some 
variables could be reframed to provide a more “apples-to-
apples” comparison. For example, one could look at teach-
ing intensity instead of simply using the number of students. 
Grosskopf, et al. [19] define teaching intensity as the number 
of FTE residents per hospital bed. If we look at this measure 
of teaching intensity regarding the data provided in Table 1, 
we see considerable variation among the 28 hospitals. Look 
at DMU’s 20 and 21 for example. If we define teaching 
intensity as the number of students per bed, DMU 20 has a 
teaching intensity of 1.1, and DMU 21 has a teaching inten-
sity of 2.7. It would appear that these two hospitals place a 
much different emphasis on their mission of teaching.

However, the choice of variables (inputs, outputs, and 
flexible measures) and the measurement of those variables 
need to be carefully examined in DEA applications other-
wise they may present a range of procedural issues. In DEA 
models, generally, the variables are assumed to be isotonic, 
i.e., an increase in input reduces efficiency while an increase 
in output increases it [40]. As a result of incorporating ratios 
into the variable set, a pitfall occurs. It may be acceptable if 
all variables are of this type, but this can lead to problems 
when volume measures are mixed in as illustrated by Dyson, 
et al. [41]. We avoided this pitfall by not including ratios 
such as teaching intensity into the variable set.

A weakness of the conceptualized model is the lack of 
quality of patient care in the analysis. However, these data-
sets are usually classified and are not publicly available. In 
addition, an attempt should be made to integrate the other 
university hospitals into the investigation and to conduct an 
analysis over a longer period of time. A longitudinal study 
would allow statements on the development of efficiency 
of individual university hospitals, for instance, in order to 
assess the efficiency effect of mergers. As a real example, the 
German Federal Cartel Office4 has recently explicated plans 
to merge the cardiological and cardiosurgical services of the 
Charité and Deutsches Herzzentrum Berlin and establish the 
heart center Deutsches Herzzentrum der Charité [42]. Fur-
thermore, from a theoretical perspective, one of the limita-
tions of this study that can be addressed in the future may be 
extending the present model by incorporating the perspec-
tive of the radial characteristics of measure in inefficiency 
sources. This leads to bringing the effects of inputs/outputs 
that are subject to change proportionally.

Appendix 1

Theorem 1. A DMU is FISBM-efficient if and only if it is 
mFISBM-efficient, i.e., τ∗FISBM

h
= 0 ↔ ρ∗mFISBM

h
= 1.

Proof. τ∗FISBM
h

= 0 if and only if the optimum value of all 
inputs, outputs, and flexible slacks be equal to 0 considering 
the nonnegativity condition imposed by Constraint (5.16), 
i.e., s∗ =

(

s∗x, s∗y,
∼
s
∗x

,
∼
s
∗y

, s∗z
1
, s∗z

2

)

= 0 . By replacing this 
solution into Model (7), we have δx ≤ 0 and δx ≥ 0 from Con-
straint (7.8) which results in δx = 0. The same results about 
δy, δz and 

∼

�
x

,
∼

�
y

,
∼

�
z

 would be achieved from Constraints 
(7.4), (7.5), (7.6), (7.10), (7.11), (7.12), and (7.13), respec-
tively. On the other hand, we know that DMUh in mFISBM 
model is called efficient if and only if ρ∗mFISBM

h
= 1 . This 

stipulation is equal to �∗ =
(

�∗
x
, �∗

y
, �∗

z
,
∼

�
∗x

,
∼

�
∗y

,
∼

�
∗z
)

= 0 . 

This completes the proof. ■

Appendix 2

Theorem 2. ΩrFISBM
o

≤ 1.
Proof. Assume a solution of DMUh in which all input 

excesses (including the flexible measures designated as 
input) are equal to the corresponding utilized inputs (or their 
m a x i m u m  v a l u e s )  i . e . , 
{

s∗x = xh,
∼
s
∗x

=
∼
xh, s

∗
1

z = wh,
∼
s1

∗z

=
∼
wh

}

 . This follows that 

0 ≤ (m + p)−1
⎡

⎢

⎢

⎣

∑

i ∈ INI

s∗ x
i

xih
+
∑

i ∈ II

s̃∗ x
i

xih
+
∑

k ∈ KNI

s∗ z
1k

zkh
+
∑

k ∈ KI

s̃∗ z
1k

zkh

⎤

⎥

⎥

⎦

≤ 1   . 

However, in the case of outputs, the maximum values for 
output shortfalls cannot be defined since any output slacks 
can exceed the corresponding produced outputs 
{

0 ≤ s∗y, 0 ≤
∼
s
∗y

, 0 ≤ s∗
2

z, 0 ≤
∼
s2

∗z}

 , however, it always 
h o l d s 
0 ≤ (s + p)−1

�

∑

r ∈ ONI

s∗ y
r

yrh
+
∑

r ∈ OI

s̃∗
y
r

yrh
+
∑

k ∈ KNI

s∗ z
2k

zkh
+
∑

k ∈ KI

s̃∗ z
2k

zkh

�

  . 
Since the inefficiency scores are non-negative ( 0 ≤ ΩrFISBM

h
 ), 

this limits the upper bound of the summation of output mix 
inefficiencies so that the ratio of average input and output 
inefficiencies cannot take more than 1. It can reach the upper 
limit, Ω∗rFISBM

h
= 1 , only if slacks are equal to their minimum 

v a l u e s  d e f i n e d  b y  E q .  ( 5 . 1 6 ) ,  i . e . , 
{

s∗x = 0, s∗y = 0,
∼
s
∗x

= 0,
∼
s
∗y

= 0, s∗z = 0,
∼
s
∗z

= 0

}

 which 
is also a feasible solution for Model (8). ■

4  In German: Bundeskartellamt
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