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Enabling fully automated insulin delivery through meal
detection and size estimation using Artificial Intelligence
Clara Mosquera-Lopez 1✉, Leah M. Wilson 2, Joseph El Youssef2, Wade Hilts1, Joseph Leitschuh 1, Deborah Branigan 2,
Virginia Gabo 2, Jae H. Eom 2, Jessica R. Castle2 and Peter G. Jacobs1

We present a robust insulin delivery system that includes automated meal detection and carbohydrate content estimation using
machine learning for meal insulin dosing called robust artificial pancreas (RAP). We conducted a randomized, single-center
crossover trial to compare postprandial glucose control in the four hours following unannounced meals using a hybrid model
predictive control (MPC) algorithm and the RAP system. The RAP system includes a neural network model to automatically detect
meals and deliver a recommended meal insulin dose. The meal detection algorithm has a sensitivity of 83.3%, false discovery rate of
16.6%, and mean detection time of 25.9 minutes. While there is no significant difference in incremental area under the curve of
glucose, RAP significantly reduces time above range (glucose >180 mg/dL) by 10.8% (P= 0.04) and trends toward increasing time in
range (70–180mg/dL) by 9.1% compared with MPC. Time below range (glucose <70mg/dL) is not significantly different between
RAP and MPC.
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INTRODUCTION
Closed-loop systems for automated insulin delivery are now the
standard of care in type 1 diabetes (T1D) management, helping
people living with diabetes better manage their glucose while
reducing burden1,2. However, currently available systems are
hybrid in nature and still require the person to count carbohy-
drates and manually announce meals to the system. Postprandial
glucose control is substantially improved when meal insulin is
delivered before meal intake.
Carbohydrate counting is challenging and people living with

T1D are oftentimes inaccurate in estimating carbohydrate intake.
Current carbohydrate counting methods require a level of
numeracy and literacy that might be a barrier for some people
with diabetes3. Gillingham et al. showed that 49% percent of
meals with <30 g of carbohydrates are overestimated while the
majority (64%) of large carbohydrate meals (≥60 g) are under-
estimated4. Inaccurate carbohydrate estimations that are used for
calculation of prandial insulin are associated with high prevalence
of postprandial hyper- and hypoglycemia, even with hybrid insulin
delivery systems5,6.
Several approaches to automated meal detection have been

described in the literature, which generally use continuous glucose
measurements (CGM) and insulin delivery data, and in some cases
physical activity data. Some of the approaches of previously
published work include fuzzy logic7, Kalman filtering8–10, super-
twisting observer combined with Kalman filtering11, probabilistic
models12, quantification of the difference between predicted
glucose using an autoregressive or other models vs. measured
CGM values13, and glucose increase detection14. Smartwatch
gesture-based meal reminders have also been proposed for
improved postprandial glycemic control15. Sensitivity varies greatly
depending on the datasets used and the study protocols, reaching
values greater than 90% in some cases, though the sensitivity and
specificity of many of previously published algorithms have been
validated only in silico. For example, the automated meal detection

algorithm presented by Corbett et al.16 used a clustering method
to estimate the probability of a meal occurring based on prior meal
patterns. The algorithm recognizes a meal pattern and doses a
priming dose, demonstrating an improvement in time in range
from 52 to 57%; however, these results are only provided for an in
silico trial. Several prior manuscripts have reported on the
effectiveness and safety of using machine-learning-based auto-
mated meal detection within automated insulin delivery systems in
clinical trials. Recently, Tsoukas et al. reported on a fully automated
system that utilized a Kalman filter model-based automated meal
detection and multiple hormone delivery, including pramlintide
and insulin in response to meal detections. They showed that a
fully automated pramlintide plus insulin delivery system was not
inferior to an insulin-only hybrid automated insulin delivery
system17. In this work, we contribute a new machine learning
model for meal detection and meal size estimation that is
incorporated into a robust insulin delivery system and tested in
humans to assess feasibility and safety of semi-automated meal
insulin delivery with minimal user intervention. The algorithm has a
sensitivity of 83.3%, false discovery rate of 16.6%, and mean meal
detection time of 25.9 min. When comparing the benefit of dosing
bolus insulin in response to a detected meal with the robust insulin
delivery system vs. adjusting insulin infusion rate using a hybrid
insulin delivery system with no meal announcement, there is no
significant difference in incremental area under the curve of
glucose. However, the robust insulin delivery system with
automated meal detection significantly reduces time above range
(glucose >180mg/dL) by 10.8% (P= 0.04) without significantly
increasing risk of postprandial low glucose (glucose <70mg/dL).

RESULTS
Participants information
Fifteen adults were enrolled to participate in this study between
December 2021 and March 2022. Table 1 summarizes participants’
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characteristics and Fig. 1 shows the study CONSORT diagram. The
carbohydrate content of the study meals chosen by participants
ranged from 45 to 66 g. Two participants withdrew from the study
due to (1) high glucose (CBG > 250mg/dL) and (2) high ketone
levels (3.4 mM) following a meal during the model predictive
control (MPC) algorithm arm. The markedly elevated ketone level
was attributed to the participant’s ketogenic diet and the
participant was withdrawn from the study. These participants
were not included in the analysis. There were no serious adverse
events during the study.

Study outcomes
Supplementary Table 2 shows meal insulin recommended by the
robust artificial pancreas (RAP) system for true positive meal
detections and the adjustments made by participants or clinical
team after discussing the safety of the proposed adjustment and
reaching an agreement about the final insulin amount to be
delivered. The study participant or the investigator made small
adjustments to the insulin bolus 54.5% of the time when a true
positive detection occurred. However, the recommended meal
insulin amount was reduced only once, by an amount of 1.5 units.
The average absolute change in bolus insulin across all
participants was very low at 0.35 units.
Mean postprandial incremental area under the curve (iAUC) of

glucose was lowest with RAP but not significantly different from
the MPC automated insulin delivery algorithm (−23.6, 95% CI:
−120.6 to 73.4 mg h/dL; P= 0.63). Time above range (TAR)
70–180mg/dL was significantly reduced with RAP by 10.8%
compared with MPC (time above range 95% CI: 0.02 to 24.4%;
P= 0.04). Time in range (TIR) 70–180mg/dL was higher with RAP
by 9.1% compared with MPC, but the observed difference was not
statistically significant (TIR 95% CI: −1.5 to 22.9%; P= 0.09). Time
below range (TBR) at less than 70mg/dL and time below 54mg/dL
were slightly higher with RAP, but not statistically different from
MPC (TBR < 70mg/dL 95% CI: −0.7 to 2.3%; P= 0.52 and
TBR < 54mg/dL 95% CI: −0.4 to 1.3%; P= 0.46).
Postprandial CGM and insulin (median and interquartile range)

during the four hours after meal are shown in Fig. 2. Glucose
traces for MPC and RAP were similar for the first two hours after
the meal. After two hours, glucose traces were lower during the
RAP arm compared with the MPC arm such that at four hours after
the meal, the median glucose was substantially lower for RAP
compared with MPC (148.5 vs. 191.0 mg/dL, Fig. 2). RAP dosed
more insulin (8.7 ± 3.2 vs. 7.6 ± 3.3 units) and delivery occurred

sooner after the meal compared with MPC, which tended to
deliver over a longer period after the meal (Fig. 2, lower panel).
The machine learning model automatically detected 83.3% of

the 24 meals consumed during the RAP studies (95% CI 62.6 to
95.2%). The false detection rate was 16.6% (95% CI 4.7 to 37.4%).
The reported false detection rate includes a meal detection
corresponding to when a rescue carbohydrate was consumed by
the participant. In future versions of the RAP algorithm, the RAP
algorithm will ignore rapid glucose rises caused by rescue
carbohydrates that were reported to the system. Overall meal
detection time was 25.9 ± 0.9 minutes. The accuracy of the meal
detection and classification algorithm was close to the predictions
made in the pre-study simulations. The average in silico sensitivity
for meals with carbohydrate content between 40-80 g, which were
the categories of self-selected study meals during the clinical trial,
ranged from 79.0 to 90.0% with a probability detection threshold
PTH= 0.86 used in the study (see Supplementary Fig. 2). Similarly,
in silico meal detection time was calculated to be 27.5 ± 4.8 min.
The in silico false discovery rate was 10.0% when we did not
include false detection caused by low glucose rescue carbohy-
drate intake as false detections. Thus, the meal detection accuracy
results obtained in this study matched almost exactly pre-clinical
in silico validation results demonstrating that in silico metabolic
simulators based on ordinary differential equations can be
effectively used to estimate performance prior to a real-world
clinical study in humans.

DISCUSSION
The use of RAP which includes an automated meal detection and
meal size estimation machine learning algorithm resulted in a
statistically significant reduction in postprandial time above range
following unannounced meals in adults with T1D, and a modest
(though not statistically significant) improvement in TIR. These
results are relevant given that time below range was not
significantly increased by RAP when compared with an MPC
algorithm. Two carbohydrate treatments were administered
during the RAP arm of the study in response to the system’s
predicted low glucose alert while no rescue carbohydrate
treatments were given during the MPC arm. There was one event
in which a participant experienced glucose below 70mg/dL
following a meal bolus during the RAP arm. For this event, glucose
at meal detection time was 200 mg/dL and rising, and the low
blood glucose index (LBGI)18 values ranged from 0.0 within the
0–2 h period following the meal bolus to 4.3 over the 0–4 h after
the bolus.
The performance of the meal detection algorithm was very

close to the performance observed in silico during pre-clinical
algorithm validation. The algorithm had high sensitivity and low
false discovery rate. There were four false detections, but one of
them occurred due to a sharp glucose rise in the morning at about
8:30 AM, which is a pattern with a high likelihood of being
associated with a breakfast meal. Another false detection was
associated with a sharp rise in glucose following the consumption
of a rescue carbohydrate consumed in response to a hypoglyce-
mia treatment. Given the possibility that a false meal detection
could increase the risk of hypoglycemia, we calculated LBGI
following false meal detections to see whether delivering insulin
in response to a false alarm led to increased risk of low
glucose(LBGI ≥ 5.0)11. The calculated LBGI was zero in three out
of the four false detection cases indicating that no low glucose
events had occurred. For the fourth false detection case, the LBGI
ranged from 0.94 to 3.3. For this case, the false detection occurred
in response to a rescue carbohydrate that was consumed by the
participant, which was misinterpreted as a meal by the RAP
algorithm. In future usage, the RAP automated meal detection will
be disabled following the report of rescue carbohydrate
consumption.

Table 1. Baseline characteristics of eligible participants (N= 15).

Demographics

Age, years 37.6 ± 10.4

Biological sex, N (%) Female: 9 (60.0)

Male: 6 (40.0)

Weight, Kg 85.0 ± 18.8

Ethnicity (self-identified), N (%) White: 13 (86.6)

Black: 1 (6.7)

American Indian: 1 (6.7)

Clinical data

HbA1c, % 6.8 ± 0.5

Duration of diabetes, years 24.8 ± 9.0

CGM use, N (%) Dexcom: 10 (66.6)

Medtronic: 3 (20.0)

Libre: 1 (6.7)

None: 1 (6.7)
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The results of this study indicate that if a meal is accurately
detected within 25 to 30 min of the meal occurring and dosed a
percentage of the nominal required prandial insulin, time in
hyperglycemia can be significantly reduced and there is no
significant increased risk of postprandial hypoglycemia. Delayed
detection is a consequence of delays in carbohydrate absorption
and inherent delay in glucose measured in the interstitium relative
to blood glucose. We found that, on average, a detectable glucose
rise due to meal intake only occurs after 20minutes of consuming
a meal, and this delay is also dependent on the meal composition.
For instance, one of the meals that the algorithm was unable to
detect had a high fat content which caused a slower rise in
glucose and a delayed glucose peak. It’s unlikely that insulin could
be dosed for a meal using a CGM-based automated detection any
sooner than 20min after the meal was consumed because of the
delay in rise in glucose. Results presented here show that dosing
meal insulin approximately 25 min after the meal using a missed
meal detection and classification algorithm provides benefit

compared with depending on the control algorithm to naturally
respond to a meal.
One limitation of this study was the small sample size. However,

even with this small sample size, a benefit was shown in terms of
reducing high glucose levels for the RAP compared with MPC.
Another limitation of this study is that the meal detection required
participant confirmation. The participant or investigator were
allowed to modify the amount of insulin recommended by the
RAP algorithm; thus, these adjustments might have impacted the
glucose control performance metrics. The modifications made by
the participant or investigator were small (0.35 units on average)
indicating that the participant may have been ‘fine tuning’ the
insulin bolus rather than correcting a grossly inaccurate recom-
mendation. The insulin was reduced by the participant or
investigator only once indicating that in 90.9% of the cases, the
RAP was being more conservative and delivering slightly less than
what the participant wanted to deliver. This indicates that the
system is performing in a safe way to avoid over-delivery of insulin
in response to the RAP meal detection algorithm. One reason why
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Fig. 1 CONSORT flow diagram. Flow diagram of the progress through the phases of the randomized, single-center crossover trial to compare
OHSU’s MPC vs. RAP insulin delivery systems.
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participants may have chosen to dose more insulin than
recommended by the RAP algorithm could have been a result
of the fact that the RAP algorithm was designed to dose only a
fraction of meal insulin (up to 75%), since it was being dosed
approximately 25 min after the meal event occurred. Participants
may have wanted to dose the full 100% of the meal insulin
dosage, even though it was being dosed late. A larger study
without meal confirmation by participants is needed to assess
whether a fully automated insulin delivery system provides
significant benefits in terms of reduction in postprandial incre-
mental area under the glucose curve and increase in time in target
range, which were defined as primary outcomes of this
feasibility study.
This study provides evidence that a machine-learning-based

model for meal detection and carbohydrate content estimation
can be integrated into automated insulin delivery systems to
improve postprandial glucose control. Moreover, we demon-
strated that a meal detection model trained on in silico data
obtained from validated T1D simulators achieves nearly identical
performance in this clinical study thereby providing further
evidence in the support of use of metabolic simulators for
developing and evaluating tools in advance of clinical studies.

METHODS
Meal detection and carbohydrate estimation model
development
We obtained datasets from simulations performed using two
validated T1D simulators: (1) The UVA-Padova simulator, which is
approved by the Food and Drug Administration (FDA) for in silico
pre-clinical validation; and (2) a published open-source simulator
developed by Oregon Health & Science University (OHSU)19. We
simulated 199 virtual subjects for 14 days using real-world meal
scenarios collected from previous studies (low-carbohydrate diet:
46.6 ± 27.1 g, high-carbohydrate diet: 72.5 ± 29.3 g)13,20. Glucose
control was simulated using OHSU’s MPC automated insulin
delivery algorithm21. Thirty three percent of the meals were given
without a corresponding insulin bolus.
A total of 32 features were derived from the two-hour history of

CGM and insulin measurements obtained prior to a meal
prediction. Examples of features used included average glucose,
glucose rate of change, insulin availability22–24 one hour before
prediction time, and prediction time (i.e., hour of day). Since the
prediction hour (0–23) is a cyclical feature, we transformed it into
two dimensions using cosine and sine operations as follows:

cos 2π hour
24

� �
; sin 2π hour

24

� �
. A descriptive list of input features used

for meal detection and carbohydrate content estimation is
provided in Supplementary Table 1. We used these features as
inputs to a multioutput neural network with fully connected layers
(Supplementary Fig. 1 shows high-level architecture of the model).
The designed network has three shared hidden layers for
processing the input features with 512, 32, and 16 nodes, and
two dedicated branches for meal detection (i.e., binary classifica-
tion) and carbohydrate estimation (i.e., multiclass classification)
with a 16-node hidden layer per branch. For multiclass classifica-
tion, meal sizes were categorized into five groups as follows: [0,20)
g, [20,40) g, [40,60), [60,80), and 80+ g. Hyperparameters of the
model including number of layers and nodes per layer were
determined through cross-validation. L1 regularization with
penalty constant of 1e−6 was used in all hidden layers. All
weights were randomly initialized using Xavier uniform initiali-
zer25, and bias were initially set to zero. Adam optimizer with
constant learning rate of 1e−4 and recommended values for the
rest of parameters26 was used to minimize binary and categorical
cross-entropy losses for detection and classification outputs,
respectively. Training was done with mini batches of size 128.
Detection loss and classification loss were equally weighted. For
carbohydrate content estimation, the samples in the training
dataset were weighted to account for imbalance in the dataset
and for penalizing overestimation. Early stopping was implemen-
ted to help prevent overfitting. Meal detection was determined to
have occurred if it exceeded a probability threshold of PTH= 0.86
as determined through simulations. The size of the meal was
determined by the meal class node that yielded the highest
probability from the neural network. This study evaluates the first
version of the meal detection algorithm.

Automated insulin delivery systems
The OHSU’s MPC algorithm21 uses a glucoregulatory model to
predict glucose outcomes over a predicted horizon, and
mathematically solves for the optimal insulin dose schedule
across the control horizon to bring a person to a target glucose
level. The MPC algorithm includes a Kalman filter, which uses the
difference between sensor-measured glucose levels and model
predictions to update the physiologic model states at each
timestep for personalized predictions. The MPC strategy has been
previously described in people living with T1D21,27–33.
The RAP system uses a modified MPC algorithm that includes

the machine leaning model described herein for missed meal
insulin detection. The missed meal insulin detection alert notified
the participant through a smartphone app if the probability of a
meal detection exceeded a threshold of 0.86 as determined
through simulations (see Supplementary Fig. 2). The screens in the
app used to notify the participant of a missed meal insulin
detection are shown as Supplementary Fig. 3. These screens
provide a recommended amount of insulin to dose in response to
the detected meal. The recommended amount of meal insulin to
deliver is based on (1) the output of the missed meal insulin
detection algorithm, (2) the size of the meal estimation as
determined by the missed meal insulin detection algorithm, (3)
the person’s carbohydrate ratio, and (4) the time when the person
responded to the alert. Since the meal insulin is being dosed after
the meal was consumed, only a fraction of the person’s typical
meal insulin is recommended to be dosed in response to the
missed meal insulin detection algorithm. The percentage of the
meal insulin recommended to be dosed is a function of the
expected time after which the meal was consumed such that the
meal insulin dosed is reduced by 1% for every 1 min after which
the meal was presumed to occur. We determined through
simulations (see “Results”) that the missed meal detection
algorithm triggered on average about 25min after a meal was
consumed. Therefore, if the missed meal insulin detection

Fig. 2 Comparative postprandial sensor glucose (top) and insulin
infusion rate (IIR)(bottom) during the MPC and RAP study arms
following breakfast meal from the 13 participants who completed
the study. Median and interquartile range are shown.
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algorithm detected the meal and notified the study participant
and they acknowledged the alert immediately, then the meal
insulin dosed would be 75% of the meal insulin determined by the
person’s carbohydrate ratio and the expected meal amount as
determined by the missed meal insulin detection algorithm.
However, if the participant waited 20min to respond to the alert,
then the amount of recommended insulin would be further
reduced by 20%. For instance, if the missed meal detection
probability exceeds the threshold of 0.86, and the meal size
predicted by the algorithm is 30 g, and the person’s carbohydrate
ratio is 1:10 g, and the participant responded to the alert
immediately, then the person would be recommended to receive
0.75 × 30 g/10 g/unit= 2.25 units of insulin. Additional features of
the RAP system include automated physical activity detection and
classification as measured from a smart fitness watch (Polar M600);
however, these features were not used in this study.
Both MPC and RAP systems have safety features including

predicting low glucose suspend insulin delivery using a long-
short-term memory (LSTM) neural network24, maximum insulin
dosing based on users’ total daily insulin requirement, switch to
background basal insulin if CGM or pump communications are
disrupted, and smartwatch on/off wrist detection algorithm. Both
control systems run on a smartphone app called iPancreas that
has been used to evaluate other automated multi-hormone
delivery systems20,34.

Study design and participants
This paper reports on the outcomes of a single-center, crossover
trial designed to compare the glucose control following unan-
nounced meals achieved using OHSU MPC vs. RAP automated
insulin delivery systems. Individuals with diagnosis of T1D for at
least one year, aged 18–65 years, current use of an insulin pump
for at least three months with stable insulin pump settings for
longer than 2 weeks, HbA1c ≤ 10.5% at screening, and total daily
insulin requirement less than 139 units/day were eligible for
inclusion. Exclusion criteria included pregnancy or intention to
become pregnant, current use of a glucose lowering medication
other than insulin, and use of oral or parenteral corticosteroids.
Pre-clinical validation of the MPC and RAP automated insulin

delivery systems was done using computer simulations. The
accuracy of the machine learning model in detecting meals was
also retrospectively validated on a real-world large dataset from 150
closed-loop participants (age 29 ± 16 years; 66 females, 47 males,
37 records with unknown biological sex; 15 ± 12 years since T1D
diagnosis) from the Tidepool Big Data Donation Program
(Tidepool.org, Palo Alto, CA) that contains more than 115,000 meals.
This study was conducted under U.S. Food and Drug

Administration–approved investigational device exemption,
approved by the OHSU Institutional Review Board, and registered
on ClinicalTrials.gov (NCT05083559, first posted on October
19, 2021).

Procedures
Written informed consent was obtained from all participants
during the study screening visit. Participants underwent two
treatment visits at OHSU for evaluating glucose control following
unannounced meals with OHSU MPC and RAP insulin delivery
systems in a randomized order. For each intervention visit,
participants arrived at approximately 7:00 AM and were monitored
through the afternoon and discharged before dinner. Participants
wore an Omnipod pump (Omnipod Insulet Corporation, Acton,
MA, USA) to deliver insulin and a Dexcom G6 CGM to measure
glucose (DexCom, Inc., San Diego, CA, USA). The RAP system
captured activity data (i.e., heart rate and accelerometry) through
a Polar M600 watch (Polar Electro Inc., Bethpage, NY, USA) worn by
the participants. After a run-in period of two hours whereby the
participants used the automated insulin delivery systems,

participants ate self-selected meals at 10:00 AM for breakfast.
The carbohydrate content of the meals allowed per protocol was
45–120 g. During the RAP study visit only, participants were given
a second meal four hours later at 2:00 PM when the study staff
considered it appropriate to further evaluate the accuracy of the
meal detection algorithm. Self-selected breakfasts were identical
across both study sessions. A meal bolus was not given before any
meals. CBG and blood ketone measurements were taken every
30min until discharge for safety purposes only and not to inform
control decisions of the automated insulin delivery systems under
evaluation. During the RAP study visit, the meal detection
algorithm was used to identify a missed meal bolus. If the RAP
system detected a missed meal, the system sent an alert to the
participant indicating that a meal was detected, and the system
also provided an estimate of the carbohydrate content of the
detected meal. Participants were required to acknowledge the
alert. Participants could modify the carbohydrate content that was
estimated by the RAP system. The modified carbohydrate
estimation was used to calculate the meal bolus, which was
dosed by the RAP system via an Omnipod insulin pump. A study
investigator evaluated the meal insulin dose prior to delivery,
considering insulin availability (I), time since last meal, and glucose
trend, and modified the dose if appropriate for participants safety.
All data collected during the study including glucose sensor

data, insulin data, physical activity data, and meal data, were
aggregated in real time by the OHSU iPancreas app and stored for
remote monitoring and further analysis on a cloud-based
database hosted on an OHSU-managed secure server called
iPancreas Guidance Remote Monitoring (GRM) hosted by Amazon
Web Services.

Outcomes
The primary endpoints prespecified for this study were (1) the
incremental area under the curve iAUC of glucose (calculated
using the trapezoidal rule) and (2) percent of time with glucose
sensor in target range between 70 and 180 mg/dL in the four
hours following unannounced breakfast meals. Post-prandial iAUC
is defined as the area of the post-prandial glucose response curve
above the baseline glucose (i.e., sensor glucose at the start of the
meal). iAUC is useful to control variations in baseline glucose
across participants. iAUC is different from the typical area under
the curve (AUC) calculation in which the area is calculated relative
to zero rather than relative to the baseline glucose. As secondary
clinical outcome metrics, we assessed postprandial glucose
control metrics including percent time with sensor glucose below
range (<70mg/dL) and percent time with sensor glucose above
range (>180mg/dL).
We also analyzed the performance of the meal detection

machine learning model in detecting unannounced meals using
sensitivity, false discovery rate, and meal detection time. These
metrics were calculated based on participant confirmation of meal
detection alerts and data on mealtime records entered by a study
investigator to the GRM. The primary and secondary endpoints
reported here were calculated only using glucose and insulin data
collected over the four hours following the breakfast meal.
However, the accuracy of the meal detection algorithm was
evaluated using both breakfast and lunch meals.
To contextualize the performance of the machine learning

model, we compared the accuracy results from this study with
pre-clinical in silico results obtained using the FDA approved UVA/
Padova and OHSU T1D simulators.

Statistical analysis
We estimated the differences between the MPC and RAP systems
in postprandial glucose control using a fixed effect in a standard
crossover model with a random participant effect. We used mixed
effects linear regression for the analysis of postprandial iAUC; and
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mixed effects beta regression for TIR, TAR, and TBR. A P value
<0.05 was considered statistically significant.
We used the Clopper–Pearson method to calculate the exact

95% confidence interval of the sensitivity and false discovery rate
of the machine learning model in detecting meals. Other reported
metrics, including the meal detection time, are expressed as mean
± standard deviation (SD) unless otherwise noted.
Data processing and statistical analyses were carried out using

Python 3.7 and R 4.1.3

DATA AVAILABILITY
Data might be made available for researchers with ethical approval from the OHSU
Institutional Review Board. Interested parties should contact P.G.J. and C.M.L.
(jacobsp@ohsu.edu, mosquera@ohsu.edu).

Received: 15 June 2022; Accepted: 16 February 2023;

REFERENCES
1. Wilson, L. M., Jacobs, P. G., Riddell, M. C., Zaharieva, D. P. & Castle, J. R. Oppor-

tunities and challenges in closed-loop systems in type 1 diabetes. Lancet Diabetes
Endocrinol. 10, 6–8 (2022).

2. Aiello, E. M. et al. Review of automated insulin delivery systems for individuals
with type 1 diabetes: tailored solutions for subpopulations. Curr. Opin. Biomed.
Eng. 19, 100312 (2021).

3. Boughton, C. K. Fully closed-loop insulin delivery—are we nearly there yet?
Lancet Digital Health 3, E689–E690 (2021).

4. Gillingham, M. B. et al. Assessing mealtime macronutrient content: patient per-
ceptions versus expert analyses via a novel phone app. Diabetes Technol. Ther. 23,
85–94 (2021).

5. Deeb, A., Al Hajeri, A., Alhmoudi, I. & Nagelkerke, N. Accurate carbohydrate
counting is an important determinant of postprandial glycemia in children and
adolescents with type 1 diabetes on insulin pump therapy. J. Diabetes Sci.
Technol. 11, 753–758 (2017).

6. Laurenzi, A. et al. Effects of carbohydrate counting on glucose control and quality
of life over 24 weeks in adult patients with type 1 diabetes on continuous
subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR).
Diabetes Care 34, 823–827 (2011).

7. Samadi, S. et al. Meal detection and carbohydrate estimation using continuous
glucose sensor data. IEEE J. Biomed. Health Inform. 21, 619–627 (2017).

8. Turksoy, K. et al. Meal detection in patients with type 1 diabetes: a new module
for the multivariable adaptive artificial pancreas control system. IEEE J. Biomed.
Health Inform. 20, 47–54 (2016).

9. Dassau, E., Bequette, B. W., Buckingham, B. A. & Doyle, F. J. 3rd Detection of a
meal using continuous glucose monitoring: implications for an artificial beta-cell.
Diabetes Care 31, 295–300 (2008).

10. Ramkissoon, C. M., Herrero, P., Bondia, J. & Vehi, J. Unannounced meals in the
artificial pancreas: detection using continuous glucose monitoring. Sensors (Basel)
18, 884 (2018).

11. Faccioli, S. et al. Super-twisting-based meal detector for type 1 diabetes man-
agement: Improvement and assessment in a real-life scenario. Comput. Methods
Prog. Biomed. 219, 106736 (2022).

12. Cameron, F. M. et al. Closed-loop control without meal announcement in type 1
diabetes. Diabetes Technol. Ther. 19, 527–532 (2017).

13. Meneghetti, L., Facchinetti, A. & Favero, S. D. Model-based detection and classi-
fication of insulin pump faults and missed meal announcements in artificial
pancreas systems for type 1 diabetes therapy. IEEE Trans. Biomed. Eng. 68,
170–180 (2021).

14. Harvey, R. A., Dassau, E., Zisser, H., Seborg, D. E. & Doyle, F. J. 3rd Design of the
glucose rate increase detector: a meal detection module for the health mon-
itoring system. J. Diabetes Sci. Technol. 8, 307–320 (2014).

15. Corbett, J. P. et al. Smartwatch gesture-based meal reminders improve glycaemic
control. Diabetes Obes. Metab. 24, 1667–1670 (2022).

16. Corbett, J. P., Garcia-Tirado, J., Colmegna, P., Diaz Castaneda, J. L. & Breton, M. D.
Using an online disturbance rejection and anticipation system to reduce
hyperglycemia in a fully closed-loop artificial pancreas system. J. Diabetes Sci.
Technol. 16, 52–60 (2022).

17. Tsoukas, M. A. et al. A fully artificial pancreas versus a hybrid artificial pancreas for
type 1 diabetes: a single-centre, open-label, randomised controlled, crossover,
non-inferiority trial. Lancet Digit Health 3, e723–e732 (2021).

18. Kovatchev, B. P., Straume, M., Cox, D. J. & Farhy, L. S. Risk analysis of blood
glucose data: a quantitative approach to optimizing the control of insulin
dependent diabetes. J. Theor. Med. 3, 1–10 (2000).

19. Resalat, N., El Youssef, J., Tyler, N., Castle, J. & Jacobs, P. G. A statistical virtual
patient population for the glucoregulatory system in type 1 diabetes with inte-
grated exercise model. PLoS One 14, e0217301 (2019).

20. Castle, J. R. et al. Randomized outpatient trial of single- and dual-hormone
closed-loop systems that adapt to exercise using wearable sensors. Diabetes Care.
41, 1471–1477 (2018).

21. Resalat, N., El Youssef, J., Reddy, R. & Jacobs, P. G. Design of a dual-hormone
model predictive control for artificial pancreas with exercise model. Annu. Int
Conf. IEEE Eng. Med. Biol. Soc. 2016, 2270–2273 (2016).

22. Jacobs, P. G. et al. Automated control of an adaptive bihormonal, dual-sensor
artificial pancreas and evaluation during inpatient studies. IEEE Trans. Biomed.
Eng. 61, 2569–2581 (2014).

23. Jacobs, P. G. et al. Incorporating an exercise detection, grading, and hormone
dosing algorithm into the artificial pancreas using accelerometry and heart rate.
J. Diabetes Sci. Technol. 9, 1175–1184 (2015).

24. Mosquera-Lopez, C. & Jacobs, P. G. Incorporating glucose variability into glucose
forecasting accuracy assessment using the new glucose variability impact index
and the prediction consistency index: an LSTM case example. J. Diabetes Sci.
Technol. 16, 7–18 (2021).

25. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward
neural networks. In Paper presented at: 13th Int. Conf. Artificial Intelligence and
Statistics (2010).

26. Kingma, D. & Ba, J. Adam: a method for stochastic optimization. In Paper pre-
sented at: 3rd Int. Conf. for Learning Representations (2015).

27. Hovorka, R. et al. Nonlinear model predictive control of glucose concentration in
subjects with type 1 diabetes. Physiol. Meas. 25, 905–920 (2004).

28. Magni, L. et al. Model predictive control of type 1 diabetes: an in silico trial. J.
Diabetes Sci. Technol. 1, 804–812 (2007).

29. Kovatchev, B. et al. Multinational study of subcutaneous model-predictive closed-
loop control in type 1 diabetes mellitus: summary of the results. J. Diabetes Sci.
Technol. 4, 1374–1381 (2010).

30. Del Favero, S. et al. First use of model predictive control in outpatient wearable
artificial pancreas. Diabetes Care. 37, 1212–1215 (2014).

31. Del Favero, S. et al. Multicenter outpatient dinner/overnight reduction of hypo-
glycemia and increased time of glucose in target with a wearable artificial pan-
creas using modular model predictive control in adults with type 1 diabetes.
Diabetes Obes. Metab. 17, 468–476 (2015).

32. Kropff, J. et al. 2 month evening and night closed-loop glucose control in patients
with type 1 diabetes under free-living conditions: a randomised crossover trial.
Lancet Diabetes Endocrinol. 3, 939–947 (2015).

33. Thabit, H. et al. Home use of an artificial beta cell in type 1 diabetes. N. Engl. J.
Med. 373, 2129–2140 (2015).

34. Wilson, L. M. et al. Dual-hormone closed-loop system using a liquid stable
glucagon formulation versus insulin-only closed-loop system compared with a
predictive low glucose suspend system: an open-label, outpatient, single-
center, crossover, randomized controlled trial. Diabetes Care. 43, 2721–2729
(2020).

ACKNOWLEDGEMENTS
This research was funded by The National Institutes of Health NIH/NIDDK grants
5R01DK120367, 5R01DK122583, 1R01DK1225833-01, and 1R01DK129382-01; The
Leona M. and Harry B. Helmsley Charitable Trust, and by The Juvenile Diabetes
Research Foundation International (JDRF) grant 1-SRA-2019-820-S-B. The authors
wish to thank the study participants for their time and dedication to this research.
The authors thank Dexcom, Inc. for providing Dexcom G6 sensors and transmitters
for this study and Tidepool.org for providing the datasets and technical support
during the development of the meal detection algorithm. Preliminary findings of this
study were presented at the 15th International Conference on Advanced
Technologies & Treatments for Diabetes, April 2022, in Barcelona, Spain. The
guarantor of this research is Clara Mosquera-Lopez who takes responsibility for the
content of the article.

AUTHOR CONTRIBUTIONS
J.R.C., P.G.J., L.M.W., and J.E.Y. developed the study protocol. C.M.L. and P.G.J.
developed the machine learning algorithm for automated meal detection and size
estimation. W.H. and P.G.J. designed the MPC glucose control algorithm and
performed simulations to create in silico datasets. J.L. and P.G.J. developed the
iPancreas platform. C.M.L, P.G.J., L.M.W., and J.R.C. participated in the design of the
analysis. J.R.C., L.M.W., J.E.Y., D.B., V.G., and J.H.E. run the clinical trial. C.M.L. processed

C. Mosquera-Lopez et al.

6

npj Digital Medicine (2023)    39 Published in partnership with Seoul National University Bundang Hospital



the datasets, developed analysis tools, performed formal evaluation of the algorithm,
analyzed study results, and wrote first draft and revisions of the manuscript. P.G.J.,
J.R.C., and L.M.W. edited the manuscript. P.G.J. and J.R.C. acquired funding and
administered the project.

COMPETING INTERESTS
P.G.J. and J.R.C. have a financial interest in Pacific Diabetes Technologies Inc., a
company that may have a commercial interest in the results of this research and
technology. J.R.C. also reports advisory board participation for Zealand Pharma, Novo
Nordisk, Insulet, and AstraZeneca, and her institution has received research funding
from Dexcom. For all other authors, no competing interests exist.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-023-00783-1.

Correspondence and requests for materials should be addressed to Clara Mosquera-
Lopez.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

C. Mosquera-Lopez et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    39 

https://doi.org/10.1038/s41746-023-00783-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Enabling fully automated insulin delivery through meal detection and size estimation using Artificial Intelligence
	Introduction
	Results
	Participants information
	Study outcomes

	Discussion
	Methods
	Meal detection and carbohydrate estimation model development
	Automated insulin delivery systems
	Study design and participants
	Procedures
	Outcomes
	Statistical analysis

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




