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Abiotic selection ofmicrobial genome size in
the global ocean

David K. Ngugi 1 , Silvia G. Acinas 2, Pablo Sánchez 2, Josep M. Gasol 2,
Susana Agusti 3, David M. Karl 4 & Carlos M. Duarte 3

Strong purifying selection is considered a major evolutionary force behind
small microbial genomes in the resource-poor photic ocean. However, very
little is currently known about how the size of prokaryotic genomes evolves in
the global ocean and whether patterns reflect shifts in resource availability in
the epipelagic and relatively stable deep-sea environmental conditions. Using
364 marine microbial metagenomes, we investigate how the average genome
size of uncultured planktonic prokaryotes varies across the tropical and polar
oceans to the hadal realm. We find that genome size is highest in the peren-
nially cold polar ocean, reflecting elongation of coding genes and gene dosage
effects due to duplications in the interior ocean microbiome. Moreover, the
rate of change in genome size due to temperature is 16-fold higher than with
depth up to 200m. Our results demonstrate how environmental factors can
influence marine microbial genome size selection and ecological strategies of
the microbiome.

Genome size is a viable predictor of the metabolic complexity of
prokaryotes (bacteria and archaea) and a fundamental force shaping
their diversity and niche occupation in Earth’s biomes, including the
ocean1–4. Our understanding of the mechanisms underlying the evo-
lution of microbial genome size has changed greatly in the last two
decades, with multiple evolutionary and ecological processes impli-
cated in shaping genome size and complexity in nature, including
streamlining, selection for metabolic efficiency, genetic drift, natural
selection, homologous recombination (e.g., via lateral/horizontal gene
transfer and mobile genetic elements), and increased mutation
rates1,4–7. The variation of genome size can therefore be thought as a
function of complex evolutionary forces, reflecting the interplay of
environmental, biological, and historical factors.

For example, nutrient limitation is considered a strong selective
force that causes the relatively low guanine and cytosine content and
genome streamlining in pelagic bacterioplankton1,3,4,8,9. The abundant
cyanobacterium Prochlorococcus and the heterotrophic alphaproteo-
bacterium Pelagibacter (SAR11), which are prevalent in the tropical
epipelagic ocean, are examples of this model10. However, several

recent studies argue against widespread streamlining, and instead
advocate genetic drift as the dominant force compacting prokaryotic
genomes7,10,11. In parallel, mathematical models suggest that greater
variability of an environmental selection pressure leads to genome
enlargement due to an increase in gene copy number12. Genome size
expansion is also attributed to increased mortality, gene family size
expansion, and horizontal gene transfer common in ecosystems with
high environmental pressure and strong predator-prey relationships12.
Thus, the evolution of prokaryote genome size may be influenced by
multiple ecological and evolutionary mechanisms, but a comprehen-
sive understanding of how these processes affect genome evolution in
the ocean on a global scale is lacking.

Two candidate environmental variables in the ocean that may
affect microbial genome size are ocean depth and temperature. Pio-
neering studies based on marine isolates and microbial metagenomes
have shown that the average genome size (AGS) of planktonic prokar-
yotes increases with ocean depth8,13–16. In these studies, it was specu-
lated that a more relaxed purifying selection favors large genomes at
depth compared to the surface, reflecting the greater diversity of
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organic compounds available in the deep sea and the small population
sizes. Across the ensemble of cultured planktonic prokaryotes, gen-
omes are much larger in the nutrient-rich and cold bathypelagic ocean
than in thewarmoligotrophic epipelagic ocean14. However,muchof the
marine prokaryotic diversity has yet to be cultured17, with current esti-
mates suggesting that two to tenmillion prokaryotic species exist in the
global ocean18,19. Combinedwith the fact that the averageoceandepth is
about 4000m20 and that physicochemical properties of the oceanic
water column remain relatively constant at great depth21, implies that
there may be a million undescribed species and planktonic micro-
organismswith even larger genomes and biological adaptations (e.g., to
cold) inhabiting the unexplored deep-sea habitat.

However, genome sizes of uncultured oceanic prokaryotes have
been studied only locally [i.e., North Pacific8,13] or only for the photic
oceanbasedonmetagenomic sequences15,16, leaving open the question
of whether previous findings based on limited datasets are applicable
at global scales and different oceanic provinces, especially considering
the vast collection of metagenomes now available. The impact of
eukaryotic and viral genomes sequenced concurrently with prokar-
yotic metagenomes on AGS prediction also remains unclear, as these
factors can bias the accuracy of AGS estimation [see, ref. 22], but were
not thoroughly considered in previous studies15,16.

Despite its important role in shaping the structure and functionof
the global ocean microbiome23, the question of how temperature
contributes to the evolution of genome size inmarine prokaryotes has
not been extensively studied. Understanding genome evolution in the
vast expanse of the ocean is important because ocean temperature
varies widely, from ~4 °C in the deep ocean interior20 to 32 °C in the
tropical pelagic ocean [e.g., Red Sea24], remains relatively constant in
the polar ocean, and is increasing due to the effects of climate
change25. Also, spontaneous mutation rates increase at high
temperatures26,27, leading to genome size reduction in prokaryotes7,
while adaptation to changing environmental conditions causes gen-
ome size expansion due to gene duplication28–30. Consequently, gen-
ome sizes of marine microorganisms in the pelagic and in the deep
ocean are expected to evolve independently due to large temperature
variations in these depths. This is because the epipelagic features high
but variable temperatures and is accompanied by the widespread
mutagenic effects of UV-induced DNA damage (see, ref. 31), while the
interior oceanhas relatively constant low temperatures (~4 °C). Indeed,
the genome size of some cultured microbes is negatively correlated
with the optimal growth temperature of the microbes32, but these are
microbes from different environments where habitat could also play a
selective role. Overall, we hypothesize that smaller genomes would
predominate in the upper pelagic ocean, where ambient temperatures
approach the growth optimum but increase mutation rates, while
relatively larger genomes would predominate in the ‘colder’, nutrient-
rich interior of the ocean and in perennially cold polar waters.

Here, we examine massive metagenomic sequence compilations
of global ocean microbiomes (Supplementary Data 1), covering
environmental gradients33, temporal sampling campaigns8 and global
assessments34–36, to elucidate the relationship between estimated
average microbial genome size (AGS) and ambient environmental
variables in verticallymatchedmetagenomic samples extending to the
hadal domain and covering major ocean provinces. Our results con-
firm previous reports of genome size increases with ocean depth and
shed further light on the large magnitude of thermal control on the
evolution of genome size of marine microbes relative to depth on a
global scale in the tropical and polar oceans.

Results
Non-prokaryotic metagenomic sequences confound average
genome size estimations
In this work, we employed MicrobeCensus22 for de novo estimation of
the average genome size (AGS) of microorganisms captured in

shotgun metagenome sequences (Fig. 1a; Supplementary Data 1).
Briefly, MicrobeCensus optimally aligns metagenomic reads to a set of
30 conserved single-copy gene (CSCG) families found in prokaryotes
22. Based on these mappings, the relative abundance of each CSCG is
then computed and used to estimateAGSbasedon the proportionality
principle—that is, the AGS of the community is inversely proportional
to the relative abundance of each marker genes22. Finally, a weighted
average AGS is calculated that excludes outliers to obtain a robust AGS
estimate for a given metagenomic sample22.

Of note, the AGS of complete prokaryotic genomes increases with
the cumulative number of associated phages and othermobile genetic
elements37. Similarly, AGS estimates derived from metagenomic
sequences of uncultured “free-living”microbes (captured in 0.1–3 µm-
size filters) may also be affected by putative phage and eukaryotic
microbiomes sequenced concurrently in fractionated seawater sam-
ples (see,8,22). To evaluate this possibility in our AGS predictions, we
compared AGS estimates obtained directly from quality-controlled
metagenomes with estimates from the same metagenomes iteratively
subjected to three (de novo) decontamination procedures to filter out
potential eukaryotic and viral sequence reads (Fig. 1a; see details in the
“Methods” section). Overall, putatively ‘contaminating’ viral and
eukaryotic reads accounted for 1% to 20% (average 7.5%) of the high-
quality trimmed sequences in the four microbial metagenome collec-
tions (Fig. 1b; Supplementary Data 1). As expected, the average pro-
portion of contaminating sequences in metagenomes from large
(0.2–3.0 µm) and small (0.1–1.2 µm) size fraction filters were the high-
est (~11%) and lowest (~5%), respectively (Fig. 1b). In addition, the
proportion of contaminating reads was significantly dependent on the
depth layer of the ocean (Kruskal-Wallis χ2 = 32.40, df = 2, p <0.001);
the lowest values were in the bathypelagic (Fig. 1c).

Crucially, significant differences were observed in AGS estimates
in the presence and absence of contaminating reads (repeated mea-
sures ANOVA; p <0.0001; Supplementary Data 2), regardless of the
metagenome sample, its geography, or the range of filters used
(0.1–3 µm; Fig. 1d). The vast majority of metagenomes (85% of
259 samples) showed AGS estimates that were ~1–19% lower (average
5%) after the putative eukaryotic and viral metagenomic sequences
were removed (Fig. 1e). These results suggest that environmental
eukaryotic and viral genomic sequences affect AGS predictions for
prokaryotes in marine metagenomes. Therefore, the AGS estimates
reported and discussed below are based on high-qualitymetagenomes
lacking putative viral and eukaryotic sequences (i.e., AGS4; Fig. 1),
which we refer to as ‘free-living’ prokaryotic communities unless
otherwise indicated.

Prokaryote genome sizes increasewithoceandepth and lifestyle
In three independent microbial metagenomic collections (Supple-
mentary Data 1) comprising temporal (ALOHA, n = 83)8, regional (Red
Sea, n = 45)33, and global (Malaspina Vertical Profiles,MProfile, n = 81)36

ocean microbiome surveys, we found distributions of AGS estimates
that were consistently unimodal (Hartigan’s dip test for unimodality,
p =0.567–0.918) in the ‘free-living’ prokaryotic communities
(0.1–3 µm) sampled from the surface (3m) to the bathypelagic ocean
(~4000m; Fig. 2a). Notably, the Malaspina Vertical Profile metagen-
omes (Supplementary Data 1) covered a much wider range of ocean
depths (3 to 4000m) and latitudes than previous studies estimating
AGS from oceanic metagenomes, but with relatively few samples8,13,16,
providing a unique resource for our objectives. Combined analysis of
all three metagenome datasets (Red Sea, ALOHA, and MProfile)
revealed significant differences (Kruskal-Wallis χ2 = 72.762, df = 2,
p < 2.2 × 10–16) in AGS estimates of marine prokaryotes inhabiting the
three canonical ocean depth layers (Fig. 2b). Epipelagic prokaryotes
(~3–200m) had mean (± SD) and median AGS estimates of 2.21 ± 0.33
and 2.15Mbp, respectively (n = 110). Mean (± SD) and median AGS
estimates continued to increase for mesopelagic prokaryotes
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(> 200–1000m) with values of 2.45 ± 0.29 and 2.43Mbp, respectively
(n = 73), and were highest for bathypelagic prokaryotes
(> 1000–4000m) with values of 2.92 ± 0.27 and 2.95Mbp, respec-
tively (n = 26).

Themedian AGS estimate range of 2.2 to ~3.0Mbp in the sampled
free-living (0.1–3 µm in size) marine prokaryotic communities (n = 209
metagenomes) is consistent with other large-scale metagenome

sequence-based estimates and the sizes of metagenome-assembled
prokaryotic genomes (MAGs; in 0.22–3 µm filters) from the photic
ocean (surface to mesopelagic) based on the Tara Oceans Expedition
(1.5–2.3Mbp)15,16. Overall, our metagenome sequence-based AGS esti-
mates support the unimodal distribution of prokaryotic genome sizes
recently demonstrated in environmental genomes in several biomes38

and on cultured isolates (including marine bacterioplankton)14,39.
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Fig. 1 | Eukaryotic and viral metagenomic reads bias AGS estimates in marine
microbialmetagenomes. a Schematicworkflowofprocedures used for estimating
AGS in metagenomic samples. AGS is estimated based directly on preprocessed
high-quality metagenomic reads (AGS1) and after three iterative steps to remove
potential eukaryotic reads (AGS2) and viral reads detected based on the RefSeq
viral genome database (AGS3) or de novo (AGS4). See the “Methods” section for
more details. b Relationship between depth and proportion of total putative
eukaryotic and viral sequences in marine metagenomic collections. The blue line
indicates thefittedone-tailedSpearmancorrelation (r),with the corresponding95%
confidence intervals for the curve indicated by grey bands. The density distribution
of the estimated proportion of contaminants is shown in green, with the corre-
spondingmedian values (µ) highlighted. Values in parenthesis denote the filter size
range of sampled metagenomes. c The fraction of ‘contaminating’ reads is highest
in the epipelagic ocean relative to other ocean depth layers. EPI Epipelagic
(~3–200m), MES Mesopelagic (200–1000m), BAT Bathypelagic (1000–4000m).

Values in parenthesis indicate the number of metagenomes. Only the results from
the Malaspina Vertical Profiles (MProfile) metagenomes are shown as they cover
greater depths of the global ocean (mean 1114m; Supplementary Data 1). d Eukar-
yotic and viral metagenomic sequences significantly increase AGS estimates for
prokaryotic plankton inmarine metagenomes. Values in parenthesis show number
of metagenomes for AGS1 and AGS2. e AGS estimates decreased in most metage-
nomic samples (85%; n = 220) after decontamination compared to predictions
directly from preprocessed metagenomes by 1–19% (n = 39). Boxplots (c–e) show
the median as middle horizontal (c, d) or vertical (e) lines and interquartile ranges
as boxes (whiskers extend no further than 1.5 times the interquartile ranges). Data
are shown as circular symbols, while mean values are shown as white colored
diamonds. Values at the top (c, d) indicate the adjusted significant P-values of the
unpaired (c) and paired (d) two-sided Wilcoxon test with Benjamini-Hochberg
correction. Source data are provided as a Source Data file.
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However, estimates from isolates are likely biased since current culti-
vation approaches tend to favor copiotrophs (see, ref. 3).

We next tested whether the derived AGS estimates depended on
microbial cell size by analyzing 25 paired bathypelagic metagenomes
(MDeep; Supplementary Data 1) sampled during the global Malaspina
Expedition40 in which both prokaryotic life strategies, free-living
(0.2–0.8 µm size) and particle-associated (0.8–20 µm size), were sam-
pled simultaneously35. The analyzedmetagenomes (MDeep)were from
the Atlantic, Pacific, and Indian Ocean provinces and cover a spatial
distance of 9437 km with an average depth (± SD) of 3688 ± 526m at
the tropical and subtropical latitudes (–33.55°N to 32.0788°N). These
microbial metagenomes were also screened for contaminating eukar-
yotic and viral sequences as indicated in Fig. 1a (see details in the
“Methods” section and Supplementary Data 1). The genomes of bath-
ypelagic prokaryotes associatedwithmarine particles (5.6 ± 0.97Mbp)
were twice as large (paired two-sided Wilcoxon test, p < 0.0001) as
those of their free-living counterparts (2.65 ± 0.3Mbp; Fig. 2c). Cru-
cially, these AGS estimates are also consistent with read-based pre-
dictions from bathypelagic waters (4000m) in the Pacific Ocean
(Station ALOHA)13 and estimates based on MAGs (~3.6Mbp) recently

compiled from both cell size fractions of the same bathypelagic
metagenomes35.

The significant increase in AGS estimates with depth (Fig. 2b) and
the twofold larger AGS for particle-associated compared to free-living
bathypelagic prokaryotes (Fig. 2c) suggest larger genome size patterns
in the hadal biosphere. Extending our analysis to metagenomes
spanning hadal to abyssal depths (4000–10,500m) based on seven
recent PacificOceanmetagenomes sampled from the Challenger Deep
of the Mariana Trench41,42 yielded AGS estimates in the range of
3.46–4.19Mbp and 3.88–4.92Mbp for free-living (0.2–3 µm) and
particle-associated (> 3 µm) prokaryotes, respectively (Supplementary
Data 3). These estimates are also consistent with those of MAGs
reconstructed from the same metagenomes in the Challenger Deep
(Mariana Trench)43. Overall, this reinforces the patterns of larger AGS
in particle-associated compared to free-living bathypelagic prokar-
yotes, and larger microbial genomes in the deep ocean compared to
the upper ocean.

AGS patterns are not geographically constrained
Examination of the geographic patterns of AGS estimates showed that
AGS distribution was independent of geographic distance in both the
regional (Red Sea, Mantel statistic r=0.01824, p=0.2971) and global
(MProfile, r= –0.01413, p=0.7924) ocean metagenomes. Furthermore,
AGS estimates in the vertically profiled global Malaspina metagenomes
(MProfile, n=81) were significantly independent of the Longhurst bio-
geochemical province sampled (n =9; Kruskal-Wallis χ2 = 1.0006, df = 8,
p=0.9982; Supplementary Data 1). The lack of covariance between the
patterns of AGS estimates and geographic distance or Longhurst pro-
vince sampled may reflect the high connectivity of microbial commu-
nities throughout the global ocean, particularly the redistributive effects
of circulation by ocean currents and other transport processes, as well
as the enormous population sizes of plankton that allow dispersal
constraints to be overcome44,45. This is consistent with the relatively
small differences in microbial assemblages recently found in different
ocean basins23,46. Another possible explanation is the effect of season-
ality, which can cause selection of different taxa, resulting in the suc-
cession of microbial communities and affecting their distribution
(see, ref. 47), and thus influence AGS patterns.

An assessment of the relationship between AGS and measured
environmental variables (Supplementary Fig. S1; Data 1)—separately
for the Red Sea metagenomes (regional scale) and Malaspina Vertical
Profiles metagenomes (global scale), showed that the cumulative
effect of temperature, salinity, dissolved oxygen, and depth on AGS
patterns was significant at both the regional scale (n = 45; Mantel sta-
tistic r =0.1944, p =0.0057) and the global scale (n = 81; Mantel sta-
tistic r =0.1779, p = 1 × 10–4). This result suggests that environmental
conditions are a driving force behind predicted AGS patterns in the
marinemicrobiome.While no significant interaction effectwas evident
between many environmental variables (i.e., salinity, depth, oxygen,
nitrate, and phosphate) in controlling AGS patterns (one-way ANOVA,
p <0.05; Supplementary Data 4), we found that depth and tempera-
ture covaried significantly, as expected (Spearman’s r = –0.72;
p = 1.3 × 10–14).

Further statistical tests of the relative importance of environ-
mental factors in linear regression analyses based on variance
decomposition48 showed that temperature and depth (and nitrate in
the case of the Red Sea) had similar but higher relative importance as
predictors of AGS patterns than salinity or dissolved oxygen (Supple-
mentary Fig. S2). The strong relationship between temperature and
depth is consistent with evidence for a strong temperature depen-
dence of pelagic bacterioplankton diversity and composition from
single-cell genomics and metagenomics3,23. However, our results
extend this assessment from the photic ocean studied previously to
the deep ocean interior, where the maximum depth of the studied
samples (4000m; Supplementary Fig. S1) reflects the average global
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Fig. 2 | Distributionofgenomesizeofunculturedmarineprokaryotes. aDensity
distribution plots of estimated average genome size (AGS) of “free-living” marine
microbial communities (0.1–3 µm) in three separate large-scale metagenomic col-
lections of the pelagic to bathypelagic (up to 4000mbsl) microbiome. The dashed
lines show the mean AGS estimate for each metagenomic collection. The dis-
tributions are all consistent with unimodality [one-tailed, Hartigan’s dip test for
unimodality, p =0.567 (KRSE2011), 0.8194 (ALOHA), and 0.918 (MProfile)]. b AGS
patterns correlate with ocean depth zones in global microbial metagenomes
(n = 209) that includes prokaryotes in the epipelagic (EPI, ~3–200m), mesopelagic
(MES, > 200–1000m), and bathypelagic (BAT, > 1000–4000m). cAGS estimates in
the “free-living” (0.2–0.8 µm) and particle-associated (0.8–20 µm) bathypelagic
microbiome sampled latitudinally at 4000m depth during the Malaspina expedi-
tion. Boxplots show the median as middle horizontal line and interquartile ranges
as boxes (whiskers extend no further than 1.5 times the interquartile ranges). Data
are shown as circular symbols, while mean values are shown as white colored
diamonds. Values at the top indicate the adjusted significant P-values of the
unpaired (b) and paired (c) two-sided Wilcoxon test with Benjamini-Hochberg
correction. The number ofmetagenomes analyzed is indicated in parentheses in all
three panels. Source data are provided as a Source Data file.
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ocean depth20. This in turn captures the extensive microbiome of
uncultured marine microorganisms in the dark and cold deep ocean,
the largest habitat by volume in the ocean20. Overall, these results
suggest strong environmental selection on microbial genome sizes,
with comparatively little constraint on the dispersal of the prokaryotic
community of average genome size in the global ocean.

Scaling laws predict microbial genome sizes in the thermally
stratified ocean
Based on the above findings, we used the gathered data at global
(MProfile), regional (Red Sea), and temporal (ALOHA) scales and per-
formed curve-fitting analysis for each data set individually and for all
three together to find the best regression models that accurately
explained the relationship between the AGS estimates and depth or
temperature. We found that power laws best represented the rela-
tionship between AGS estimates and these two variables (Fig. 3; Sup-
plementary Data 5). AGS estimates increased with a power of 0.072 of

depth (Fig. 3a) and decreased with a power of –0.165 of temperature
(Fig. 3b) on the global scale (Malaspina). Examination of these corre-
lations for a local Red Sea data set exhibiting extreme surface tem-
peratures (up to 32 °C; Supplementary Fig. S1; Data 1) and remarkably
uniform but high temperature (~22 °C) from 200m to the seafloor
(2000–3000m)49, effectively reproduced the patterns observed at the
global scale (Fig. 3c, d; Supplementary Data 5). Although the samples
spanned a one-month expedition33, which was not possible during the
global Malaspina expedition (from December 2010 to July 2011)34–36,
this consistency of results increases confidence in the observed global
trends and suggests that the inferred relationships are robust pre-
dictors of the underlying ecological factors. However, a steeper rate of
AGS change with temperature was observed in the regional dataset
(z = –0.698; n = 45; Fig. 3d) than in the global dataset (z = –0.165; n = 81;
Fig. 3b), suggesting that AGS changes more rapidly with temperature
extremes.

Next, we examined the effect of seasonality on our scaling pre-
dictions using a temporally resolved, localised dataset from the sub-
tropical North Pacific ocean (Station ALOHA), where metagenomes
were collected over 10 months (August 2010 to December 2011)8.
Similar scaling relationships of AGS with depth and temperature were
also found (Supplementary Fig. S3; Data 5), reinforcing patterns from
the regional and global datasets (Fig. 3). However, linear regression
analyses applied to individual sampling months (seasons) revealed
greater variance in the direction of the relationship between AGS and
environmental factors (Supplementary Fig. S4–S7), suggesting that
seasonal dynamicsmay affect AGS patterns inmarine prokaryotes. For
example, correlation analyses revealed significant (Spearman r = –0.71
to 0.90; p <0.05) but opposing relationships in the spring, summer,
and winter seasons (Supplementary Fig. S4–S7). As expected, the
scaling exponent of the rate of change of AGS with temperature
(z = –0.07) and the regression strength (p ≤0.001) were much lower
when all temporal metagenomes (n = 83) were analyzed together
(Supplementary Fig. S3) or analyzed together with the previous data-
sets (Fig. 3e, f; Supplementary Data 6), compared to the separate
results from the regional (Red Sea) and global (Malaspina) datasets
(Fig. 3a–d; Supplementary Data 5). In contrast, the scaling exponent of
the rate of change of AGS with depth remained relatively unchanged
for all three comparisons (Fig. 3a, c, e). Overall, these results support
the robustness of the scaling laws predicting the rate of change of AGS
with depth and temperature in the global ocean microbiome (Fig. 3),
despite the inferred seasonal effects.

Rates of change of AGS with respect to temperature and depth
are different in photic and aphotic tropical oceans
Seawater column temperature profiles vary at different latitudes; sur-
face water is warmer near the equator and colder at the poles. In low-
latitude tropical regions, the sea surface ismuchwarmer, resulting in a
highly pronounced thermocline. In addition, the surface temperature
changes relatively little seasonally in tropical regions (hence there is
little seasonal change in the profiles). At high latitudes (polar regions),
there is little difference between surface temperature and temperature
at depth, and temperature is fairly constant (and cold) at all depths
regardless of season. Thus, if the predicted scaling factor between AGS
and temperature or depth is universal, we expect that (1) horizontal
transects at a given depth spanning a wide range of temperatures
should have the same scaling relationshipwith AGS in the tropic ocean
and that (2) perennially cold polarmarinewaters shouldhave the same
linear relationship between AGS and depth.

Accordingly, we examined the relationship between AGS and
depth or temperature in horizontal transects at similar depths in
ocean metagenomes sampled worldwide (n = 204; Supplementary
Data 1). We found that the relationship between AGS and these two
variables (conditioned on the same horizontal depth) clearly sepa-
rated the photic epipelagic ocean (3 to 200m; n = 8 depths; Fig. 4a)
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Fig. 3 | Scaling rateofgenomesizeofmarineprokaryoteswith abiotic factors.A
linear fit on a logarithmic scale illustrates the power law rates at which estimated
average genomesize (AGS) changeswith depth (a, c, e) and temperature (b,d, f) for
metagenomes at global (Malaspina Profile, a, b) and regional (Red Sea, c, d) scales.
Panels e and f show the same scaling relationships in these two datasets, but ana-
lyzed together with the temporal dataset from Station ALOHA (n = 83). The solid
black line and grey error bands (a–f) indicate the regression curve and 95% con-
fidence intervals for the best power law curve fit, respectively. The power law
exponent (z), intercept (a), model significance p-value (p), and the adjusted coef-
ficient (r2 adj) are shown in individual panels based on the F-test. Further details are
provided in Supplementary Data 5 and 6. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-36988-x

Nature Communications |         (2023) 14:1384 5



from the aphotic ocean (mesopelagic and bathypelagic; n = 10
depths; Fig. 4b). In both cases, the dependence of AGS on
depth (Fig. 4c) and temperature (Fig. 4d) was significantly linear
(p < 0.05; Fig. 4c, e) only in the photic layer, but not in the aphotic
layer (Fig. 4d, f). This again suggests that the genome size landscape
of uncultured marine prokaryotes in the global ocean is clearly
separated along the dimensions of the two abiotic factors. However,
the estimated regression slope of AGS with depth (mean ± SD:
0.0038 ± 0.00049; Fig. 4c) was lower than that for temperature
(mean ± SD: −0.0591 ± 0.0264; Fig. 4e), suggesting that the rate of
change of AGS with temperature is 16-fold higher than with depth.
This corresponds to a change of approximately 4 and 59 genes per
unit of depth and temperature, respectively, assuming an average-
sizedmicrobial protein-coding gene of 1000 base pairs in planktonic
prokaryotes found at similar depths up to 200m. The observed
distinct pattern of change in AGS with these environmental variables
in photic and aphotic oceans likely reflects the pronounced ther-
mocline conditions in the photic layer at low latitudes.

Next, we examined the relationship between AGS and both
variables in polar metagenomes (n = 94) extending from the surface
to 3800m depth (Supplementary Data 1) and covering different
transects in the Arctic and Antarctic Oceans50 and the Tara Ocean
Polar Circle Expedition51. Unlike tropical waters at low latitudes,
polar waters do not have a thermocline and temperatures do not
exhibit pronounced seasonal variations. This raises the question of
whether the same inverse relationship between AGS and tempera-
ture exists in permanently cold polar marine waters. However, we
found no statistically significant linear correlation (p < 0.05)
between AGS and depth or temperature (Supplementary Fig. S8),
suggesting that AGS varies invariably in permanently cold waters
regardless of seawater depth. To gain further insight, we compared
AGS estimates between metagenomes from the tropical ocean
(n = 234) and those from high-latitude polar waters (n = 98), both
extending from the surface to the bathypelagic ocean. The results
show that polar waters contain free-living prokaryotes (0.1–3 µm)
with significantly larger genomes (unpaired two-sided Wilcoxon

Fig. 4 | The rate of change of AGS estimates with depth and temperature is
greater in the thermocline. Two-way plots of mean (circular symbols) of the
estimated average genome size (AGS) and depth (a) and between AGS estimates
and temperature (b) across horizontal transects at similar ocean depths at the
global scale (n = 204 metagenomes). Horizontal and vertical error bars depict
standarddeviation of themeandepth (x-axis in panel a) or temperature (x-axis inb)
and themean AGS [y-axis in panels (a) and (b)]. Onlymetagenomes represented by
four independent samples at similar depths in different sampling locations were
considered (n = 4–22 metagenomes per depth). Circular symbols are color-coded
bydepth,with closed andopen circlesdenoting samples from thephotic (3–200m,

8 depths; n = 106, 8–20 metagenomes per depth) and aphotic (> 200–4000m, 10
depths; n = 106, 4–22 metagenomes per depth) layers, respectively. c–f Spearman
rank correlations (one-tailed) between mean AGS estimates and depth (c, d) or
temperature (e, f) in thephotic (c, e;n = 8–20metagenomesperdepth) and aphotic
(d, f; n = 4–22metagenomes per depth) layers. The circular symbols show themean
AGS estimate and the error bars show the standard deviation (SD). The solid black
line and grey dashed lines indicate the regression curve and 95% confidence
intervals for the curve, respectively. The means (± SD) of regression slope (s) and
y-axis intercept (y) are given for curves that were significantly linear (p <0.05).
Source data are provided as a Source Data file.
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test, p = 0.0008) than their counterparts from low-latitude tropical
oceans (mean ± SD: 2.73 ± 0.72 Mbp vs. 2.41 ± 0.39Mbp; Fig. 5).
These results reinforce our earlier finding that prokaryotic genomes
from low-latitude tropical marine waters are larger in the cold
interior deep ocean than in the photic ocean (see above), and they
corroborate reports of large genomes in metagenome-resolved
genomes from the polar Arctic51. However, the findings leave
unanswered the question of whether interior ocean prokaryotes
harboring large genomes have a greater metabolic capacity due to
additional genes in the genome.

Gene lengths and family sizes correlate strongly with microbial
genome sizes
If the smaller AGS estimate in prokaryotic communities occupying the
photic ocean are due to fewer gene duplications and shorter coding
genes in the streamlined bacteria of the surface ocean3,8, then we
expect that the potential for gene family expansion (duplications) and
elongation of coding genes predominates in microorganisms with
larger genomes colonizing the nutrient-rich interior of the ocean.
Therefore, we examined the relationship between AGS and coding
gene traits, including the average gene length (AGL), percent GC
content, and gene family size, using full-length coding genes pre-
viously assembled for global Malaspina Vertical Profiles metagenomes
(i.e., MProfile)34. We defined gene families as the number of unique
protein-coding genes distinct to eachmetagenome regardless ofwater
column depth, based on a catalog of 32.7 million full-length non-
redundant genes reconstructed from the same metagenomes34. The
gene catalog contains microbial coding gene sequences (effectively
protein families) clustered at 95% global sequence identity and 80%
overlap across the shorter gene. The processed matrix of gene family
copies across all MProfile metagenomes (available here, https://doi.
org/10.6084/m9.figshare.19673688.v1) was used to compile a binary
table of gene presence and absence and the corresponding counts of
unique genes per metagenome (Supplementary Data 1).

Both AGL (Fig. 6a) and GC content (Fig. 6b) increased with ocean
depth, whereas the number of unique genes per unit coding sequence
length (Fig. 6c) or sequenced metagenomic effort (Supplementary
Fig. S9) decreased with depth. Themedian AGL in the three traditional
ocean depth layers were 583 bp (epipelagic), 612 bp (mesopelagic),
and 637 bp (bathypelagic), indicating a relative length increase of
54 bp from the upper to bathypelagic ocean (Fig. 6a). At the same time,
the number of unique genes per coding sequence length (UGPCL)
decreased by a factor of two from the epipelagic to bathypelagic ocean
(Fig. 6c). These results are consistent with reports of microbial gene
length shortening in the low-nitrogen, sunlit ocean3,8 and gene dupli-
cations observed in microbial species with larger genomes, including

representative marine prokaryotes52,53, and in environmental genomes
of deep-sea microbes13.

Spearman rank correlation analyses also showed that the AGL of
coding genes was significantly positively correlated with changes in
AGS, GC content, and water column depth (r =0.48–0.69,
p = 10−4–10−10; Fig. 6d), but significantly negatively correlated with
UGPCL and temperature (r = −0.49 to −0.61, p = 10−6–10−9; Fig. 6d). In
contrast, UGPCL was significantly positively correlated with tempera-
ture (r = 0.73, p = 3.1 × 10–21), but negatively correlated with depth
(r = −0.72, p = 4.8 × 10−8), AGL (r = −0.61, p = 3.3 × 10−9), GC content
(r = −0.39, p =0.0013), and AGS (r = −0.71, p = 1.2 × 10−13). Collectively,
these results suggest that streamlining selection favors shorter coding
genes in the photic ocean and that the size patterns of microbial
genomes in the interior ocean reflect the elongation of coding genes
and expansion of gene family size, which likely leads to genetic
redundancy.

Discussion
Previous studies aimed at understanding the patterns and ecological
determinants of genome size in marine microbes have been limited to
cultured microbial representatives with biased diversity14 and rela-
tively few metagenome datasets from the photic zone and samples
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with limited geography and water column depth8,13,15,16. An under-
standing of genome evolution inmarine prokaryotesmust account for
the greater diversity of unculturedmicrobial communities in the ocean
and the environmental forces that likely constrain adaptation,
including the ecologically relatively stable interior of the deep ocean.
Using regional and globalmetagenomic analyses, our results show that
the average genome size (AGS) of environmentally abundant and
uncultured marine bacteria and archaea is smaller in the epipelagic
ocean than in the deep ocean. Importantly, our estimates of AGS of
uncultured marine prokaryotes are consistent with previous predic-
tions andmetagenome-resolvedgenomes independently assembled in
different ocean provinces8,13,15,35,43. This in turn, underscores the rela-
tive robustness of our approach to estimating genome size in meta-
genomes on a global scale.

The pelagic ocean is vertically structured by gradients of light,
temperature, oxygen, and dissolved nutrients that strongly influence
the genetic and functional repertoire of its microbial inhabitants23. In
contrast, deep-sea microorganisms face a number of insurmountable
challenges, including high hydrostatic pressure and cold tempera-
tures. Previous reports suggested that the low GC content of prokar-
yotes in the photic zonemay be an adaptation to nutrient deficiency3,8.
Other studies suggested thatnutrient deficiency is a driver ofmicrobial
genome size reduction in the pelagic oligotrophic ocean12 and that
natural selection favors organisms with larger genomes under
nutrient-richconditions (e.g., in thedeepocean)12. Therefore, it is likely
that the genomic landscape of prokaryotes in the global ocean, at both
low and high latitudes, is ecologically differentially constrained in
photic and aphotic marine environments. By examining the relation-
ship between genome size and environmental variables, we confirm
the observed increase in genome size with depth and temperature at
regional scales8,13 and extend the temperature dependence of AGS
patterns in marine microbiomes to the global ocean and up to the
hadal biosphere. Our results identify depth and temperature as robust
predictors of the microbial genome size landscape in the thermally
stratified ocean.

Why does the genome size of prokaryotes in the ocean pre-
dictably and significantly correlate with temperature than depth?
Several possibilities are conceivable. The most parsimonious expla-
nation is the mutually reinforcing effect of temperature on the rate of
biological processes (see, ref. 54) and spontaneous mutation rates26,27.
Physiological rates generally increase two- to threefold when tem-
perature increases by 10 °C55. Consequently, a greater fraction of
reactionmolecules are above activation energy at higher temperatures
in the photic ocean than in the deep ocean interior, where tempera-
tures are consistently three- to fourfold lower. This selectively favors
small microbial genomes in the sunlit pelagic ocean, which have a
compact gene inventory as ocean surface temperatures approach the
theoretical optimum for growth (see, ref. 56), and may significantly
reduce the metabolic cost of DNA replication and the efficiency of
gene expression in shorter operons in pelagic phytoplankton com-
pared to the large genomes of dark ocean microorganisms. Remark-
ably, marine bacterioplankton species such as Pelagibacter
(Alphaproteobacteria) and Prochlorococcus (Cyanobacteria), which
have compact genomes, also have large global population sizes on the
order of 1026 to 1028 cells57, highlighting the ecological importance of
genome reduction in the sunlit pelagic ocean.

Moreover, the temperature dependence of spontaneous muta-
tion rates [see, ref. 26,27] can accelerate mutation rates much more in
the warm upper ocean than in the dark interior ocean. Also, given the
persistence of ultraviolet-induced DNA damage in the photic ocean58,
maintaining genome integrity comes at a significant energy cost and
can lead to mutations59. Consequently, prokaryotic populations, such
as the ecologically abundant epipelagic bacteria Prochlorococcus and
Pelagibacter, are subject to much stronger purifying selection than
those in the dark ocean, as reflected by their higher mutation

rates10,60,61. Interestingly, higher mutation rates are viewed as the main
driver of genome size reduction in prokaryotes5,7, but this view is also
changing, as recent studies implicate genetic drift as a key driver of
genome evolution [see, ref. 62].

We also find that gene duplication—either via paralogs, horizontal
gene transfer, or both—is a selection mechanism that may have led to
the proliferation of potentially large microbial genomes in the
nutrient-rich and cold interior of the ocean. This is consistent with
reports of high gene duplication in bacteria with large genomes63,64

and the demonstrated high rates of gene gain in the mesopelagic
microbiome throughhorizontal gene transfer65, which is considered an
adaptation to cold water65. Given that low temperatures generally slow
mRNA translation66,67 and that gene redundancy reduces the number
of translations of a gene bymultiple copies of the same gene, suggests
that increased gene dosage might help overcome temperature lim-
itations on metabolic rates in the cold ocean interior. For example,
through rapid protein synthesis and cell division to facilitate adapta-
tion, making gene duplication a potentially important ecological
strategy in the cold deep ocean. Alternatively, gene duplication and
size increase (e.g., for protein stability and enhanced catalysis) could
be a safeguard for enhancing gene expression to exploit abundant
nutrients in the deep sea at low temperatures. Remarkably, both spe-
cies and functional richness increase with water column depth, while
cell density and potential maximum growth rate decrease with
depth23,68. Thus, the increase in genome size in the deep, dark ocean is
also associated with slower biomass turnover68,69, which is reflected in
the much longer turnover times of heterotrophic microbes in the
interior ocean below 200m (~0.8 years) than in the upper ocean
(6–25 days)69.

Overall, our results demonstrate the temperature and depth
dependence of genome size in native marine prokaryotic commu-
nities. The patterns observed in the global ocean (this study), in biofilm
bacterial communities in rivers across latitudinal gradients70, and in
diverse soils71 suggest that the selection of small microbial genomes at
high temperatures is a nearly universal ecological trend in natural
ecosystems. We argue that the relaxation of temperature constraints
on metabolic rates favors lean biochemical networks and high muta-
tion rates in warm pelagic waters of the tropical ocean, and conse-
quently small microbial genomes. Importantly, we found that the rate
of change of AGS was exceptionally stronger in the epipelagic ocean
(up to 200m) than in the aphotic ocean (i.e., mesopelagic and bath-
ypelagic), especially with respect to temperature than depth. This
trend was reinforced by the steep rates of AGS change with tempera-
ture in the Red Sea regional dataset, where temperatures are extreme
at the surface (32 °C) and remain constant at 22 °C from 200m to the
seafloor. This suggests that the size of microbial genomes is strongly
influenced by thermocline conditions in the ocean. Ultimately, this has
implications for the generation time and evolution of microbial gen-
omes in the photic oceanas the oceans continue towarmdue to global
climate change.

The large repertoire of accessory (unique) genes associated with
small microbial genomes in the upper ocean provides an arsenal of
functions to copewith the changingpelagic environment and is likely a
major reason for the large population sizes of native pelagic prokar-
yotes (i.e., Pelagibacter and Prochlorococcus). Of evolutionary sig-
nificance, these pelagic prokaryotes, which exhibit extreme genome
reduction, also possess unique islands of genome variability acquired
through horizontal gene transfer that facilitate adaptation to local
environments and provide viral defense72,73. In contrast, we find that
the enlargement of deep-sea prokaryote genomes through gene
duplication is an important evolutionary force in the interior ocean,
likely playing a role in niche adaptation and possibly reflect greater
metabolic versatility in resourceutilization [see, ref. 35], lower purifying
selection as suggested elsewhere13, or complex abiotic and biotic
interactions.Given thatmostof theoceanvolume lies below thephotic
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zone (where low temperatures and high pressures dominate)20, the
finding that larger genomes prevail in the dark ocean has implications
for the genetic and biodiversity landscape in the ocean, where
microbial diversity is presumed greater at depth than in the photic
layer (see, ref. 23), but which remain largely unexplored.

Methods
Metagenomic datasets
Fourmetagenomic collections were used in this study based on recent
compilations by Duarte et al.34. These include two datasets from the
Malaspina 2010 Expedition40, namely Malaspina Vertical Profiles
(MProfile; n = 81; BioProject No. PRJEB52452)36 and Malaspina deep-
ocean metagenomes (MDeep; n = 50; European Nucleotide Archive
(ENA) No. PRJEB44456)35. Also, included were the localized metagen-
omes from the Red Sea (KRSE2011; n = 45; BioProject No.
PRJNA289734)33 and temporal datasets from the North Pacific Sub-
tropical Gyre (Station ALOHA; n = 83; BioProject No. PRJNA352737)8.
Unless otherwise noted, only metagenome collections where two or
more depths were sampled per station were used for downstream
analyses. Therefore, the final metagenomes used (Supplementary
Data 1) do not necessarily reflect the original counts in Duarte et al. 34.
For example, the analyzed MProfile metagenomes contain 81 samples
(out of 100) from the same stations covering multiple depths. For the
station ALOHA, only 83 metagenomes (out of 116) were used; these
also contained environmental variables used for correlation analysis.

Additional datasets covering the bathypelagic domain (MDeep)35

and the hadal biosphere (Yap Trench and Mariana Trench)41,42 were
analyzed independently of the vertically sampled metagenomes
(MProfile, Station ALOHA, and KRSE2011). Specifically, 50 MDeep
metagenomes (out of 58)35, with matched ‘free-living’ and particle-
associated fractions were considered. Trench metagenomes were
retrieved from the NCBI Short Reads Archive database under BioPro-
ject No. PRJNA479337 and PRJNA412741 with accession numbers
SRP151902 (Yap Trench) and SRP119520 (Challenger Deep Mariana
Trench), respectively.

Finally, polar ocean metagenomes were also obtained from ENA
based on the recent studies by Royo-Llonch and colleagues51, who
sampled marine waters in the Polar Arctic Circle (n = 34; BioProject
PRJEB9740), and Cao and colleagues50, who sampled various marine
transects in the Arctic and Antarctic Oceans (n = 60; BioProject
PRJNA588686). Of note, temperature data are only available from the
Tara Ocean Polar Arctic Expedition51, but not from the second study,
where only depth was provided50. Therefore, different sample counts
(out of 98) are used for the correlation analysis of AGS with respect to
temperature (n = 34) and depth (n = 94). These metagenomes are also
listed in Supplementary Data 1.

All metagenomes were subjected to quality control as described
in Duarte et al. 34. Briefly, the rawmetagenome sequences were quality
filtered and trimmed using Trimmomatic (v0.39)74, followed by
removal of PhiX sequencing control reads using BBMap v38.9075. The
quality-checked paired-end reads were then error corrected using the
workflow “Tadpole.sh” implemented in BBMAP with the options “cc=t
rollback=t pincer=t tail=t prefilter=t prealloc=t mode=correct”. The
quality of the sequenced reads in all these steps was assessed using
FASTQC76. The high-quality metagenome reads were used for down-
stream applications following the sameprocedures as shown in Fig. 1a,
including: (1) independent assembly using metaSPAdes v3.15.277 with
preset metagenomic options and a Kmer range of 21 to 127; (2)
retention of contigs with a minimum size of ≥ 500bp; and (3) de novo
removal of “contaminating” eukaryotic and viral reads based on cor-
responding assemblies (≥ 500bp contigs), prior to average genome
size (AGS) determination with MicrobeCensus v1.1.122. MicrobeCensus
aligns metagenomic reads against a set of thirty universally conserved
single-copymarker genes found in bacteria and archaea to rapidly and
accurately estimate AGS. Default settings were used, except that the

number of reads (option “-n”) for AGS estimation was set to 10million.
Full details can be found below. Based on the workflow shown in
Fig. 1a, the AGS estimate of uncultured marine prokaryotes was pre-
dicted using the preprocessed high-quality metagenomic sequences
(Supplementary Data 1).

Estimating average genome size in marine prokaryotes using
metagenomic reads
Given the likely impact of viral and eukaryotic reads, which include
small- and large-genome-sized organisms on the predictions of AGS,
we first performed three independent prescreening steps to remove
these “contaminants” in the metagenomic reads. Accordingly, four
separate AGS estimations (designated as AGS1 to AGS4) were inferred
to examine the effects of ‘contaminating’ reads—from small eukar-
yotes, their gametes, or putative viruses included in the surveyed
ocean microbiomes, on the derived AGS estimates. The goal of these
analyses was to obtain high-quality sequences that did not include
putative eukaryotic and viral metagenomic sequences that would
likely bias AGS estimates.

AGS1 is derived directly from the preprocessed high-quality
metagenomic reads that we assumed contained these contaminants.
For AGS2 to AGS4, we iteratively screened the preprocessed high-
quality metagenomic reads for potential eukaryotic and viral read
sequences prior to AGS estimation. Because no current genome
database captures the entirety of uncultured eukaryotic and viral
genomes present in the ocean, we leverage two de novo approaches to
retrieve genome sequences of eukaryotic and viral DNA sequences
from assembled metagenomic contigs. Individual metagenomes were
assembled independently using metaSPAdes v3.13.177 in the metagen-
ome mode. The draft metagenome assemblies were then filtered by
contig size to retain sequences with a minimum length of 500 bp,
followed by de novo screening of potential eukaryotic and viral contig
sequences using EukRep v0.6.278 and VIBRANT v1.2.179, respectively.
EukRep was run with the options “--m strict --min 1000”, while
VIBRANT was run with a minimum contig length of 1 kbp.

Contig sequences that were flagged as putative eukaryotes were
then used as queries to remove the corresponding eukaryotic reads
contaminating the respective metagenomes using BBMap v38.22
(https://github.com/BioInfoTools/BBMap/) by mapping the high-
quality metagenomic reads against these contaminating sequences.
The resulting unmapped reads were used to calculate AGS2 with
MicrobeCensus (as described above), which is equivalent to AGS pre-
dictions without environmental eukaryotic genomes. A second map-
ping of the above “eukaryotes-free” readswas performedusing BBMap
separately against viral genomes in RefSeq (accessedOctober 8, 2020)
and contigs predicted de novo as putative viruses with VIBRANT. After
each of these steps, the unmapped reads were retained to calculate
AGS3 and AGS4 estimates using MicrobeCensus, which correspond to
AGS predictions without viral genomes from RefSeq (AGS3) and those
predicted de novo (AGS4), respectively. Importantly, AGS4 provides a
robust estimateof genomesize exclusively fromprokaryotes inmarine
metagenomes in the absence of eukaryotic and viral genomes.

A one-way ANOVA (repeated-measures analysis) was performed to
determinewhether putative eukaryotic and viral sequence affectedAGS
estimations in unassembledmetagenomes, suggesting procedural bias.
Overall, the results indicate that AGS estimates derived directly from
preprocessedmetagenomes (AGS1)were significantly higher than those
in which eukaryotic (AGS2) and viral (AGS3) reads were removed de
novo (Supplementary Data 2). Thus, unless otherwise stated, AGS
results reported in themain text are based onAGS4predictions—that is,
on high-quality metagenomes without read sequences of the two con-
taminants (Supplementary Data 1). AGS4 was subsequently used to
perform various statistical tests comparingAGS estimates in ‘free-living’
versus particle-associatedmarine prokaryotes, correlates of geographic
distance, environmental variables, and genetic traits.
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Statistical analyses
Statistical analyses were carried out in R v4.0.1 (www.R-project.org).
The following R packages were used for the specified analyses as
described below, with plots created using “ggplot2” v3.3.380.

Base R was used for linear regression. Significant differences were
tested using one-way analysis of variance (ANOVA) or repeated mea-
sures ANOVA using the package “rstatix” v0.6.081. False discovery rates
(α = 0.05) were corrected for multiple comparisons based on the
Benjamini-Hochberg correction method. Data were normally dis-
tributed as deduced from the Shapiro-Wilk normality test. Distribu-
tions that violated statistical assumptions were analyzed using
nonparametric tests (i.e., Spearman correlation and Mann-
Whitney U test).

Simple (nonparametric) correlation analyses were calculated
from the correlationmatrix of the responsevariables andplotted using
“ggcorrplot” v0.1.382. Mantel tests were performed to correlate AGS
patterns with geographical distances or environmental factors using
“vegan” v2.5–783. Geographical distances reflect Haversine distances
between two points estimated with “geosphere” v1.5–10 84 based on
sampled latitude and longitude coordinates.

The frequency distribution of AGS estimates, which deviate from
unimodality, was tested with the Hartigan’s dip test statistic (HDS)
using “dip test” v0.75-785. Simulated p-values based on 500 bootstrap
replicates were used for the test. HDS essentially tests the statistical
significance that a distribution can bedivided into twoormoredistinct
parts. AGS estimates in metagenomes with p-values (>0.01) were
categorized as significantly unimodal.

A sample-specific linear correlation analysis of AGS estimates
from ALOHA with environmental variables was calculated using
“easystats” v0.4.386. Curve fitting for the selection of non-linear
regression models (i.e., power, logist, and exponential models) was
conducted using “REAT” v3.0.287. The best model was selected on the
basis of the F-test statistics [Pr (>F)], the probability of rejecting the
null hypothesis, where one model does not fit significantly better
(α = 0.05) than the model with zero slope.

A relative-importance analysis test was used to quantify the rela-
tive contributions of environmental variables (e.g., temperature,
depth, salinity, and oxygen) to the changes in AGS patterns. The ana-
lysis was conducted using “relaimpo” v2.2–348 with 500 bootstraps
using three commonly used multiple-linear regression models (i.e.,
lmg, first, and last) from the methods provided by the relaimpo
package. These methods allow estimating the contributions of expla-
natory variables in a multi-linear-regression model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All metagenomic data sets are publicly available in the European
Nucleotide Archive (ENA) portal (https://www.ebi.ac.uk/ena/browser/
home), the NCBI Short Reads Archive (https://www.ncbi.nlm.nih.gov/),
or both. Accession numbers (PRJEB44456, PRJEB52452, PRJNA289734,
PRJNA352737, PRJEB9740, PRJNA479337, PRJNA412741, and
PRJNA588686) and sample identifiers and locations for the raw meta-
genomes are listed in Supplementary Data 1. Additionally, we made
available the matrix of gene copies (https://doi.org/10.6084/m9.
figshare.19673688.v1) across individual samples of the Malaspina
Vertical Profiles metagenomes. Source data are provided with
this paper.
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