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Myo1e overexpression in lung 
adenocarcinoma is associated 
with increased risk of mortality
Ignacio Jusue‑Torres 1,15, Richies Tiv 2,15, Julio C. Ricarte‑Filho 3, Apurva Mallisetty 2, 
Leglys Contreras‑Vargas 2, Maria Jose Godoy‑Calderon 3, Karam Khaddour 4, 
Kathleen Kennedy 4, Klara Valyi‑Nagy 5, Odile David 5, Martha Menchaca 6, 
Anastasia Kottorou 7, Angelos Koutras 7, Foteinos Dimitrakopoulos 7, Khaled M. Abdelhady 3, 
Malek Massad 8, Israel Rubinstein 9,10, Lawrence Feldman 4,9, John Stewart 2,11, 
Takeshi Shimamura 3,8, Ludmila Danilova 12,13 & Alicia Hulbert 3,9,14*

This study aims to perform a comprehensive genomic analysis to assess the influence of 
overexpression of MYO1E in non-small cell lung carcinoma (NSCLC) and whether there are differences 
in survival and mortality risk in NSCLC patients depending on both DNA methylation and RNA 
expression of MYO1E. The DNA methylation probe cg13887966 was inversely correlated with MYO1E 
RNA expression in both LUAD and LUSC subpopulations showing that lower MYO1E RNA expression 
was associated with higher MYO1E DNA methylation. Late stages of lung cancer showed significantly 
lower MYO1E DNA methylation and significantly higher MYO1E RNA expression for LUAD but not 
for LUSC. Low DNA methylation as well as high RNA expression of MYO1E are associated with a 
shorter median survival time and an increased risk of mortality for LUAD, but not for LUSC. This 
study suggests that changes in MYO1E methylation and expression in LUAD patients may have an 
essential role in lung cancer’s pathogenesis. It shows the utility of MYO1E DNA methylation and RNA 
expression in predicting survival for LUAD patients. Also, given the low normal expression of MYO1E 
in blood cells MYO1E DNA methylation has the potential to be used as circulating tumor marker in 
liquid biopsies. 
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GEO	� Gene expression omnibus
GTEx	� Genotype-tissue expression
HR	� Hazard ratio
KRAS	� Kirsten rat sarcoma
LUAD	� Lung adenocarcinoma;
LUSC	� Lung squamous cell carcinoma
MAP2K1	� Mitogen-activated protein kinase kinase 1
MAPK	� Mitogen-activated protein kinase
mTOR	� Mammalian target of rapamycin
MYO1E	� Myosin 1E
NPY	� Neuropeptide Y
NSCLC	� Non-small cell lung carcinoma
OS	� Overall survival
qPCR	� Quantified by real-time polymerase chain reaction
RB1	� Retinoblastoma 1
RPS6	� Ribosomal protein S6
TCGA​	� The Cancer Genome Atlas
ΔΔCt	� Delta delta cycle threshold

Lung cancer is the second most common malignancy in the United States with an estimated annual incidence 
of 235,760 new cases in 2021 in both males and females. Death from lung cancer remains the leading cause of 
cancer-related death representing 22% of all cancer-related deaths. There has been a decrease in incidence and 
mortality in lung cancer for the last few years due to decreased smoking, the introduction of lung cancer low 
dose CT screening and the recent advances in targeted molecular therapies1–3. However, only 30% of non-small 
cell lung cancer (NSCLC) tissue specimens harbor EGFR mutations, while only 5% of patients with NSCLC have 
ALK gene rearrangements4–8. Therefore, most lung cancer patients will not benefit from these recent precision 
medicine advances which are based on specific DNA mutations9. Thus, there is an unmet need for a deeper under-
standing of the mechanisms implicated in NSCLC pathogenesis. Epigenetic changes in NSCLC have emerged as 
an important mechanism contributing to cancer initiation, proliferation, and invasiveness by modulating gene 
expression10–12. Myosin 1E (MYO1E) is a non-muscle class I myosin and actin-dependent molecular motor 
which binds to the cellular plasma membrane and serves as a scaffold for membrane protrusion13. MYO1E 
contributes to remodeling of the cellular membrane during endocytosis and exocytosis prompting cell migra-
tion and invasion14–16. Different studies have explored the importance of myosins and their potential role in 
cancer, regulating tumor formation, cell invasion, migration and metastasis17. Non-muscle myosins have been 
documented to be expressed in drug-resistant melanoma cell clones and their expression was associated with cell 
survival regardless of the therapy18,19. Specifically, MYO1E has oncogenic features, and its expression has been 
shown to be correlated with poor prognosis in patients with invasive breast cancer20,21. Despite this association 
with aggressiveness, the role of MYO1E expression in NSCLC has not been previously explored. Therefore, this 
study aims to perform a comprehensive genomic analysis to assess the influence of overexpression of MYO1E 
in NSCLC and whether there are differences in survival and mortality risk in NSCLC depending on both DNA 
methylation and RNA expression of MYO1E.

Results
Patients’ characteristics.  A total of 1017 patients with NSCLC were identified in the TCGA database, 
515 with LUAD and 502 with LUSC. Most patients were male (60%), Caucasian (73%) with median age 67 years 
(60–73 years) and median pack*years smoked 40 (29–60) (Table 1). These patients’ characteristics are similar to 
previous population-based epidemiological studies22. MYO1E RNA expression groups only showed differences 
in stages, showing that the low MYO1E RNA expression group had a higher percentage of patients with NSCLC 
stage I group and the high MYO1E RNA expression group, a higher proportion of patients with NSCLC stage 
II (p = 0.036). All the clinical characteristics in the validation cohort were comparable to the TCGA data (sup-
plemental Table 1). Notably, African Americans were underrepresented (8%) in both cohorts.

Correlation of MYO1E DNA methylation and MYO1E RNA expression.  The MYO1E gene has 53 
CpG probes on the Infinium HumanMethylation450 array. We correlated these probes with RNA expression 
of MYO1E in TCGA, and the CpG probe cg13887966 showed the strongest correlation in LUAD (Spearman’s 
r = −0.483, p-value < 0.0001) and ranked 5th in LUSC (Spearman’s r = −0.270, p-value < 0.001) (Fig.  1). CpG 
probe cg13887966 is located on MYO1E’s first intron (position: chr15:59568712) (Fig. 1). The DNA methyla-
tion probe cg13887966 was inversely correlated with MYO1E RNA expression in both LUAD and LUSC (Fig. 1) 
showing that lower MYO1E RNA expression is associated with high MYO1E DNA methylation. We used the 
median methylation level of this probe to split samples into high and low MYO1E DNA methylation groups for 
our further analysis.

Data derived from previous published wide genomic and transcriptomic human cell line studies shows that 
cell lines after being treated with 5-AZA significantly decrease MYO1E DNA methylation on probe cg13887966 
(p = 0.0004) (GEO accession GSE20255923) and significantly increase MYO1E RNA expression (p = 0.0059) (GEO 
accession GSE62955 and GSE6295824) (Supplemental Fig. 1).

Differential expression analysis.  Using the TCGA RNA seq data from LUAD and LUSC (Illumina 
HiSeq, RSEM normalized counts), we performed differential expression analysis of MYO1E expression high 
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vs low in LUAD and LUSC (Fig. 2). When MYO1E was highly expressed, there were 26 down-regulated and 37 
upregulated genes in LUAD, and there were 26 down-regulated and 6 upregulated genes in LUSC (Fig. 2, Sup-
plemental Table 2). Among the upregulated genes, there was no overlap between LUAD and LUSC. Among the 
downregulated genes, there were two genes in common between LUAD and LUSC (NPY and CHGA).

Table 1.   Baseline characteristics TCGA vs validation cohort. IQR interquartile range.

Patient characteristics Validation cohort (N = 127) TCGA (N = 1017)

Age at diagnosis (years) (IQR) 66 (59–70) 67 (60–73)

Gender

 Male (%) 97 (76%) 609 (60%)

 Female (%) 30 (34%) 408 (40%)

Race

 Caucasians (%) 90 (71%) 738 (73%)

 African Americans (%) 35 (8%) 82 (8%)

 Asians (%) 2 (2%) 17 (2%)

 American Indian or Alaska native (%) 0 (0%) 1 (< 1%)

 Non reported (%) 0 (0%) 179 (18%)

Pack-year (IQR) 40 (0–55) 40 (29–60)

Histology

 Adenocarcinoma (LUAD) (%) 66 (52%) 515 (51%)

 Squamous-cell (LUSC) (%) 55 (48%) 502 (49%)

Stage

 I (%) 63 (50%) 520 (52%)

 II (%) 31 (24%) 284 (28%)

 III (%) 30 (24%) 168 (17%)

 IV (%) 3 (2%) 33 (3%)

Figure 1.   Strong inverse correlations are observed between cg13887966 DNA methylation intronic probe and 
MYO1E RNA expression for LUAD and LUSC. (A) Heatmap showing Spearman’s correlation coefficients for 
MYO1E RNA expression and all CpG dinucleotides probes for MYO1E DNA methylation ordered by genomic 
position in LUAD and LUSC. Red represents direct correlation and green inverse correlation (p < 0.05 “*”; 
p < 0.01 “**”; p < 0.001 “***”). (B) Schematic representation of the relative genomic position of the different 
CpG probes for MYO1E showing that cg13887966 is located on MYO1E’s 1st intron. (C) and (D) Scatterplots 
showing the correlation between RNA expression and cg13887966 probe for MYO1E DNA methylation in 
LUAD (C) and LUSC (D).



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4107  | https://doi.org/10.1038/s41598-023-30765-y

www.nature.com/scientificreports/

Correlation expression analysis.  Additionally, using the TCGA RNA seq data, we assessed the correla-
tion of expression between MYO1E and some of the most relevant oncogenic pathway genes in lung cancer 
including: MAP2K1, MAPK1, MAPK3, KRAS, mTOR, AKT1, AKT2, RPS6, CDKN2A, RB1, p53, MYC, STK11, 
EGFR and KEAP125,26. The correlation analysis showed that MYO1E RNA expression was significantly positively 
correlated with the expression of MAP2K1, RB1, KRAS, MYC, MTOR, EGFR and MAPK1 and significantly 
negatively correlated with RPS6, TP53 and CDKN2A in LUAD (Supplemental Fig. 2). In LUSC, MYO1E RNA 
expression was significantly positively correlated with the expression of MAP2K1, MTOR EGFR and MAPK1 
and significantly negatively correlated with RPS6, KEAP1 and KRAS (Supplemental Fig. 2). These results suggest 
that MYO1E RNA expression is associated with increased gene expression from oncogenic MAPK/ERK, MTOR 
and EGFR pathways and with decreased gene expression of RPS6 pathway in both LUAD and LUSC.

RNA expression by cancer stage.  Using the TCGA RNA seq data and DNA methylation data for the 
cg13887966 probe from LUAD and LUSC, we assessed the MYO1E RNA expression and the MYO1E DNA 
methylation by cancer stage. This analysis showed that MYO1E expression is significantly higher in late stages 
of LUAD, but not in LUSC, and that MYO1E DNA methylation is significantly lower in late stages of LUAD, but 
not in LUSC (Fig. 3).

Normal MYO1E RNA expression.  To examine the expression of MYO1E in various normal primary tis-
sue types, we analyzed expression data of samples derived from non-disease tissues obtained from 838 donors 
using the Genotype-Tissue Expression (GTEx) project27–29. The lowest expression of MYO1E was observed in 
whole blood, brain and heart tissues in increasing order of magnitude, while arteries, skin and nerves exhibited 
the highest MYO1E expression levels. Normal lung tissue was the 20th highest expressing MYO1E (out of 53 tis-
sues) (Supplemental Fig. 2). This observation indicates the potential of MYO1E to be used as circulating tumor 
marker in liquid biopsies given the low normal expression of MYO1E in blood cells.

Survival analysis for RNA expression (caBIG, GEO and TCGA).  To determine how MYO1E expres-
sion correlates with overall survival, we used Kaplan–Meier Plotter (www.​kmplot.​com/​lung), an online tool 
developed by Gyorffy et al.30. This tool performs survival meta-analysis of NSCLC from the cancer Biomedical 
Informatics Grid (caBIG), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) reposi-
tories combined (n = 1925). There were significant differences in median overall survival (OS) in NSCLC when 

Figure 2.   Volcano plots and Venn diagrams for differential expression analysis showing up- and down-
regulated genes when MYO1E is overexpressed for LUAD (A) and LUSC (B) (FDR cutoff of 10^-5 and logFC 
of 3). Venn diagrams showing the overlap of genes between LUAD and LUSC for all genes (C), for upregulated 
genes (D) and downregulated genes (E).

http://www.kmplot.com/lung


5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4107  | https://doi.org/10.1038/s41598-023-30765-y

www.nature.com/scientificreports/

comparing MYO1E RNA expression low vs high. The log rank analysis showed statistically significant differences 
(p < 0.0001) with a median OS of 57 and 136 months for MYO1E RNA expression high and low, respectively 
(Supplemental Fig. 4). Univariate Cox proportional hazard analysis showed a higher mortality risk for NSCLC 
patients harboring higher MYO1E RNA expression compared with lower MYO1E RNA expression (HR 1.74, 
95% CI: 1.48–2.05). The above findings were reproduced on multivariate Cox proportional hazard weighted 
analysis adjusted by histology, stage, sex, smoking history, and MYO1E RNA expression in NSCLC. As in univar-
iate analysis, high MYO1E RNA overexpression in NSCLC was also associated with higher mortality risk when 
compared with those of lower MYO1E RNA expression (HR 1.69, 95% CI: 1.02–2.79) (Supplemental Fig. 4).

When comparing differences in MYO1E RNA expression in LUAD only (n = 719) in Kaplan–Meier Plot-
ter, log-rank analysis showed statistically significant differences (p < 0.0001) with a median survival of 21 and 
112 months for high vs low MYO1E RNA expression in LUAD, respectively (Supplemental Fig. 4). Univariate 
Cox proportional hazard analysis showed that higher mortality risk was observed for LUAD patients harboring 
high MYO1E RNA expression compared with low MYO1E RNA expression (HR 3.35, 95% CI: 2.44–4.6). The 
above findings were reproduced on multivariate Cox proportional hazard weighted analysis adjusted by stage, 
sex, smoking history, and MYO1E RNA expression in LUAD. High MYO1E RNA expression in LUAD adjusted 
by stage, sex and smoking history is associated with higher mortality risk when compared with low MYO1E RNA 
expression (HR 3.24, 95% CI: 2.15–4.89) (Supplemental Fig. 5).

When comparing differences in MYO1E RNA expression in LUSC only (n = 524) in Kaplan–Meier Plotter, log 
rank analysis showed no statistically significant differences (p = 0.48) with a median survival of 52 and 62 months 
for high vs low MYO1E RNA expression in LUSC, respectively (Supplemental Fig. 4). Univariate Cox propor-
tional hazard analysis also showed no association with mortality risk for LUSC (HR 1.1, 95% CI: 0.84–1.44).

Figure 3.   MYO1E RNA expression is significantly higher on late lung cancer stages in LUAD but not in LUSC 
and MYO1E DNA methylation is significantly lower on late lung cancer stages in LUAD but not in LUSC. Bar 
plots showing MYO1E RNA expression by stage for LUAD (A) and LUSC (B) and MYO1E DNA methylation 
by stage for LUAD (C) and LUSC (D) representing mean with 95% confidence interval. Multiple comparison 
ANOVA test. NS non-significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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In summary, survival meta-analysis of RNA expression data from caBIG, GEO and TCGA repositories showed 
that patients with high expression of MYO1E had lower survival and increased risk of mortality for NSCLC 
(n = 1925) and LUAD (n = 719), but not for LUSC (n = 524).

Survival analysis for DNA methylation and RNA expression (TCGA).  To study the association of 
MYO1E DNA methylation and survival using TCGA data, we split patients into high and low MYO1E DNA 
methylation groups using the median beta value of the cg13887966 probe.

The median OS for the LUAD TCGA cohort was 49 months with 88% survival rate at one year, 75% at 2 years 
and 40% at five years. When comparing overall survival for patients with high vs low MYO1E DNA methylation 
in LUAD, log rank analysis showed statistically significant differences (p < 0.0001) with a median survival of 34 
and 58 months for patients with low vs high MYO1E DNA methylation in LUAD, respectively (Fig. 4). The 1-, 
2- and 5-year survival rates for the low MYO1E DNA methylation group were 81, 63, and 31% respectively com-
pared to 93, 84, and 47% in the high methylation group. For patients with high vs low MYO1E RNA expression in 
LUAD, log rank analysis showed statistically significant differences (p = 0.011) with a median survival of 40 and 
57 months for high and low MYO1E RNA expression, respectively (Fig. 4). The 1-, 2- and 5-year survival rates 
for the high MYO1E RNA expression in the LUAD group were 85, 69, and 36% respectively compared to 90, 81, 
and 45% for the low MYO1E RNA expression in LUAD group. Survival analysis of MYO1E DNA methylation 
and RNA expression in LUSC cohort did not show significant differences (Fig. 4).

In summary, TCGA data showed that low MYO1E methylation and high MYO1E RNA expression have 
shorter median survival times for LUAD, but not for LUSC.

Survival analysis for DNA methylation and RNA expression (Validation cohort).  To validate 
our findings, we collected an independent cohort of 127 NSCLC patients from two medical centers (Univer-
sity of Illinois Chicago, USA and University Hospital of Patras, Greece). This validation cohort contained 66 
LUAD and 55 LUSC samples. DNA methylation of MYO1E was measured by qMSP with primers designed near 
the Illumina DNA methylation probe cg13887966, and the RNA expression was measured by qPCR. Survival 
analysis on the independent validation dataset confirmed that patients with high MYO1E RNA expression have 

Figure 4.   Patients with low DNA methylation and high RNA expression of MYO1E have significantly shorter 
median survival time in LUAD, but not in LUSC. Kaplan Meier survival curves with log-rank p values and 
numbers at risk when comparing high vs low MYO1E DNA methylation on the left and high vs low MYO1E 
RNA expression on the right for LUAD (top row) and LUSC (bottom row). (A) High vs low MYO1E DNA 
methylation for LUAD. (B) High vs low MYO1E RNA expression for LUAD. (C) High vs low MYO1E DNA 
methylation for LUSC. (D) High vs low MYO1E RNA expression for LUSC.
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significantly shorter median survival time in LUAD, but not in LUSC and that low MYO1E DNA methylation 
has a trend towards shorter survival in LUAD but not in LUSC. (Supplemental Fig. 6). When comparing OS for 
patients with high vs low MYO1E RNA expression on the validation dataset in LUAD, log rank analysis showed 
statistically significant differences (p = 0.018) with a median survival of 34 and 58 months for LUAD patients 
with low vs high MYO1E RNA expression in LUAD, respectively (Supplemental Fig. 6). The 1-, 2- and 5-year 
survival rates for the low MYO1E RNA group were 87, 84, and 73% respectively compared to 88, 69, and 35% in 
the high MYO1E RNA group. We were able to confirm our observation made in TCGA that high MYO1E RNA 
expression was associated with poor survival in LUAD, but not in LUSC.

Multivariate Cox analysis for DNA methylation and RNA expression (TCGA).  Multivariate Cox 
proportional hazard analysis weighted for age, sex, race, Hispanic ethnicity, number of pack*years smoked, 
number of years smoked, prior malignancy, histology, and stage was applied to DNA methylation and expres-
sion of MYO1E in LUAD and LUSC on the TCGA data. In LUAD, low MYO1E DNA methylation was associ-
ated with increased mortality risk HR 3.16 (95% CI: 1.62–6.16) (p < 0.001) by the analysis weighted for age, sex, 
race, Hispanic ethnicity, number of pack*years smoked, number of years smoked, prior malignancy, histology, 
and stage (Fig. 5). On multivariate Cox analysis, low MYO1E RNA expression showed a significant association 
with decreased mortality risk in LUAD HR 0.39 (95% CI: 0.20–0.75) (p = 0.005) (Fig. 5). In LUSC, this analysis 
showed no significant association with survival and risk of mortality (Supplemental Fig. 7). In summary, TCGA 
data showed that low DNA methylation and high mRNA expression of MYO1E are associated with an increased 
risk of mortality for LUAD, but not for LUSC.

Multivariate Cox analysis for DNA methylation and RNA expression (validation data).  Multi-
variate Cox proportional hazard analysis weighted for age, sex, race, number of pack*years smoked, and stage 
was applied to DNA methylation and expression of MYO1E in LUAD and LUSD on the validation data. This 
analysis confirmed our findings made in TCGA that high RNA expression of MYO1E was associated with 
increased mortality risk in LUAD and that low DNA methylation MYO1E showed a trend towards association 
with increased mortality risk in LUAD (Supplemental Fig. 8).

Proof of concept of MYO1E as a potential liquid biopsy biomarker.  Using the methodology 
described in previous publications from this lab31,32, MYO1E DNA methylation from 48 plasma samples showed 
a trend towards significant longer survival duration among those patients with high MYO1E DNA methylation 
with a 1-year survival rate of 96% vs 79%, 2-year survival rate of 96% vs 65% and a 5-year survival rate of 80% 
vs 51% among high vs low DNA methylation respectively (p = 0.075) (Supplemental Fig. 9). When looking into 
MYO1E RNA expression from plasma samples there were no statistically significant differences in survival time 
due to sample size. However, we can see that median survival time on high RNA expression was 33 months and 
that on low RNA expression median survival time was not reached, with a 1-year survival rate of 89% vs 80%, 
2-year survival rate of 77% vs 72% and a 5-year survival rate of 77% vs 43% among low vs high RNA expres-
sion respectively (p = 0.25). These differences in survival time are not small, however sample size did not allow 
to reach statistical significance. A total sample size of 186 (with 93 high and 93 low MYO1E DNA methylation) 
will be needed to find significant association between methylation detection on MYO1E in plasma assuming a 
hazard ratio of 0.44, a power of 80%, a mortality probability within the study of 25% and a two-sided significance 
level of 5%.

Discussion
The discovery of clinically useful biomarkers remains an unmet need in NSCLC. This study explored the clinical 
value of MYO1E DNA methylation and MYO1E RNA expression in NSCLC based on publicly available (TCGA) 
data, as well as data from two international medical centers (University of Illinois Chicago, USA and University 
Hospital of Patras, Greece). Our study showed the association of low DNA methylation as well as high RNA 
expression of MYO1E with a shorter median survival time and an increased risk of mortality for LUAD, but 
not for LUSC. To validate our findings, we additionally collected 127 NSCLC patient samples from two inter-
national centers. We measured DNA methylation and gene expression of MYO1E, and we were able to confirm 
the observation from TCGA data that MYO1E RNA expression was associated with shorter median survival 
time and an increased risk of mortality for LUAD. However, on the validation cohort, no statistically significant 
association was observed regarding the prognostic significance of MYO1E DNA methylation for both survival 
and mortality risk despite the trend being observed. This was mostly because of sample size since TCGA dataset 
had 515 LUAD patients, while the validation cohort included just 66 LUAD patients (Fig. 4 and Supplemental 
Fig. 5). The other possible explanations could be the difference in technologies that were used to measure DNA 
methylation and RNA expression for the TCGA dataset and the validation dataset. These results suggest MYO1E 
expression as a potential unfavorable epigenetic marker for LUAD. Additionally, the data suggested that MYO1E 
intronic DNA methylation regulates RNA expression. The regulation of gene expression by DNA methylation of 
intron CpG regions has been described in several studies across different tissues and species33–36. To the best of 
our knowledge, this is the first report that MYO1E expression and methylation is deregulated in NSCLC. While 
there is limited data on MYO1E methylation, few studies showed that hypomethylated MYO1E is associated with 
more aggressive forms of cancer. One study showed that decreased CpG site methylation and increased mRNA 
expression of MYO1E are associated with recurrence of hepatocellular carcinoma37, while hypomethylation of 
MYO1E has been reported in dermal fibroblasts in diffuse and limited cutaneous systemic sclerosis38.

MYO1E is a non-muscle class I myosin and an actin-dependent molecular motor that binds to the plasma 
membrane and serves as a scaffold for membrane protrusions contributing to membrane remodeling during 
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endocytosis and exocytosis and cell migration and cell invasion13–16. Different studies have explored the impor-
tance of myosins and their potential role in cancer regulating tumor formation, cell invasion, migration and 
metastasis17. Non-muscle myosins are involved in drug resistance in melanoma by protecting tumor cells from 
reactive oxygen species and DNA damage and their expression was associated with cell survival regardless of 
the therapy18,19. Furthermore, in a breast cancer murine model, mice lacking MYO1E had tumors with increased 
differentiation and reduced proliferation20. Additionally, MYO1E expression has been shown to be correlated with 
poor prognosis in patients with invasive breast cancer21. Despite this association with aggressiveness, the role of 
MYO1E expression in NSCLC has not been previously explored. This study showed the utility of MYO1E DNA 
methylation detection in predicting NSCLC patients’ survival and suggested that changes in MYO1E methylation 
and expression in LUAD have an important role in the pathogenesis of this disease. Low MYO1E RNA expression 
in blood cells makes it an ideal candidate for a possible liquid biopsy marker. Such a marker has the potential to 
help with prognosis and monitoring in a non-invasive and more accessible manner.

Although the results of this study are very promising, we must acknowledge some limitations. A significant 
limitation is that data derived from TCGA or GTEx show an underrepresentation of minorities. Samples derived 
from African Americans account for less than 9% of total tumors in the TCGA data and less than 13% in the 

Figure 5.   Low DNA methylation and high RNA expression of MYO1E are associated with increased mortality 
risk in LUAD. Forest plot for multivariate Cox proportional hazard analysis weighted for age, sex, race, Hispanic 
ethnicity, number of pack years smoked, number of years smoked, prior malignancy, histology, and stage in 
LUAD. (A) MYO1E DNA methylation, (B) MYO1E RNA expression.
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GTEx data. In addition, sample size of the validation cohort is another weak point of the current study. Further-
more, correlation studies cannot assume causality and therefore studies to prove the DNA methylation causes 
RNA expression silencing need to be performed to prove this inverse relationship. Lastly, validation studies using 
liquid biopsies are necessary to clarify whether MYO1E could be used as prognostic marker in liquid biopsies. 
Therefore, further studies are necessary to understand the mechanistic background of MYO1E in therapeutic 
resistance as well as microenvironment immune modulation.

This study suggests that changes in MYO1E methylation and expression in LUAD patients may have an 
essential role in lung cancer’s pathogenesis. It shows the utility of MYO1E DNA methylation and RNA expres-
sion in predicting survival for LUAD patients. Further studies are necessary to understand the role of MYO1E 
expression in chemotherapy resistance and microenvironment immune modulation.

Methods
Clinical data.  Clinical data were obtained from The Cancer Genome Atlas (TCGA) for LUAD and LUSC39,40. 
Only primary tumor samples were queried. For external validation, we examined the clinical data and lung 
cancer tissues from two international centers, University of Illinois Chicago, USA and University Hospital of 
Patras, Greece. This study conforms with The Code of Ethics of the World Medical Association (Declaration 
of Helsinki). Institutional Review Board approval was obtained prior to study initiation (IRB #2017–1286 and 
#157/16.03.2017 for both centers respectively), and all patients signed informed consent. The inclusion criteria 
for the external validation included: (A) any adult with NSCLC of any stage, either biopsy proven or pathologi-
cally proven from surgical specimen from surgery involving a lobectomy, pneumonectomy, or greater resection. 
Stages will be defined according to revised TNM guidelines classification criteria41; (B) able to provide informed 
consent for this study. Exclusion criteria comprised: (A) patients who are pathologically diagnosed with small 
cell lung cancer, patients with metastatic disease by immunohistochemical criteria, as well as patients with other 
malignancies who preoperatively were incorrectly assumed to have primary NSCLC; (B) history of hereditary 
cancer; (C) radiotherapy or chemotherapy treatment had been given prior to surgical resection; (D) any adult 
lacking capacity to consent; (E) any patient < 30 years old; (F) pregnant patients. Collected biological variables 
included: age, sex, race, pack*year smoked, histology and TNM cancer stage. Baseline demographic character-
istics of the groups were compared with the Wilcoxon rank sum test for continuous variables and Fisher’s exact 
test for categorical variables. Statistically significant differences were defined for p-value < 0.05. The reporting of 
this study conforms to the Strengthening the Reporting of Observational Studies in Epidemiology statement42.

Gene expression data.  Gene expression data was obtained from The Cancer Genome Atlas (TCGA) Illu-
mina HiSeq for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) using the TCGAbi-
olinks R package39,40. Only primary solid tumor samples were queried. We performed an Array Array Intensity 
correlation (AAIC) with a threshold set to 0.6 to filter out samples based on Spearman’s correlation. mRNA tran-
scripts were normalized using the EDASeq package based on gcContent43. Using the normalized mRNA tran-
scripts, we dichotomized the samples into low and high MYO1E RNA expression groups based on the median 
MYO1E expression level. For external validation, RNA was extracted from four 5 μm slides of neoplastic FFPE 
tissue specimens from NSCLC patients using RNeasy FFPE kit (Qiagen, Cat No: 73504) following manufac-
turer’s instructions. RNA samples were then treated with DNase (Thermo Fisher scientific, Cat. No AM2222), 
quantified using a Nanodrop-1000 spectrophotometer (Thermo Fisher scientific, Cat. No ND-1000) and were 
stored at − 80 °C. A total of 2 μg of RNA was reverse transcribed into cDNA using High-Capacity cDNA Reverse 
Transcription Kit (Thermo Fisher Scientific, Cat. No.4368814). Each reverse transcription reaction contained 
10μL of extracted cellular RNA, 2μL 10X RT buffer, 0.8 μL 25X dNTP mix, 2μL 10X Random Primers, 1μL 
MultiScribe Reverse Transcriptase and 4.2μL water making the total volume 20μL. The reverse transcription 
was performed on a SimpliAmp Thermal cycler (Thermo Fisher scientific, Cat. No A24811) at 25 °C for 10 min, 
37 °C for 120 min, and 85 °C for 5 min. cDNA was diluted in DEPC water with a final volume of 100 μl and 
stored at −20 °C. Expression levels of MYO1E were quantified by real-time PCR (qPCR) assay. PowerUp SyBr 
Green Master Mix (Thermo Fisher Scientific, Cat. No. A25741) was used for the quantification along with spe-
cific primers designed by us (Supplemental Table 3). The qPCR reactions were carried out in triplicate in a total 
volume of 20 μl in QuantStudio 3 Systems (Thermo Fisher Scientific, Cat. No. A28567). A no template control 
was used in all reactions. The thermocycling conditions were as follows: 50 °C for 2 min 95 °C for 10 min, 40 
cycles at 95 °C for 15 s and at 60 °C for 1 min. β-Actin was used as a reference gene. Primers for MYO1E and 
β-Actin were synthesized by Integrated DNA Technologies (IDT, Coralville, IA). The relative expression levels of 
MYO1E were calculated using the ΔΔCt method as described previously31.

DNA methylation data.  DNA methylation data generated via Illumina Human Methylation 450K array 
was obtained from TCGA for LUAD and LUSC using the TCGAbiolinks R package39,40. Only primary solid 
tumors were queried. 53 CpG sites were found for the MYO1E gene. Of these probes, cg13887966 showed the 
highest correlation between DNA methylation and RNA expression using Spearman’s rank correlation coef-
ficient. Methylation data were dichotomized into high and low MYO1E DNA methylation groups based on the 
median methylation at the cg13887966 probe. For the external validation, we performed methylation on beads 
followed by qMSP of the cg13887966 probe using the same methodology as previously described31,32 (Supple-
mental Table 4).

Functional relationship between DNA methylation and RNA expression.  We queried the Gene 
Expression Omnibus (GEO) repository for studies using human cell lines assessing the effect of 5-Azacitidine 
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on MYO1E DNA methylation and RNA expression. For DNA methylation we used cell lines from GEO acces-
sion GSE20255923 and for RNA expression we used cell lines from GEO accession GSE62955 and GSE6295824.

Differential expression analysis.  After filtering the normalized mRNA transcripts with a 0.25 quantile 
method, we performed a differential expression analysis on the low and high MYO1E RNA samples based on 
median expression levels using the TCGAbiolinks R package39,40. The results were visualized in a volcano plot 
with an FDR cutoff of 10−5 and log2FC of 3.

Correlation expression analysis.  Using the TCGA RNA seq data from LUAD and LUSC (Illumina 
HiSeq, RSEM normalized counts) we used Spearman’s rank correlation coefficient to assess the RNA expression 
correlation between MYO1E and some of the most relevant oncogenic pathway genes in lung cancer including: 
MAP2K1, MAPK1, MAPK3, KRAS, mTOR, AKT1, AKT2, RPS6, CDKN2A, RB1, p53, MYC, STK11, EGFR and 
KEAP125,26.

Normal tissue RNA expression.  The RNA sequencing data used was obtained from the Genotype-Tissue 
Expression (GTEx) Project Portal dbGaP accession phs000424.v8.p229,44,45. The extensive collection of RNA 
sequences from the GTEx project represents more than 10,000 samples from 838 healthy individuals, spanning 
across more than 50 different normal primary tissues.

Survival analysis.  For survival meta-analysis of NSCLC, we used Kaplan–Meier Plotter (www.​kmplot.​com/​
lung), an online tool developed by Gyorffy et al.30 to analyze the effect of MYO1E RNA expression in survival. 
This tool performs a survival meta-analysis of data from the cancer Biomedical Informatics Grid (caBIG), Gene 
Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) repositories combined (n = 1925). For 
MYO1E gene expression, this tool uses the Affymetrix probe 203072_at.

We also performed survival analysis for the TCGA data and the external validation data. Kaplan–Meier curves 
were used to estimate overall survival between high and low MYO1E RNA expression and high and low MYO1E 
DNA methylation groups. Survival differences were compared using the two-tailed log-rank test for significance. 
As aforementioned, using the normalized mRNA transcripts, we dichotomized the samples into high and low 
MYO1E RNA expression groups based on the median MYO1E expression level. Methylation data were dichoto-
mized into high and low MYO1E DNA methylation groups based on the median methylation at the cg13887966 
probe. Statistically significant differences were defined for p-value < 0.05. Association with survival was quantified 
using hazard ratios (HRs) with 95% confidence intervals (CIs) assessed with univariate and multivariate Cox 
proportional hazard models. R statistical software, version 4.0.0, Vienna, Austria was used for the analysis46.

Ethical approval and consent to participate.  This study conforms with The Code of Ethics of the 
World Medical Association (Declaration of Helsinki). Institutional Review Board approval was obtained prior 
to study initiation (IRB #2017-1286 and #157/16.03.2017 for both study centers respectively), and all patients 
signed informed consent.

Data availability
The dataset supporting the conclusions of this article is available in the TCGA repository: https://​cance​rgeno​me.​
nih.​gov/. The RNA sequencing data used was obtained from the Genotype-Tissue Expression (GTEx) Project 
Portal dbGaP accession phs000424.v8.p2. Functional cell lines studies were obtained from Gene Expression 
Omnibus (GEO) accession numbers GSE202559 GSE62955 and GSE62958.
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