Skip to main content
. 2023 Feb 27;37:103362. doi: 10.1016/j.nicl.2023.103362

Table 2.

Image level core estimation using our approach (with CTA input), Rapid.Ai (CTP input) and expert adjudication with CTA input (CTA-ASPECTS).

RAPID.ai on CTP
DeepSymNet-v3 on CTA
Expert on CTA (CTA-ASPECTS)
AuRoC AuPrC Sens/Spec AuRoC AuPrC Sens/Spec AuRoC AuPrC Sens/Spec
Ischemic Core Threshold
15 ml 0.77 0.89 0.56/0.90 0.83 0.93 0.62/0.95 0.76 0.88 0.74/0.71
30 ml 0.81 0.82 0.62/0.89 0.85 0.83 0.91/0.65 0.82 0.79 0.88/0.65
50 ml 0.82 0.78 0.71/0.91 0.87 0.78 0.79/0.87 0.81 0.65 0.92/0.55
70 ml 0.86 0.76 0.82/0.94 0.90 0.69 0.88/0.85 0.78 0.50 0.94/0.50

The external test set with valid CTP (n = 71) is used and the final ground truth used is the average between the two reader segmentations on DWI. AuRoC: Area under the ROC curve; AuPrC: Area under the precision recall curve; Sens/Spec: Sensitivity/Specificity. In bold, the best performing method out of the three compared according to AuRoC or AuPrC. For each row and metric, the best performing method is highlighted in bold.