Skip to main content
. 2022 Nov 22;29(6):994–1008. doi: 10.1158/1078-0432.CCR-22-2469

Table 3.

Computational tools for predicting antigen specificity.

Computational tool Input  Output  Unique features References
GLIPH2  CDR3 region of TCRα and β chain  Clustering of TCR sequences into groups of shared specificity
  • – Efficiently processes and clusters millions of TCR sequences

(37)
iSMART CDR3 region of TCRβ chain  Clustering of TCR sequences into groups of shared specificity
  • – Built on pan-cancer multi-omics analysis

  • – Utilizes TRUST algorithm to assemble hypervariable CDR3 regions

(38, 65)
ERGO-II CDR3 region of TCRα and β chain  TCR-peptide binding prediction
  • – Includes MHC typing and V and J gene segment alleles in prediction model

(67)
TCRMatch  CDR3 region of TCRβ chain  TCR-peptide binding prediction 
  • – Can be used in conjunction with other tools

(68)
NetTCR 2.0  Paired TCRα and β chain  TCR-peptide binding prediction
  • – Accounts for different TCR sequence lengths

  • – Improved processing of paired TCRα and β chain 

(69)
pMTnet CDR3 region of TCRβ chain  TCR-peptide binding prediction 
  • – Accurately predicts TCRs, epitopes, and HLAs previously not observed

  • – Utilizes transfer learning for related TCR and pMHC data lacking pairing information 

(35)
IGoR TCRβ and BCR heavy chains V(D)J recombination and somatic hypermutation prediction
  • – Performance in identifying the correct V(D)J recombination scenario is 2× better than current methods

  • – Can assess the mutational landscape of BCRs

(70)
OLGA CDR3 sequence of TCR and BCR V(D)J recombination prediction
  • – Computes the probabilities of CDR3 sequences and motifs of four chain loci (human and mouse TCRβ, human TCRα and human IGH)

  • – Can identify outlying sequences in repertoire sequencing datasets to study disease immune response

(74)
SONIA CDR3 sequence of TCRβ chain  V(D)J recombination and selection pressure prediction
  • – Distinguishes between generation and selection to quantify contribution to the overall variability

(79)

Note: Many tools have been developed to improve and streamline the identification of TCR-peptide pairs. Input, output, and unique features are listed.