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Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of 
liver function lasting more than six months. CLD includes alcoholic liver disease 
(ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and 
autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver 
inflammation and oxidative stress are commonly associated with the devel-
opment and progression of CLD. Molecular signaling pathways such as AMP-
activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome 
proliferator-activated receptors (PPARs) are implicated in the pathogenesis of 
CLD. Therefore, antioxidant and anti-inflammatory agents from natural products 
are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). 
In this review, we summarize some powerful products that can be potential app-
lied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such 
as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of 
several important molecules, including AMPK, Farnesoid X receptor, nuclear 
factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and 
lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate 
their efficacy and safety.
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Core Tip: Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function 
lasting more than six months. CLD can be subclassified into alcoholic liver disease, non-alcoholic fatty 
liver disease, chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, 
and cancer. Liver inflammation and oxidative stress are commonly associated with the development and 
progression of CLD. Therefore, anti-inflammatory and antioxidant agents are promising drugs for CLD 
treatment. Clinical trials are undergoing to evaluate their efficacy and safety.
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INTRODUCTION
Chronic liver disease (CLD) is a continuous process of inflammation, destruction, and regeneration of 
liver parenchyma, with a reduction of liver function that lasts more than six months[1]. According to the 
spectrum of etiologies of CLD, it can be subclassified into alcoholic liver disease (ALD), non-alcoholic 
fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver 
fibrosis, cirrhosis, and cancer[2-4].

The spectrum of ALD includes alcoholic fatty liver, alcoholic hepatitis, fibrosis, and cirrhosis[5]. 
Alcohol drinking history and volume are direct causing factors for ALD, which can progress into 
hepatocellular carcinoma (HCC, Figure 1), the most common type of primary liver cancer[3]. In 
addition, factors such as age, gender, genetic variants, chronic virus infection, and smoking contribute 
to the development and progression of ALD[6,7]. Development of transgenic mouse models of ALD has 
provided a powerful tool to understand the disease pathogenesis[8]. Cellular and molecular mechanism 
studies have advanced our knowledge of the pathogenesis of ALD[8,9]. Multiple processes including 
excessive accumulation of lipids, reactive oxygen species (ROS) production, mitochondrial dysfunction, 
and cell inflammation and death are involved in ALD pathogenesis[10]. Despite all these efforts, there 
are no Food and Drug Administration-approved therapies for ALD[11].

NAFLD is the most common CLD with a broad spectrum, ranging from non-alcohol fatty liver 
(NAFL) to non-alcoholic steatohepatitis (NASH) with the progression of liver inflammation and 
different degrees of fibrosis[12]. NASH also can progression to HCC (Figure 1)[13]. The global pre-
valence of NAFLD was estimated to be 29.8% [95% confidence interval (CI): 28.6%-31.1%] in 2019[14], 
and the prevalence is estimated to be 32.4% (95%CI: 29.9-34.9) in 2022[15]. It affects more than 30% of 
people in the United States[16]. NAFLD is closely associated with other metabolic disorders, including 
obesity, diabetes, chronic kidney disease, and cardiovascular disease[17,18]. A new nomenclature for 
NAFLD has been suggested by a group of experts, namely metabolic dysfunction-associated fatty liver 
disease (MAFLD), which is based on the evidence of hepatic steatosis plus one of the following three 
criteria, including the presence of overweight or obesity, or presence of type 2 diabetes mellitus (T2DM), 
or evidence of metabolic dysregulation[19,20]. However, there are no currently approved medicines for 
NAFLD or MAFLD treatment[12].

Oxidative stress and inflammation are commonly associated with CLD independent of disease types
[21,22]. For example, ethanol consumption can induce alcohol liver steatosis, inflammation, and 
production of ROS, resulting in the development of ALD with liver inflammation and oxidative stress
[23]. In addition to hepatocyte injury, both innate and adaptive immune cells including macrophages, 
dendritic cells, neutrophils, and lymphocytes are involved in the development of CLD[24,25]. 
Production of ROS and inflammatory cytokines produced by immune cells under the stimuli of alcohol 
and diet metabolites, such as cholesterol and acetaldehyde, can further trigger liver oxidative stress, 
inflammation, and cell apoptosis or death to cause the progression of CLD[26,27].

Treatments, such as lifestyle intervention[28,29], gene editing[30,31], and pharmaceutical therapies
[32], can ameliorate or cure CLD at the early stages. However, server condition of CLD requires liver 
transplantation, which lacks donor availability. Here, the roles of antioxidants and anti-inflammatory 
agents in CLD treatment, especially for ALD, NAFLD, and HCC, are reviewed. Examples of clinical 
trials for evaluating the potential efficacies of potential treatment agents are summarized.

DATABASE SEARCHING
The databases of PubMed, Cochrane Library (Wiley), Embase, Web of Science, and Google Scholar from 
the last five years (from July 2020) were searched for studies by keywords of CLD, ALD, NAFLD, or 
HCC, and their treatments with anti-oxidative and anti-inflammatory agents. Papers written in English 
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Figure 1 The development of hepatocellular carcinoma from non-alcoholic fatty liver disease and alcoholic fatty liver disease. The 
prevalence (20%-30%) of non-alcoholic fatty liver (NAFL) in the world population and the following percentages of NAFL into non-alcoholic steatohepatitis (NASH) 
(15%-25%), NASH into cirrhosis (5%-10%), and cirrhosis into hepatocellular carcinoma (HCC) (2%-5%) are labeled. Around 90%-100% of heavy drinkers can 
develop alcoholic liver disease (ALD), then the percentages of progression from simple ALD into alcohol liver steatohepatitis (10%-35%), cirrhosis (8%-20%), and 
HCC (2%) are shown in the graphic. This cartoon was created using Biorender online tools (https://biorender.com). NASH: Non-alcoholic steatohepatitis.

were studied. When reviewing oxidative stress and/or inflammation-related molecules in CLD, the time 
restriction of the published data was removed.

INFLAMMATION AND OXIDATIVE STRESS IN CLD AND UNDERLYING MOLECULAR 
MECHANISMS
Inflammation and oxidative stress are commonly associated with each other in the pathogenesis of CLD
[33], including ALD, NAFLD, and HCC. Several common signaling pathways are involved in liver 
inflammation and oxidative stress, such as Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) and 
heme oxygenase-1 (HO-1) signaling pathways[34,35]. Dysregulation of lipid metabolism contributes to 
the pathogenesis of CLD[36,37], which is commonly associated with liver oxidative stress and inflam-
mation. Molecules such as peroxisome proliferator-activated receptors (PPARs) are involved in alcohol 
or non-alcohol factors-induced lipid metabolism dysregulation and hepatic steatosis[38,39]. In this 
section, we review some important signaling pathways involved in liver inflammation and oxidative 
stress during CLD.

AMP-activated protein kinase
AMP-activated protein kinase (AMPK) as a crucial energy sensor plays an important role in energy 
metabolism in multiple tissues, including the liver[40]. Activation of AMPK by metformin can reduce 
induced triglyceride accumulation in the livers of mice treated with ethanol compared to control groups
[41]. Activation of sirtuin 1 (SIRT1)/Liver kinase B1/AMPK signaling with botulin (a triterpene) 
treatment reduces serum aminotransferase and triglyceride levels in mice with chronic-binge ethanol
[42]. Activation of the AMPK signaling pathway with plant sterol ester of α-linolenic acid can also 
attenuate endoplasmic reticulum (ER) stress-induced hepatocyte apoptosis in mice with NAFLD[43]. 
Similarly, stimulating the activation of AMPK by an activator PXL770 reduces de novo lipogenesis in 
primary mice and human hepatocytes, which can result in the suppression of hepatic steatosis, inflam-
mation, and fibrogenesis in mice with NASH. In addition, PXL770 has a direct inhibitory effect on the 
production of proinflammatory cytokines and activation of hepatic stellate cells[44].

C-Jun N-terminal kinase
Activation of C-Jun N-terminal kinase (JNK) signaling pathway is involved in lipotoxicity, inflam-
mation, ER stress, and mitochondrial dysfunction. Palmitic acid (PA)-induced activation of JNK/Sab 
(SH3 domain-binding protein 5) signaling contributes to NASH progression, which is associated with 
mitochondrial dysfunction, oxidative stress, hepatic steatosis, and inflammation[45].

Deficiency of hypoxia-induced gene domain protein-1α (Higd-1α), a mitochondrial inner membrane 
protein, promotes free fatty acids (FFAs)-induced apoptosis and oxidative stress in hepatocytes[46]. In 
this process, the production of cytosolic oxidized mitochondrial DNA (ox-mtDNA) is increased, which 
induces activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and 
JNK signaling but decreases fatty acid oxidation (FAO). In contrast, exercise can increase the expression 
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Figure 2 Molecular signaling pathway in liver inflammation and oxidative stress. Inflammation and oxidative stress are involved in the development 
of chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, fibrosis, and cirrhosis into hepatocellular 
carcinoma. Many factors including cytokines, growth factors, and gut microbiota-derived products such as lipopolysaccharide can activate their receptors such as 
peroxisome proliferator-activated receptor-α and toll-like receptor 4, resulting in upregulation or inhibition of downstream genes to induce or prevent inflammatory 
cytokines and production of reactive oxygen species. This cartoon was created using Biorender online tools (https://biorender.com). LPS: Lipopolysaccharide; TLR4: 
Toll-like receptor 4; ALD: Alcoholic liver disease; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; PPAR-α: Peroxisome proliferator-
activated receptor-α; SIRT1: Sirtuin 1; SREBP-1c: Sterol regulatory element binding protein 1c; PI3K: Phosphatidylinositol-3-kinase; AKT: Protein kinase B; mTOR: 
Mammalian target of rapamycin; FAO: Fatty acid oxidation; NLRP3: NOD-like receptor family pyrin domain containing 3; NF-κB: Nuclear factor kappa B; IL: 
Interleukin; TNF-α: Tumor necrosis factor-α; NLRP3: NOD-like receptor family pyrin domain containing 3; ROS: Reactive oxygen species; NOS: Nitric oxide synthase.

of Higd-1α in the liver to ameliorate hepatic steatosis and inflammation by suppressing ox-mtDNA/
NLRP3/JNK pathway[46].

Farnesoid X receptor
Farnesoid X receptor (FXR) is a nuclear receptor that metabolically regulates glucose, bile acid, and lipid 
metabolism[47,48]. Treatment of Lactobacillus reuteri can ameliorate lipid accumulation in mice with 
ALD by upregulating FXR expression, which is associated with the upregulation of carbohydrate 
response element binding protein and downregulation of sterol regulatory element binding 
transcription factor 1 and cluster of differentiation (CD36)[49]. In addition, the FXR/fibroblast growth 
factors (FGFs) axis (FGF-15 and FGF-19) also plays a key in the regulation of hepatic inflammation, lipid 
metabolism, and fibrosis[50,51]. Clinically, treatment of FXR agonist vonafexor also shows anti-fibrotic 
effects in patients with NASH[52].

Nuclear factor erythroid 2-related factor-2/HO-1
Nuclear factor erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a critical role in 
oxidative stress and inflammatory responses. For example, Nrf2 expression is positively associated with 
oyster peptide-mediated suppression of inflammation mediated by upregulation of NF-κB signaling 
and upregulation of antioxidant response in mice with ALD[53]. Activation of Nrf2 is involved in the 
protective effect of diallyl disulfide against chemical (CCl4)-induced liver injury and oxidative stress
[54]. HO-1, an inducible form of antioxidant zyme HO isoforms that regulates heme group degradation, 
plays an essential role in liver inflammation and oxidative stress[55]. Nrf2 can regulate HO-1 to 
suppress liver oxidative stress, ER stress, and inflammation[56].

Nrf2 also plays an important role in the pathogenesis of NASH. Activation of Nrf2 can ameliorate 
liver inflammation, ER stress, iron overload, and lipotoxicity to suppress NASH and oxidative stress, 
which can be suppressed by transforming growth factor-beta (TGF-β)[57]. Activation of Nrf2 can 
suppress the expression of ROS and NLRP3 and inhibit Caspase 1/interleukin (IL)-1β and IL-18-
mediated inflammation[58]. In addition, pharmacologic activation of Nrf2 by TBE-31, acetylenic tricyclic 
bis(cyano enone), decreases insulin resistance and liver fat accumulation, inflammation, fibrosis, and 

https://biorender.com


Zhang CY et al. Natural products in liver disease

WJH https://www.wjgnet.com 184 February 27, 2023 Volume 15 Issue 2

oxidative stress in mice with a high-fat plus fructose diet. However, the TBR-31-mediated effect was 
abolished in Nrf2-null mice[59].

PPARs
PPARs are a group of nuclear receptor proteins that function as ligand-activated receptors to regulate 
genes in energy metabolism and inflammation. PPARs comprise three subtypes, PPAR-α, PPAR-β/δ, 
and PPAR-γ, which are pharmaceutical targets for disease treatments[60,61]. These PPARs play 
important roles in ALD[62], NAFLD[63], hepatitis virus-mediated liver injury[64], and HCC[65].

Activation of PPAR-α by agonist WY-14643 (Pirinixic Acid, Figure 2) ameliorates ethanol-induced 
liver fat accumulation by increasing FAO[66]. Sustained activation of PPAR-α can decrease obesity and 
improve insulin resistance to rebuild glucose homeostasis. However, it increases the risk of HCC 
development due to liver ER stress[67]. Treatment with GW9662, an antagonist of PPAR-γ, significantly 
decreased lipopolysaccharide (LPS)/TLR4-mediated expression of IL-1β, IL-6, inducible nitric oxide 
synthase, and nitrite (NO2

−) concentration[68].
Treatment with a dual PPAR-α/γ agonist Saroglitazar is able to reduce serum transaminases and 63% 

of overweight patients with NALFD reduced bodyweight (> 5%)[69]. In addition, many clinical trials 
have been performed to evaluate the effects of PPARs in ALD. For example, pemafibrate can improve 
liver function and glucose metabolism in patients with hypertriglyceridemia[70] and decrease liver 
stiffness in patients with NAFLD measured by magnetic resonance elastography (ClinicalTrials.gov, 
number: NCT03350165)[71]. Treatments that target PPAR-α such as pemafibrate[71], PPAR-β/δ such as 
seladelpar[72], and PPAR-γ such as pioglitazone[73,74] show promising efficacy in the clinic for CLD 
treatment (Figure 3). Meanwhile, a dual PPAR-α/δ agonist elafibranor and a pan-PPAR regulator 
lanifibranor show promising efficacy for CLD treatment in the clinic[75,76]. For example, a phase 2b 
clinical trial reveals that treatment of lanifibranor (1200 mg) compared with the placebo can decrease at 
least 2 points of steatosis, activity, and fibrosis score that incorporates scores for ballooning and inflam-
mation[76].

Phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin 
The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB or AKT)/mammalian target of 
rapamycin (mTOR) signaling pathway is implicated in the pathogenesis of liver disease and therapy[77,
78]. For example, this signaling pathway is involved in the anti-steatosis effect of D-mannose in ALD
[79]. Activation of PI3K/AKT/mTOR signaling pathway by arecoline (2.5 μM), an alkaloid ester found 
in the betel nut palm seeds, promotes the proliferation and migration of HepG2 cells[80]. Acid-sensitive 
ion channel 1α can upregulate the activation of PI3K/AKT/mTOR signaling pathway to enhance the 
expression of matrix metalloproteinase (MMP)2 and MMP9 to promote liver cancer cell (HepG2 and SK-
Hep1 cells) migration and invasion[81]. One human study also indicates that PI3K is more strongly 
expressed in tumors than that in cirrhotic livers but not AKT and mTOR, and the expression of PI3K in 
tumor tissues is independent of etiology[82]. In addition, activation of growth factor receptor protein 
tyrosine kinases (Figure 2) can result in autophosphorylation on tyrosine residues and subsequent 
binding and activation of PI3K[83], playing an important role in cancer development. Inhibition or 
blockade of this signaling pathway can suppress liver fibrosis[84,85] and cancer progression[86,87].

Furthermore, lysyl oxidase family members (LOX) and LOX-like proteins (LOXL1-4) play important 
roles in liver fibrosis and cancer[88]. Insulin resistance can promote extracellular matrix stabilization by 
upregulating hepatic production of LOXL2 through upregulation of the expression of Forkhead box 
protein O1 in NAFLD[89]. In addition, galectins such as galectin-3 also play an essential role in CLD[90-
92], including liver fibrosis and cancer. Overall, these molecular signaling pathways are involved in 
liver inflammation and oxidative stress to promote the development of CLD to HCC (Figure 2).

ANTIOXIDANT AND ANTI-INFLAMMATORY AGENTS IN ALD
Many ingredients from natural products or plants have both antioxidant and anti-inflammatory 
functions, which are good candidates for CLD treatment. Some of these products may have preventive 
effects on hepatic steatosis in ALD and NAFLD. For example, diallyl trisulfide (DATS) is a bioactive 
compound isolated from garlic and can reduce serum levels of aspartate transaminase (AST) and 
alanine aminotransferase (ALT) and decrease alcohol-induced liver injury[93]. DATS can upregulate 
PPAR-α expression and down-regulate sterol regulatory element binding protein 1c (SREBP-1c) 
expression to inhibit hepatic steatosis. Meanwhile, it can reduce liver oxidative stress by increasing 
antioxidant products and reducing ROS and malondialdehyde (MDA) production in the fatty liver[93]. 
In this section, we review some promising agents in ALD treatments either in animal models or clinical 
trials.

β-sitosterol
β-sitosterol is isolated from the roots of Panax ginseng[94]. As a plant sterol, β-sitosterol can reduce 
alcohol-induced liver injury and oxidative stress via restoration of erythrocyte membrane fluidity, 
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upregulation of glutathione (GSH) activity, and reduction of MDA production. In addition, β-sitosterol 
can suppress apoptosis-related gene expression by increasing the phosphorylation of PI3K and AKT[95].

Curcumin
Curcumin is an orange-yellow component of turmeric or curry powder isolated from the rhizome of 
Curcuma longa[96,97]. Supplementation of curcumin can significantly increase the activities of 
superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) to reduce swimming-induced 
oxidative stress in mice, by activating Nrf2 signaling pathway[98]. Treatment of curcumin significantly 
decreases serum levels of ALT, AST, alkaline phosphatase (ALP), gamma-glutamyl transferase, Ar-
ginase I, and blood urea nitrogen, while it increases serum levels of Albumin and total protein in 
ethanol-treated rats compared to the control group[99]. Development of self-assembled micelles of 
curcumin can be administered by oral delivery to enhance its anti-oxidative stress ability to prevent 
ALD and gastric mucosa damage[100]. Encapsulation enables to improve the adsorption of curcumin in 
intestinal epithelial cells and enhance its hepatoprotective effects in rats, via increasing the activity of 
GPx and decreasing high levels of MDA in the liver[101]. Furthermore, a combined treatment of 
curcumin and bacicalin shows more protective effects on ALD in rats by reducing liver oxidative 
damage through activation of the Nrf2/HO-1 signaling pathway[102].

Empagliflozin
Empagliflozin (EMPA) has benefits in cardiovascular, renal, and cerebral diseases, which is potentially 
mediated through its antioxidant and anti-inflammatory activities. Treatment with EMPA can decrease 
serum levels of ALT, AST, and ALP. It also increases the activities of GSH and SOD in the liver 
homogenates and decreases the liver content of MDA and nitric oxide (NO)[103]. Moreover, EMPA can 
downregulate NF-κB signaling to suppress the expression of proinflammatory cytokines, including 
tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6, which is associated with the upregulation of 
PPAR-γ, Nrf2, and their target gene HO-1[103].

Gastrodin
Gastrodin is the main bioactive component of Gastrodia elata Blume and displays anti-inflammatory and 
antioxidant properties. For example, administration of gastrodin (50 or 100 mg/kg) in mice significantly 
inhibits concanavalin A (ConA)-induced acute hepatitis, partly by suppressing IL-6/Janus Kinase 2/
signal transducer and activator of transcription 3 signaling pathway[104]. In addition, treatment with 
gastrodin ameliorated acetaminophen-induced liver injury in mice. The anti-inflammatory and anti-
oxidative stress functions of gastrodin are mediated through the inhibition of signal-regulated kinase/
JNK/mitogen-activated protein kinase signaling pathways and hepatic MDA activity, as well as 
activation of Nrf2 expression and SOD activity[105].

Genistein
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria, which is widely 
distributed in the Fabaceae family[106-109]. Treatment of genistein at a dose of 0.3 mmol/kg of 
bodyweight can ameliorate liver fibrosis and apoptosis in mice by suppressing the expression of 
proinflammatory cytokines such as TNF-α, IL-6, profibrotic cytokines such as TGF-β1, and cell caspase 3
[110]. In contrast, another study shows that supplementation of soy proteins significantly decreases 
serum ALT concentrations and hepatic TNF-α and CD-14 expression and decreases NF-κB protein in 
casein-based 35% high-fat ethanol liquid diet (EtOH)-treated mice by inhibiting β-catenin signaling
[111]. More functional studies of genistein have been performed in NAFLD models, which are discussed 
in the following section.

Lactoferrin
Lactoferrin (LF) is an iron-binding protein found at relatively high concentrations in mammalian milk
[112]. LF displays multiple functions, including antioxidant, anti-cancer, and anti-inflammatory 
activities. For example, LF treatment can decrease the levels of liver superoxide and suppress liver 
inflammation in male mice with alcoholic-induced liver injury (ALI) by upregulating the expression of 
aldehyde dehydrogenase-2 and suppressing overexpression of cytochrome P450 2E1 (CYP2E1)[113]. LF 
treatment also displays a protective effect in female mice with acute ALI by regulating redox-stress 
response capacity[114]. The protective effect of LF on ALI is associated with the manipulation of gut 
microbiota and the modulation of hepatic alcohol metabolism[113].

Selenium
Selenium plays an essential role against oxidation, which is part of the catalytic center of different 
antioxidant selenoproteins including GPxs and selenoprotein P[115]. The serum levels of selenium are 
decreased in adult patients with acute and chronic alcoholic-related diseases, accompanied by liver 
damage and the severity of oxidation[115,116].
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Silymarin
Silymarin is an active compound from the extracts of milk thistle (Silybum marianum)[117]. Silymarin 
displays antioxidant, antifibrotic, anti-inflammatory, and hepatoprotective properties in different types 
of CLD[118,119], such as ALD. Simultaneous supplementation of silymarin with alcohol treatment can 
reduce the ethanol-induced increase of serum ALT levels and hepatic microvesicular steatosis and TNF-
α expression[120]. Another study on non-human primates also shows that silymarin can prevent the 
development of alcohol-induced liver fibrosis by decreasing the production of type I collagens[121].

Taraxasterol
Taraxasterol (TAS) is an active ingredient of Taraxacum officinale, which has protective effects on the liver 
and kidneys by reducing serum levels of ALT and AST, increasing serum and liver SOD and GPx, and 
maintaining the balance of ion homeostasis[122]. TAS also displays anti-inflammatory function in 
cultured mouse primary lymphocytes stimulated with Con A and in mice with Con A-induced acute 
hepatitis[123]. Mechanism studies reveal that TAS inhibits T cell activation and proliferation by 
suppressing IL-2/IL-2 receptor-mediated downstream signaling pathways[123].

Telmisartan
Telmisartan (TEL) exhibits similar effects with EMPA on ALD. Treatment of TEL (10 mg/kg/day) 
decreased serum levels of ALT, AST, and ALP in mice with ALD[124]. In addition, TEL displays anti-
inflammatory and antioxidant properties in mice with ALD by increasing the activity of SOD and GPx 
to reduce liver contents of NO and MDA, upregulating the expression of Nrf-2, PPAR-γ, and Hmox-1, 
and downregulating NF-κB expression[124].

ANTIOXIDANT AND ANTI-INFLAMMATORY AGENTS IN NAFLD
Hepatic inflammation and oxidative stress are also associated with NAFLD pathogenesis[125]. 
Therefore, many above-discussed products also display similar bioactive functions against NAFLD.

β-sitosterol
Treatment with β-sitosterol can prevent high-fructose diet-induced macrovesicular hepatic steatosis and 
inhibit the progression of NAFL to NASH in male rats[126]. Meanwhile, it is also able to inhibit high-
fructose diet-induced visceral obesity, hypertriglyceridemia, plasma insulin concentration, and 
homeostatic model assessment of insulin resistance (HOMA-IR) but increase plasma levels of 
adiponectin in female rats[127]. Another study shows that in combination with stigmasterol, a dietary 
phytosterol, β-sitosterol can alleviate a high-fat western-style diet-induced NAFLD in mice post-17-wk 
treatment, by decreasing hepatic di- and tri-acylglycerols and circulating ceramide levels[128].

Curcumin
Curcumin is a natural polyphenol, which shows anti-inflammatory and antioxidant activities. It can 
improve insulin resistance and reduce hepatic fat accumulation in dietary obese rat models[129]. 
Accumulating evidence identifies that curcumin can attenuate hepatic steatosis by suppressing hepatic 
expression of CD36, PPAR-γ, SREBP-1c, and fatty acid synthase (FAS) in NAFLD mice, through upregu-
lation of Nrf2 and FXR expression and downregulation of liver X receptor α expression[130,131]. In 
addition, curcumin can induce activation of AMPK and upregulation of PPAR-α, and suppress the high-
fat diet (HFD)-induced increase in the expression of SREBP-1, acetyl-CoA carboxylase 1, FAS, and CD36
[132]. Meanwhile, curcumin is able to prevent intestinal permeability and suppress LPS/TLR4/NF-κB-
mediated inflammatory response to protect against diet-induced hepatic steatosis and inflammation
[133]. In addition, curcumin can also suppress NLRP3 inflammasome (Figure 2) and pro–IL-1β synthesis 
by suppressing LPS-mediated activation of NF-κB signaling pathway[134].

Ex vivo studies also show that treatment of curcumin decreases linoleic acid-induced ROS production 
and leptin-induced TNF-α expression in human peripheral blood mononuclear cells[135]. A randomized 
controlled trial in Iran demonstrates that supplementation with curcumin in a phytosomal form (1000 
mg/day) significantly reduces body mass index (BMI), waist circumference, and serum levels of AST 
and ALT[136]. This dose was safe and well tolerated in NAFLD patients[136]. Another double-blind, 
randomized, placebo-controlled trial displays that daily supplementation of low-dose phospholipid 
curcumin (250 mg) for 2 mo can significantly decrease hepatic steatosis and serum AST levels in NAFLD 
patients compared to placebo[137]. In addition, a combined therapy of curcumin (500 mg/day) with 
piperine, an alkaloid in black pepper with many pharmacological effects on chronic diseases[138], also 
decreases the severity of NAFLD and serum ALP levels[139]. Large clinical trials are needed for further 
evaluation of the efficacy of curcumin and its synergistic treatments.

EMPA
EMPA is an inhibitor of sodium-glucose co-transporter 2 (SGLT2), which plays an important role in 
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NAFLD. EMPA treatment can inhibit PA-induced lipid deposition in hepatocytes (HepG2 cells) and 
HFD-induced hepatic lipid accumulation and inflammation in mice by upregulating the expression of a 
stress-inducible protein Sestrin2 and activating AMPK-mTOR signaling pathway[140]. Another study 
demonstrates that EMPA can upregulate the expression of medium-chain acyl-CoA dehydrogenase in 
NASH liver and PA and glucose-treated hepatocytes by activating AMPK/forkhead box A2 signaling 
pathway, resulting in a reduction of hepatic lipid deposition in vivo and in vitro[141]. A meta-analysis 
shows that EMPA can significantly reduce BMI, HOMA-IR, AST, and liver fibrosis in patients with 
NAFLD[142].

In addition, other SGLT2 inhibitors or gliflozins, such as licogliflozin[143,144] and dapagliflozin[145,
146], also can control glycemic production and bodyweight, normalize serum ALT levels, and reduce 
Fibrosis-4 NAFLD patients with T2DM.

Gastrodin
Gastrodin has been shown to significantly decrease lipid accumulation and inflammatory response in 
primary mice and human hepatocytes treated with 0.5 mmol/L PA along with 1.0 mmol/L oleic acid. In 
addition, it ameliorates diet-induced hepatic steatosis and inflammation in mice by activating the 
AMPK signaling pathway[147]. Gastrodin can also regulate lipid metabolism and display antioxidant 
effects in larval zebrafish with high-cholesterol diet-induced NAFLD[148].

Genistein
Genistein has been shown to play an important role in NAFLD and NASH treatment. Treatment of 
genistein reduces the levels of TNF-α and reduces TLR4 mRNA and protein expression and inflam-
mation in the livers of rats with NASH[149]. A combination of genistein with metformin (0.2% + 0.23%) 
for 3 mo shows a synergistic effect on the reduction of AST, ALT, and TG, liver TG and number of 
macrophages, and NAFLD activity score (NAS) in HFD-fed mice[150]. The reduction of hepatic steatosis 
is associated with decreased mRNA levels of lipogenic-related genes SREBP-1c and FAS and 
upregulated mRNA expression of FAO-related gene carnitine palmitoyl transferase 1[150]. Genistein 
treatment (16 mg/kg BW/day) for 5 wk can significantly decrease hepatic steatosis, inflammation, and 
hepatocyte ballooning in ovariectomized rats with high-fat and high-fructose diet-induced NASH[151].

Consumption of dietary isoflavones including genistein is reversely associated with NAFLD, 
hypertension, and hyperlipidemia in a study on Chinese adults[152]. Molecular mechanism studies 
show that genistein can suppress the activation of SREBP-1c in FFA-induced fat accumulation in 
primary human hepatocytes, whereas genistein-mediated upregulation of PPAR-α proteins in normal 
hepatocytes is abolished in steatotic hepatocytes[153].

LF
LF is an iron-binding protein in mammalian milk and displays multiple functions, including 
antioxidant, anti-cancer, and anti-inflammatory activities. During NASH progression, LF treatment can 
inhibit NF-κB activation to downregulate a high-fat diet and chemical dimethylnitrosamine-induced 
liver injury, inflammation, and fibrosis[154]. Treatment with LF improves insulin sensitivity and 
reduces hepatic steatosis in ob/ob mice by downregulating SREBP-2. It also regulates hepatocellular 
iron transport by controlling the hepcidin-ferroportin axis to maintain liver oxidative balance and 
suppress hepatocyte death[155].

Mastiha
Mastiha is a natural and aromatic resin isolated from the trunk and brunches of mastic trees with 
antioxidant and anti-inflammatory properties[156]. Mice with diet-induced NASH fed with 0.2% (w/w) 
Mastiha supplementation for 8 wk can reduce the circulating ALT levels, NAS, hepatic steatosis, and 
liver collagen production[157]. This study also identifies that Mastiha supplementation changes NASH-
induced gut microbiota profile to the diversity and composition of healthy mice. A randomized clinical 
trial (NCT03135873, www.clinicaltrials.gov) shows that supplementation of Mastiha improves the total 
antioxidant status (TAS) levels in NAFLD patients with severe obesity compared to that in the corres-
ponding placebo group[158]. The anti-inflammatory function of Mastiha is associated with the 
expression of microRNA-155 in the plasma of NAFLD patients, which may regulate the differentiation 
and function of T helper-17 cells[159].

Selenium
Treatment with selenium-enriched green tea extract (200 mg/kg body weight) for 15 wk can 
significantly reduce body weight gain and visceral fat accumulation in mice with obesity and NAFLD
[160]. Reduced serum levels of selenium are independently associated with hepatic fibrosis in NAFLD 
patients[161]. Another study reveals that selenium deficiency induces hepatic inflammation in pigs by 
activating the NF-κB signaling pathway, decreasing antioxidant capacity, and increasing ROS levels
[162]. Selenium-enriched Lactobacillus acidophilus SNZ 86 (probiotic) can decrease western-style diet-
induced hepatic steatosis in mice with NAFLD, by activating autophagy through the upregulation of 
AMPK/SIRT1 signaling pathway[163]. Co-supplementation of selenium with vitamin B6 can reduce 

http://www.clinicaltrials.gov


Zhang CY et al. Natural products in liver disease

WJH https://www.wjgnet.com 188 February 27, 2023 Volume 15 Issue 2

Figure 3 Structures of peroxisome proliferator-activated receptor agonists or modulators applied for the treatment of chronic liver 
disease. Many peroxisome proliferator-activated receptor regulators have been evaluated in the clinic, showing promising effects in patients with chronic liver 
disease. All the chemical structures were collected online from the Chemical Book (https://www.chemicalbook.com, accessed on August 10, 2022). PPAR: 
Peroxisome proliferator-activated receptor.

liver lipid synthesis and deposition by increasing the expression of SIRT1 to downregulate SREBP-1c 
expression (Figure 2) and upregulate PPAR-α expression in HFD-fed rats[164].

Silymarin
The major active compound of silymarin is silybin. Treatment with silybin can significantly decrease 
lipid accumulation in mice with NAFLD by activating PPAR-α[165]. Since it can partially inhibit the 
effect of PPAR-α agonist fenofibrate, it is not suggested to be simultaneously applied with PPAR-α 
agonists. Silymarin also displays a synergistic effect with quercetin on the reduction of lipid accumu-
lation in rat hepatocytes[166]. Silymarin treatment significantly ameliorates high fructose-induced 
oxidative stress and hepatic steatosis in rats[167]. Silymarin supplementation (560 mg daily) for 8 wk 
significantly improves serum AST/ALT ratio, ultrasound fatty liver grading, and BMI in patients with 
morbid obesity and NAFLD[168].

TEL
Treatment with TEL significantly improves fibrosis scores and reduces the levels of serum leptin and its 
expression in liver tissue[169]. As an angiotensin receptor blocker, it significantly decreases fasting 
serum-FFA levels and triglyceride-glucose index in patients with NAFLD[170]. TEL displays a similar 
effect as vitamin E on the reduction of NAS, and improvement of hepatic steatosis, but it has a better 
effect on the reduction of liver lobular inflammation and hepatocyte ballooning[171]. It can function as a 
PPAR-γ/α dual agonist to simultaneously improve insulin-sensitivity via activating PPAR-γ and 
improve lipid metabolism by activating PPAR-α[172].

Delta-tocotrienol
Tocotrienols are natural compounds that belong to one part of two vitamin E components (Tocopherols 
as another part), including α, β, γ, and δ tocotrienols[173]. Among them, δ-tocotrienol shows strongly 
anti-inflammatory activity, which can decrease insulin resistance, hepatic steatosis, and serum trigly-
ceride concentrations in rats with diet-induced obesity[174]. Recent studies also show that δ-tocotrienol 
has anti-cancer properties by regulating angiogenesis and cell proliferation and apoptosis[175].

A human study indicates that oral supplementation of δ-tocotrienol (300 mg, twice daily) for 12 wk 
significantly decreases serum aminotransferases, high sensitivity C-reactive protein (hs-CRP), and 
MDA, and fatty liver index (FLI) score compared to placebo[176]. Clinical trials reveal that δ-tocotrienol 
supplementation results in a significant reduction in plasma glucose, insulin, glycosylated hemoglobin, 
MDA, high sensitive C-reactive protein, and proinflammatory cytokines (TNF-α and IL-6), and HOMA-
IR in pre-diabetic and diabetic patients[177,178]. Another trial also demonstrates that treatment of δ-
tocotrienol (300 mg, twice daily) for 24 wk further significantly reduces FLI score, HOMA-IR, and 
hepatic steatosis than placebo, except decreased serum levels of hs-CRP, MDA, ALT, and AST, without 
causing adverse events[179].

https://www.chemicalbook.com
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ANTIOXIDANT AND ANTI-INFLAMMATORY AGENTS IN LIVER CANCER
Both ALD and NAFLD are major contributors to HCC initiation and progression. Therefore, the above-
discussed biomolecules may also exhibit anti-HCC effects. For example, treatment of β-sitosterol 
niosomes, a form of β-sitosterol with polyethylene glycol modification, shows cytotoxicity to HepG2 
cells due to increased cellular uptake and displays in vivo anti-HCC ability in Wistar albino rats[180]. 
Treatment of β-sitosterol-assisted silver nanoparticles (BSS-SNPs) significantly inhibits the proliferation 
of HepG2 cells and their production of ROS and Nrf2, resulting in the regulation of pro-apoptotic genes 
such as Bcl-2 Associated X-protein and caspases 3 and 9[181]. Similarly, compounds including curcumin
[182], EMPA[183], gastrodin[184], genistein[185], LF[186], selenium[187], silymarin[188], TAS[189], TEL
[190], and delta-tocotrienol[191] display anti-HCC effects either in vitro or in vivo, or both (Table 1).

CLINICAL TRIALS
Clinical trials have been started to evaluate the efficacy of these molecules in CLD (Table 2), such as 
EMPA[192] and silymarin[193,194]. For example, treatment with EMPA can improve liver steatosis in 
patients with NAFLD without T2DM[192]. Another trial shows that oral supplementation of genistein 
(250 mg) for 8 wk can decrease insulin resistance, oxidative stress, and inflammation and improve lipid 
metabolism in patients with NAFLD[195].

CONCLUSION
CLD is a continuous process that causes a reduction of liver function that lasts more than six months. 
CLD has a broad spectrum with complex cellular and molecular mechanisms. It can be subclassified into 
ALD, NAFLD or MAFLD, chronic viral infection, and autoimmune hepatitis, which can lead to liver 
fibrosis, cirrhosis, and cancer. However, there are no currently available treatments for ALD, NAFLD, 
and liver fibrosis, except the preventive strategies, such as changes in exercise, diet, and alcohol use. 
Early preventive strategies predict good outcomes. Patients with advanced ALD and NAFLD require 
liver transplantation, but without enough donor organs. Liver inflammation and oxidative stress are 
ubiquitously associated with the development and progression of CLD. Molecular signaling pathways 
such as AMPK, JNK, and PPAR-mediated signaling pathways are implicated in liver inflammation, 
oxidative stress, and lipid metabolism. Accumulating studies have demonstrated that natural products 
with antioxidant and anti-inflammatory functions display therapeutic effects against inflammation, 
fibrosis, and metabolic disorders, including ALD and NAFLD. These products such as β-sitosterol, 
curcumin, EMPA, gastrodin, and genistein have shown potential application at all the stages of CLD, 
from ALD/NAFLD to HCC. In addition, clinical trials that are undergoing to evaluate their efficacy and 
safety are reviewed. Overall, pre-clinical studies in cell and animal models reveal the protective effects 
of these agents in CLD. However, more clinical trials are required to evaluate their efficacy and safety.

Natural products, especially antioxidant and anti-inflammatory products, show potent therapeutic 
alternatives for CLD treatment with their efficacy and low side effects. Remarkably, these products also 
display anti-HCC functions. However, many pharmaceutical dynamic assays have not been tested, and 
the potential adverse effects of long-term use of these products are not available. In the future, the 
synergistic effects of different drugs should be evaluated to treat CLD, due to its complex pathogenic 
factors.

Table 1 Antioxidant and anti-inflammatory agents for the treatment of hepatocellular carcinoma

Molecules Model Function Ref.

β-sitosterol HepG2 cells; Rat HCC Treatment of β-sitosterol niosomes displays direct 
cytotoxicity to HepG2 cells in vitro and anti-HCC ability 
in rats

[182]

Curcumin HepG2 and SK-Hep-1 cells. A nude 
mouse xenograft model bearing HepG2 
cells

It can inhibit cell proliferation and increase cell apoptosis 
and cell cycle arrest at the G0/G1 phase of cancer cells by 
downregulating the expression of BCLAF1 and inhibiting 
the activation of the PI3K/AKT/GSK-3β pathway

[183]

Empagliflozin DENA-induced HCC in mice It shows a synergistic effect on the control of 
angiogenesis, invasion, and metastasis of tumor cells in 
mice with DENA-induced HCC by inhibiting the 
expression of MAPKs and reducing liver injury enzymes

[184]

Subcutaneous H22 cells-induced tumor It can specifically increase the expression of NF-κB Gastrodin [185]



Zhang CY et al. Natural products in liver disease

WJH https://www.wjgnet.com 190 February 27, 2023 Volume 15 Issue 2

in mice downstream genes such as Bcl-xL, Bcl-2, and IL-2 in CD4 
but not CD8 T cells

Genistein TAA-induced HCC in rats It displays antioxidant and anti-HCC effects by 
suppressing the versican/PDGF bidirectional axis and 
protein expression of PKC and ERK-1

[186]

Lactoferrin DEN-induced HCC in rats It shows a chemopreventive effect against DEN-induced 
HCC in rats in a dose-dependent manner by suppressing 
the expression and activation of AKT

[187]

Selenium TAA-induced HCC in rats Selenium nanoparticles improve the tumor suppressive 
effect of sorafenib and overcome drug resistance in rat 
HCC by inducing apoptosis and targeting AKT/mTOR 
and NF-κB signaling pathways, as well as epigenetic 
regulation

[188]

Silymarin DEN/AAF/CCl4 induced HCC in rats It suppresses cancer cell growth in rats with 
DEN/AAF/CCl4-induced tumors by inhibiting the 
expression of Ki-67 and HGF/c-Met, Wnt/β-catenin, and 
PI3K/Akt/mTOR signaling pathways

[189]

Taraxasterol HepG2 and Huh7H22 bearing mice It can suppress tumor cell growth by suppressing Ki67 
expression and inducing cell apoptosis via suppressing 
IL-6/STAT3 signaling pathway, as well as promoting T 
cell infiltration in tumor tissue

[190]

Telmisartan NDEA-induced HCC in mice It exerts an anti-HCC effect and increases tumor cell 
sensitivity to sorafenib treatment by suppressing 
phosphorylation-induced activation of TAK1 and the 
ERK1/2 and NF-кB signaling pathways

[191]

Delta-tocotrienol HCC cell lines SK Hep-1 and Huh7 It promotes the anti-HCC cell activity of IFN-α by 
increasing ROS and increasing cell apoptosis together 
with an increased Bax/Bcl-xL ratio. In addition, it can 
activate Notch1 signaling pathway

[192]

AKT: Protein kinase B; Bax: Bcl-2-like protein 4; Bcl-2: B-cell lymphoma 2; Bcl-xL: B-cell lymphoma extra-large; BCLAF1: BCL-2-associated transcription 
factor 1; CD4: Cluster of differentiation 4; c-Met: Tyrosine-protein kinase Met; ERK-1/2: Extracellular signal-regulated kinases 1/2; GSK-3β: Glycogen 
synthase kinase-3β; HCC: Hepatocellular carcinoma; HGF: Hepatocyte growth factor; IL-2: Interleukin 2; Ki-67: Marker of proliferation Ki-67; MAPK: 
Mitogen-activated protein kinase; mTOR: Mammalian target of rapamycin; NF-κB: Nuclear factor κB; PI3K: Phosphatidylinositol-3-kinase; PDGF: Platelet-
derived growth factor; SIRT1: Sirtuin 1; SREBP-1c: Sterol regulatory element binding protein 1c; STAT3: Signal transducer and activator of transcription 3; 
DENA Diethylnitrosamine; TAA: Thioacetamide; ROS: Reactive oxygen species; NDEA: N-Nitrosodiethylamine; AAF: 2-acetylaminofluorene; CCl4: 
Carbon tetrachloride.

Table 2 Clinical trials for evaluating the efficacy of compounds in liver disease

Treatment Trial number Phase Aims or results

NCT02908152 2-3 To investigate the effects of curcumin supplements on metabolic factors and hepatic 
fibrosis in NAFLD patients with T2DM

Curcumin

NCT04109742 2 To test the effect of curcumin in pediatric patients with NAFLD

NCT03867487 2 To evaluate the preliminary feasibility, initial efficacy, and safety of empagliflozin as a 
SGLT2 inhibitor for treating NAFLD in adolescents with obesity

Empagliflozin

NCT04642261 4 To test the effects of empagliflozin on reducing hepatic fat content as measured by 
MRI-PDFF in NAFLD patients without DM

Gastrodin NCT04035824 4 To treat hypertension together with Uncaria

Genistein IRCT201312132480N5 3 Oral supplementation of genistein (250 mg) for 8 wk can decrease insulin resistance, 
oxidative stress, and inflammation and improve lipid metabolism in patients with 
NAFLD

Lactoferrin NCT04335058 None To test the effect of lactoferrin with iron versus iron alone in the treatment of anemia in 
CLD

NCT00271245 None To test the effect of selenium in patients with cirrhosisSelenium

NCT01650181 4 To test the impacts using siliphos-selenium-methionine-alpha lipoic acid plus 
metformin versus metformin in patients with fatty liver and NASH

NCT00389376 1 An increase in silymarin is observed in NAFLD patients, compared to that in patients 
with HCV

The effect of silymarin on NASH patients remains inconclusive due to the lack of a 

Silymarin

NCT00680407 2
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substantial number of patients

Telmisartan NCT02213224 4 To evaluate the therapeutic effects of telmisartan and perindopril for NAFLD patients 
with hypertension

T2DM: Type 2 diabetes mellitus; NAFLD: Non-alcoholic fatty liver disease; SGLT2: Sodium-glucose cotransporter-2; MRI-PDFF: Magnetic resonance 
imaging-derived proton density fat fraction; CLD: Chronic liver disease; NASH: Non-alcoholic steatohepatitis; HCV: Hepatitis C virus.
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