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ABSTRACT: Breast cancer is one of the major causes of death in
women worldwide. It is a diverse illness with substantial
intersubject heterogeneity, even among individuals with the same
type of tumor, and customized therapy has become increasingly
important in this sector. Because of the clinical and physical
variability of different kinds of breast cancers, multiple staging and
classification systems have been developed. As a result, these
tumors exhibit a wide range of gene expression and prognostic
indicators. To date, no comprehensive investigation of model
training procedures on information from numerous cell line
screenings has been conducted together with radiation data. We
used human breast cancer cell lines and drug sensitivity information
from Cancer Cell Line Encyclopedia (CCLE) and Genomics of
Drug Sensitivity in Cancer (GDSC) databases to scan for potential drugs using cell line data. The results are further validated
through three machine learning approaches: Elastic Net, LASSO, and Ridge. Next, we selected top-ranked biomarkers based on their
role in breast cancer and tested them further for their resistance to radiation using the data from the Cleveland database. We have
identified six drugs named Palbociclib, Panobinostat, PD-0325901, PLX4720, Selumetinib, and Tanespimycin that significantly
perform on breast cancer cell lines. Also, five biomarkers named TNFSF15, DCAF6, KDM6A, PHETA2, and IFNGR1 are sensitive
to all six shortlisted drugs and show sensitivity to the radiations. The proposed biomarkers and drug sensitivity analysis are helpful in
translational cancer studies and provide valuable insights for clinical trial design.
KEYWORDS: drug sensitivity, machine learning, radiosensitive, biomarkers, pharmacogenomics

Breast cancer is a highly prevalent malignant tumor risking
women’s health around the globe and is a leading cause of

cancer. According to the world health organization (WHO),
there were 684,996 mortalities as a result of breast cancer in
2021; in 2022, there were 287,850 estimated cases of invasive
breast cancer to be diagnosed in women as per the National
Breast Cancer Coalition (NBCC) reports. Breast cancer
patients with early detection and treatment have a better
prognosis, a longer survival time, and a lower fatality rate.

Chemotherapy resistance remains the most severe issue in
treating people living with cancer. Novel chemotherapeutical
and targeted medicines continue to be advanced. Even if most
anticancer drugs slow down tumor development, the effect is
usually short-lived, and anthracycline and taxane failure directly
impacts breast cancer patients’ survival.1 As a result, novel
medicines with limited sensitivity to conventional drug
resistance mechanisms are urgently needed to increase
response rates and possibly extend survival.

Pharmacogenomics predictions based on genetic data is a
growing field of study with several practical uses, including
drug development and repurposing, subject selection for

medical studies, and individualized therapy suggestions (for
instance, in a tumor board background). The scientific
community has created comprehensive cell line drug sensitivity
assays such as CCLE,2 CTRP,3 GDSC,4 and gCSI.5 These
databases include molecular and pharmacological response
data from a multitude of cell lines, permitting predictive
models to be built. However, despite the existence of these
data, the ability to determine medication response reliably
remains restricted.6,7 Noise in the data, small sample size
compared to characteristics quantity (i.e., predictor variables),
insufficient omics description, as well as the stationary nature
of molecular information are all factors that make drug
response prediction difficult. In such investigations, molecular
data are frequently obtained just before the medication is

Received: November 3, 2022
Published: February 24, 2023

Articlepubs.acs.org/ptsci

© 2023 American Chemical Society
399

https://doi.org/10.1021/acsptsci.2c00212
ACS Pharmacol. Transl. Sci. 2023, 6, 399−409

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aamir+Mehmood"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sadia+Nawab"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yifan+Jin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hesham+Hassan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aman+Chandra+Kaushik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dong-Qing+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dong-Qing+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsptsci.2c00212&ref=pdf
https://pubs.acs.org/doi/10.1021/acsptsci.2c00212?ref=pdf
https://pubs.acs.org/doi/10.1021/acsptsci.2c00212?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsptsci.2c00212?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsptsci.2c00212?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsptsci.2c00212?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aptsfn/6/3?ref=pdf
https://pubs.acs.org/toc/aptsfn/6/3?ref=pdf
https://pubs.acs.org/toc/aptsfn/6/3?ref=pdf
https://pubs.acs.org/toc/aptsfn/6/3?ref=pdf
pubs.acs.org/ptsci?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsptsci.2c00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/ptsci?ref=pdf
https://pubs.acs.org/ptsci?ref=pdf


administered.8 The reliability of pharmacogenomics correla-
tions generated from diverse data sets is another significant
issue. Several studies discovered that discrepancies in
experimental techniques and data processing caused the
reported inconsistency.9−14

Drug sensitivity refers to the amount of activity played on a
target (cell lines, in our case). It is measured through different
approaches, such as the area above the curve (AAC) and
IC50IC50. In contrast, drug resistance is the resistance shown
by the target toward a particular drug or compound, which
may be caused by mutations or overdosing. This is related to
the biomarkers that are crucial for disease survival, under-
standing, and therapeutic purposes. For cancer patients,
radiotherapy is commonly utilized as a curative treatment.
Radiation also bears great importance as it can be used along
with chemotherapy for an effective and fast remedy. Recent
technological advancements have enhanced radiation’s physical
accuracy, resulting in higher remedial success and lower
toxicity.15

Normalized regression techniques (i.e., LASSO, Elastic Net,
Ridge regression),16−19 partial least-squares (PLS) regression,
support vector machines (SVMs),20 random forest (RF),
neural networks, and deep learning,21,22 logical models, or
kernelized Bayesian matrix factorization (KBMF)23,24 have all
been used to solve the drug response prediction problem. Ali
and Aittokallio (2019)25 provide a detailed current review. To
date, no comprehensive investigation of model training
procedures based on information from several large cell line
screenings got reported in association with radiation data. We
wanted to bridge these gaps in our work to advance the
precision of medication response estimation and discover
novel biomarkers for drug and radiation sensitivity.

For this purpose, we retrieved required information from the
cancer cell line encyclopedia (CCLE) genomics of drug
sensitivity in cancer (GDSC) to intersect and then apply three
multivariate machine learning models such as Elastic Net,26

LASSO,27 and Ridge.28 For examining drug activity, we
considered the IC50 and AAC values for 24 cancer drugs that

were obtained as a result of interesting CCLE and GDSC. The
aforementioned regression models were employed for
predicting the accuracy of drug sensitivity on the cancer cell
lines that assisted in picking out our top-ranked drugs. Finally,
we shortlisted biomarkers from the molecular profiling data
and manually searched for potential biomarkers. The
Cleveland database was also considered for the radiation
data, as the goal was to hunt for signatures showing sensitivity
to both types of treatments.

■ METHODS
Ethical Considerations. The human cell lines and

radiotherapy results used in this work are freely accessible
data obtained from public repositories (CCLE, GDSC, and the
Cleveland database) for research purposes only and thus
require no approval as the data are completely anonymized.
Data Types and Sources. We curated breast cancer cell

lines from two cloud-based repositories known as GDSC29 and
CCLE.30 Each data set has a panel of cancer cell lines with
cancer drugs applied. To avoid overlaps among the data, we
intersected both databases for shortlisting breast cancer drugs.
As a result, we obtained 24 drugs that were selected for further
evaluation. Furthermore, nine breast cancer cell lines31 were
considered for cell line−drug sensitivity analysis. The radiation
data are retrieved from the Cleveland32 database. Figure 1
depicts the overall workflow of this study.
Examining and Extracting Data of Interest. The

PharmacoGx
33 and RadioGx

34 packages resemble each other
a lot in their object structure. The PharmacoGx package is used
to analyze big pharmacogenomic data sets efficiently. This
package handles the stored pharmacological and molecular
information as R objects. Similarly, the RadioGx suite creates a
standardized data format for storing radiogenomics data
obtained from radiotherapy sessions. The aim was to
understand the association among various cancer cell lines
and their response to our shortlisted drugs and ionizing
radiation (IR). Generally, the PharmacoSet (PSet) and
RadiogenomicSet (RSet) stock three main types of informa-

Figure 1. A methodological pipeline. Breast cancer data are taken from the two cancer cell line databases, and both the IC50 and AAC curves are
plotted, shortlisting effective drugs. Next, the three machine learning methods are applied to compare and validate drug response on cancer cell
lines. Since the pharmacological information is available alongside the experimental data, we also identified potential markers showing sensitivity
toward the shortlisted drugs and radiations (radiotherapy).
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tion: metadata/annotations, molecular information, and treat-
ment response data.
Modeling the Sensitivity Data. Drug−dose response

statistics contained within the PSet objects are plotted via the
drug dose−response curve function.35 For a list of PSets, a
drug name, and a cell name, it plots the drug dose−response
curves for a given cell−drug blend in each data set, permitting
direct data comparisons between data sets.
Drug Sensitivity Prediction. To determine the effective-

ness of a given drug, pharmacogenomic studies consider cancer
cell lines to be tested for their response to increasing
concentrations of various compounds from which the IC50

36

and the area above the curve (AAC)37 are computed. The IC50
is the concentration of an inhibitor where the response is
reduced by half. The AAC is the area above the dose−response
curve for the tested drug concentrations and is a more robust
metric normalized against the dose range.
Consistency Improvement between the Data Sets.

The cell and drug names used in the GDSC and CCLE
databases are not identical. Therefore, we used the
PharmacoGx package to clear these differences and perform a
comparative analysis between the two data sets. The hgu133a
and enlarged hgu133plus platforms are used for profiling
GDSC and CCLE, respectively. Although the hgu133a
platform is a precise subset of the hgu133plus2, the gene
ensemble IDs summarize the expression information in PSet
objects, permitting data sets from different platforms for easy
comparison.

We used two main utilities known as downloadPSet and
intersectPSet for importing stored data sets to test data
consistency and find a common intersection between the two
data sets, respectively.

We also constructed a breakdown of gene expression and
drug sensitivity metrics so that, inside each data set, one gene
expression pattern and one sensitivity profile per cell line exist.
Finally, a conventional correlation coefficient equates the gene
expression and susceptibility metrics between the data sets.
Reliability Assessment. To better examine the con-

cordance of numerous pharmacogenomic research (rCI),38,39

we used a robust concordance index (rCI). Knowing that drug
screening assay noise is considerable and that responsive
grading of cell lines with similar AAC values might be
erroneous, the rCI only evaluates cell line pairings with a drug
sensitivity (AAC) discrepancy higher.
Supervised Comparison. In our study, we used three

main multivariate machine learning regression methods:
LASSO, Elastic Net, and Ridge. Each modeling technique
possesses an independent set of hyperparameters: svmRadial −
sigma and C (cost); random forest − mtry; xgbTree −
nrounds, max_depth, eta, gamma, colsample_bytree, min_-
child_weight, subsample.

Feature Choice. For selecting a subset of existing modeling
features, we executed feature selection utilizing information
only from the training set. Each feature is assessed exclusively
concerning the linkage between a feature vector and a vector
with target variables (filter feature selection). We employed the
maximum relevance minimum redundancy (mRMR) package
for feature selection (caret package), which selects features
correlating strongly to a classification variable. The gamScores
function fits a global additive model between a single forecaster
and the outcome through the smoothing spline basis function.

Accuracy Metrics. To evaluate the model’s accuracy, we
used the concordance index, which is the rank correlation

between detected and predicted data. We computed the
concordance index through the “concordance.index” function
from the survcomp package (ver.1.28.5). For classification
tasks, we considered the percentage of precisely predicted
samples as the precision measurement system.

Model Training and Assessment Technique. We took
these steps to train and test models to predict drug response.

i. We used the GDSC data set as the training data and
CCLE as the test set.

ii. Feature selection using mRMR is performed only on the
training set.

iii. Next, we performed model fitting with N (ranging 10−
500) number of chosen features (having significant p-
values) on the training set information. For the
hyperparameters’ selection, 30 combinations were tried
on the training set through the cross-validation method;
finally, the hyperparameter combination providing better
accuracy was chosen for the final model fitting.

iv. The model was applied to the training data to calculate
the concordance index.

The training set (GDSC) contains the RNA data, and we
did not tear apart the data into the training and testing sets
because different databases are used for these purposes. The
data are from GDSC, and CCLE is intersected using the
“intersect” function and mRMR package in the RStudio
(ver.2022.02.1) to efficiently choose the potential features.40

For thresholding, we kept the 5-fold cross-validation sampling
equal to 10 and chosen features with the lowest p-values equal
to 100. The models were run using the dplyr41 and caret42

packages for RStudio.43

Identification of Potential Biomarkers. Drug-Sensitive
and Radiosensitive Signatures. We considered the RNA
molecular profiling information from both databases and used
the inbuilt PharmacoGx options for generating signatures with
molecular features correlating with response to specific drugs.
We did this only for searching drug-sensitive biomarkers. On
the other hand, the RadioGx package can determine genes for a
cell line as a result of the radiotherapy experiment. This way,
we can recognize whether a biomarker is radiosensitive or
radioresistant.

Correlating Biomarkers to Radiation and Drug Effects.
Using the PharmacoGx and RadioGx packages, we can compute
signatures for each molecular feature and measure its
correlation with response to a particular therapy. The point
is to clarify comparing a biomarker’s response to the six
shortlisted drugs with its response to radiotherapy. This will
assist in generating hypotheses for combination therapies or
comprehending action mechanisms.
Drug−Biomarker Association. We can model the linkage

among molecular features and given drug response through a
linear regression approach standardized for tissue sources44

= + + +Y G T Bi i t b0

where Y represents the drug sensitivity variable; Gi, T, and B
signify the expression of the gene i, tissue source, and the
experimental batch correspondingly; and the β’s are the
regression coefficients.

Apart from the link between drug sensitivity and tissue
source, the intensity of the gene−drug interaction is measured
by βi. To compute standardized coefficients from the linear
model, the variables G and Y are adjusted (standard deviation
= 1). The arithmetical validity of βi (two-sided t test) is used to
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evaluate the relevance of the gene−drug interaction. The false
discovery rate (FDR) technique is then used to fix p-values for
manifold testing. We predicted the link’s significance between
medications and associated reported signatures in CCLE and
GDSC using biomarker discoveries across pharmacogenomic
research. We look at the link between pharmaceuticals on the
shortlist and marker genes.

■ RESULTS
Estimating Metrics of Drug Response. We have

considered the data sets containing drug and radiation
sensitivity data, including information about RNA, RNA-Seq,
Copy Number Variation (CNV), mutational, and drug
response (Table 1). The details about breast cancer cell lines

are listed in Table S1. We have considered six drugs named
Palbociclib, Panobinostat, PD-0325901, PLX4720, Selumeti-
nib, and Tanespimycin. These six drugs overlap in both data
sets and have a significant response toward breast cancer cell
lines (Figure 2). We can observe that all six drugs have roughly
similar confidence intervals (CIs) across the data sets, but a
significant difference in the Pearson correlation coefficient (r)
can be seen in the case of Selumetinib. Palbociclib shows
Spearsman’s lowest correlation coefficient (rs) and r values.
These metrics conclude that Selumetinib shows relatively
better efficacy on breast cancer cell lines while Palbociclib is

least effective comparatively. The rest of the four drugs are
similar in their responses.

Drug−Cell Response Curves. To further understand the
efficacy of these drugs, we considered two metrics of drug
response known as IC50 and AAC. We used the dose−response
curve function to plot drug−response analysis outcomes
contained in PSet objects. It allows drawing dose−response
curves for a given cell drug in each data set for data comparison
across the data sets. The IC50 curves of the shortlisted drugs
reveal promising inhibitory performance with 100% viability on
the majority of the nine breast cancer cell lines (Figure S1).
We plotted the IC50 curves of Panobinostat on only seven cell
lines due to a lack of experimental data availability.

These drugs show promising inhibitory performance on
different cancer cell lines. Minor and major differences in the
IC50 values from CCLE and GDSC can be observed since the
experimental data come from various groups, but still, the
results are quite similar. Out of six drugs, we observed some
drugs’ concentration to be out of the limit, but overall
performance is significant. Similarly, the AAC curves show
substantial performance on the breast cancer cell lines (Figure
S2). However, the AAC curves of Panobinostat and
Tanespimycin are not significant. Sudden declines can be
observed with an increase in drug concentration. Combined,
the four drugs named Palbociclib, PD-0325901, PLX4720, and
Selumetinib show significant IC50 and AAC values.

Improving Drug Consistency across CCLE and GDSC. We
also calculated the concordance index (rCI) because
recognizing that drug screening assay noise is substantial and
that cell-line-sensitive-based ordering with comparable AAC
values might be inaccurate, the rCI only inspects cell line
groupings having drug sensitivity (AAC). We can observe that
all our shortlisted six drugs show consistency between the two
databases (Figure 3). Among others, the GDSC data for
Palbociclib fall short, not reaching the standard line, but it is
negligible.

Table 1. Information about Each Data Set Used in This
Study

Data set Data type Platform Samples

GDSC (2020(v2-8.2)) RNA, RNA-Seq,
CNV, mutation,
drug response

IC50 1084 cell lines ×
215780 drug
sensitivity

CCLE (CCLE_2015) RNA, RNA-Seq,
CNV, mutation,
drug response

IC50 1094 cell lines ×
11670 drug
sensitivity

Cleveland (2017) RNA, RNA-Seq,
CNV, mutation

NA 540 cell lines ×
1 radiation

Figure 2. Drug cell response. These drugs significantly respond to breast cancer cell lines and have roughly similar confidence intervals (CIs) across
the data sets. However, a substantial difference in the Pearson correlation coefficient (r) can be seen in the case of Selumetinib. Palbociclib displays
the least Spearsman’s correlation coefficient (rs) and r values.
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Machine-Learning-Based Drug Response Accuracy
Comparison. Due to the existence of screening technologies,
there is presently a tremendous volume of sensitivity and drug
compound information to be tested on cancer cell lines.
Therefore, in silico approaches to assess this data directly
benefit anticancer strategies as they help to recognize
molecular causes of drug sensitivity based on which novel
anticancer drugs could be proposed. Here, we used three
regression approaches named Elastic Net, LASSO, and Ridge
for the drug sensitivity prediction (Figure 4). Out of the two
databases, the GDSC and CCLE are used for training (Figure
4a) and testing (Figure 4b), respectively.

We can observe that PLX4720 shows a higher rCI value of
86% using the LASSO and Ridge methods. Selumetinib
achieved the second highest rCI value, equal to 84% on all
three methods. Tanespimycin ranks third in rCI values equal to
0.83 on Elastic Net and 0.82 using both the LASSO and Ridge
methods. The least rCI is observed in the case of Palbociclib
using Ridge regression equal to 0.75.

Validation results on the CCLE database are not significant
for Palbocicilib and PLX4720, but the rest of the four drugs
have higher performance. Panobinostat ranks first with an rCI
of 0.67 on all three methods. Palbociclib has the least rCI value
of 0.54.

Interestingly, the validation accuracy in the case of
Panobinostat on all three methods is 67% higher than the
rest of the compounds. PLX4720 and Sulumetinib have the
same accuracy of 57% and 64%, respectively, on all the models.
PD-0325901 is more effective than Palbociclib and PLX4720,

with an rCI of 62%. The accuracy gained by various models in
the case of Tanespimycin is 65%.

To summarize, Palbocicilib has relatively lower performance
on the breast cancer cell lines, as seen in the training and
validation results of the three regression approaches and drug−
cell response (Figure 3) curves.
Drug-Sensitive Biomarker Identification. An objective

measurement that captures what is occurring in a cell or an
organism at a specific time is known as a biomarker (short for
biological marker). Biomarkers can act as early health warning
systems. They help comprehend basic biological mechanisms,
develop the field of exposure science, and translate their
discoveries into useful applications in the fields of medicine
and public health. An object or trait that occurs naturally is
associated with a particular clinical or biological process and
may be used to identify a patient’s individual biomarker. Here
we explored the linkage between drugs and screened
biomarkers in the CCLE and GDSC databases. Among the
12 shortlisted biomarkers, we observed that nine are common
between the databases, showing significant drug sensitivity
(Table 2). Among them, tumor necrosis factor superfamily-15
(TNFSF15) is observed to have no or limited expression in
breast cancer tumor vasculatures.45 The Chromosome 19 open
reading frame 44 (C19orf44) is rarely mutated in cancer,
particularly in breast cancer. According to the data curated
from the COSMIC database, the total percentage of C19orf44
mutations in breast cancer is 1.16. We do not consider it a
potential marker for breast cancer because of its low mutation
rate and role in cancers. The 3-hydroxy acyl-CoA dehydratase

Figure 3. Improved drug consistency across the databases. We can observe that all our six shortlisted drugs are consistent between the two
databases. Among others, the GDSC data for Palbociclib fall short, not reaching the standard line, but it is negligible. Our shortlisted drugs are
tagged with stars.
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4 (HACD4) is a tumor suppressor similar to CDKN2A and
CDKN2B but has not been associated with breast cancer.46

In the case of the DDB1 and CUL4 Associated Factor 6
(DCAF6), there are no targeted therapeutic data available for
this gene, and its mutation percentage is also relatively low
(4.46%) according to the COSMIC database; however, one of
the recent studies claimed the presence of circ_DCAF6 at high
levels in breast cancer cells.47 Regarding its functional roles, a

curbed proliferation and stemness by breast cancer cells is
observed during circ_DCAF6 absence. Furthermore, the
Lysine Demethylase 6A (KDM6A) is typically linked with
Kabuki Syndrome, but studies unveiled its potential role in
cancer.48,49 The human KDM6A is observed to be oncogenic
in the breast cancer scenario, but it acts as a tumor suppressor
in T-cell acute lymphoblastic leukemia.

Figure 4. Supervised comparison. This figure shows three regression approaches named Elastic Net, LASSO, and Ridge for drug sensitivity
prediction. Parts a and b show the training and testing, respectively. This indicates that the training of all PLX4720 offers a higher rCI value of 86%
using the LASSO and Ridge methods.

Table 2. Drug-Sensitive CCLE and GDSC Biomarkers

Gene ID Gene Estimate Se n tstat fstat p-value df fdr

CCLE Biomarkers
ENSG00000181634 TNFSF15 −0.0728188 0.0522639 423 −1.3932912 1.9412603 0.1643055 400 0.6266466
ENSG00000260589 STAM-DTa −0.0146833 0.0473970 423 −0.3097940 0.0959723 0.7568789 400 0.9429905
ENSG00000105072 C19orf44 −0.0264011 0.0482904 423 −0.5467150 0.2988972 0.5848794 400 0.8852994
ENSG00000275202 novel gene-lncRNAa 0.0173807 0.0464024 423 0.3745650 0.1402990 0.7081825 400 0.9290295
ENSG00000188921 HACD4 −0.0222355 0.0492587 423 −0.4514020 0.2037638 0.6519445 400 0.9108663
ENSG00000143164 DCAF6 0.0324883 0.0475525 423 0.6832091 0.4667747 0.4948702 400 0.8463414

GDSC Biomarkers
ENSG00000230294 LINC02370 −0.0052223 0.0334989 865 −0.1558949 0.0243032 0.8761535 837 0.9493158
ENSG00000147050 KDM6A −0.980172 0.0349182 865 −2.8070452 7.8795029 0.0051160 837 0.0549044
ENSG00000177096 PHETA2 0.0082807 0.0344838 865 0.2401343 0.0576645 0.8102849 837 0.9207868
ENSG00000160216 AGPAT3 −0.0588239 0.0350576 865 −1.6779221 2.8154226 0.0937356 837 0.3082110
ENSG00000027697 IFNGR1 −0.0086494 0.0361214 865 −0.2394544 0.0573384 0.8108118 837 0.9210609
ENSG00000159293 uncategorized genea −0.0539725 0.0341210 865 −1.5817973 2.5020826 0.1140736 837 0.3435866

aThis biomarker is not common between CCLE and GDSC.
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PHETA2 has low cancer specificity but is detected in
numerous cancer forms. Its expression in breast cancer cells is
moderate. AGPAT3 is a prognostic biomarker for renal and
cervical cancer with moderate expression in breast cancer cells.
For another biomarker known as IFN-γ receptor 1 (IFNGR1),
its presence on cellular surfaces is a criterion for the IFN-γ
signaling initiation and its reduced expression would result in
blocking the IFN-γ signaling. In the breast cancer scenario,
IFNGR1 expression is abridged or wholly lost and the
immunoreactivity of heterogeneous IFNGR1 is linked to the
morphological heterogeneity in breast cancer cells.50 One of
the essential biomarkers shortlisted in our study is long
intergenic nonprotein-coding RNA 2370 (LINC02370), an
RNA gene that has a significant role in cancers.51,52

To summarize, out of these nine drug-sensitive biomarkers,
we consider TNFSF15, DCAF6, KDM6A, PHETA2, IFNGR1,
and LINC02370 as potential biomarkers that are drug-
sensitive. These are further selected for their radiosensitivity
or radioresistance.
Drug- and Radiation-Sensitive Biomarker Identifica-

tion. On the other hand, similar to pharmacogenomics,
radiogenomics follows a comparable strategy. The difference
exists in the method of treating cells. In pharmacogenomics,
one applies drugs to a particular target, while, in radio-
genomics, the targets are exposed to certain radiations.
Currently, there is only one clinical database known as the
Cleveland database that stores the in vitro data of radio-
genomics. This data set only has gamma radiations, and no
special reason has been provided for why alpha and beta
radiations are not used. For radiation retrieval for a cell line
summary of a sensitivity experiment, the SummarizeSensitivi-
tyProf iles function is used. This returns with a matrix where
rows are the radiation type, columns are cell lines, and values
are viability measurements summarized. We can specify the
sensitivity measures through the sensitivity.measure function.

We obtained a list of the top ten radiosensitive breast cancer
biomarkers, including ALDH3B2, TMEM86A, SERINC3,
CD63, MAGED2, SRARP, GSN, YIPF5, ST6GALNAC2,
and LAMP2. Among the radioresistant, we observed LSM6,
LBR, DDX21, GAR1, ADAT2, KDM1A, RRP1B, POLR3G,
TAF5, and ILF3 genes (Table 3).

Additionally, we also plotted the shortlisted biomarkers’
(TNFSF15, DCAF6, KDM6A, PHETA2, IFNGR1,
LINC02370) correlation coefficient with the proposed drugs
(Figure S3). Here, we compared the standardized coefficients
per marker using the genome-wide correlation, weighted by the
degree to which we felt the gene was useful for predicting
response. The resulting score ranging from 0 to 1 may be
considered a correlation coefficient. According to a positive
connection, cells that respond to the drugs Palbociclib,
Selumetinib, and Tanespimycin are distinct from those that
respond to radiation. Using drugs like Panobinostat and
PLX4720 as radiosensitizing agents with ionizing radiation
might increase the effectiveness of treatment since there is a
negative association between the radiation response signature
and medication response. It is erroneous to assume that
radiation and drugs would target separate cell types in a tumor
based on the negative correlation of the signatures. The
radiation score and p-values of all the shortlisted drugs are
given in Table 4.

■ DISCUSSION
Among the major cancer types, breast carcinoma is the leading
cause of cancer deaths in women. Chemotherapy is the way to
go as it greatly retards tumor growth, but this is a short-term
effect and cannot be relied on. Also, certain drugs are not
recommended for a cancer patient with particular mutations.53

This could be because of certain gene mutations or overall
resistance to drugs. Therefore, it becomes crucial to look for
new compounds as therapeutic agents for cancer and validate
the effect of existing drugs on particular cancer. Though the

Table 3. Radiosensitive and Radioresistant Biomarkers from the Cleveland Database (RSet)a

Gene ID Gene name Estimate Se n tstat fstat p-value df fdr

Radiosensitive Biomarkers
ENSG00000132746 ALDH3B2 0.3044503 0.0546364 517 5.572294 31.05046 0.0e+00 493 0.0000246
ENSG00000151117 TMEM86A 0.2941997 0.0447234 517 6.578209 43.27284 0.0e+00 493 0.0000007
ENSG00000132824 SERINC3 0.2797229 0.0453765 517 6.164491 38.00094 0.0e+00 493 0.0000038
ENSG00000135404 CD63 0.2734318 0.0468322 517 5.838538 34.08852 0.0e+00 493 0.0000125
ENSG00000102316 MAGED2 0.2598921 0.0504084 517 5.155734 26.58159 4.0e-07 493 0.0000900
ENSG00000183888 SRARP 0.2589937 0.0510493 517 5.073401 25.73940 6.0e-07 493 0.0001125
ENSG00000148180 GSN 0.2561421 0.2561421 517 5.513927 30.40339 1.0e-07 493 0.0000265
ENSG00000145817 YIPF5 0.2521606 0.0474171 517 5.317924 28.28031 2.0e-07 493 0.0000497
ENSG00000070731 ST6GALNAC2 0.2491023 0.0527658 517 4.720902 22.28691 1e-06 493 0.000348
ENSG00000005893 LAMP2 0.2478066 0.0477752 517 5.186926 26.90421 3.0e-07 493 0.0000798

Radioresistant Biomarkers
ENSG00000164167 LSM6 −0.2604442 0.0426428 517 −6.107574 37.30246 0 493 3.80e-06
ENSG00000143815 LBR −0.2620366 0.0460308 517 −5.692641 32.40616 0 493 2.08e-05
ENSG00000165732 DDX21 −0.2632837 0.0448446 517 −5.871027 34.46896 0 493 1.24e-05
ENSG00000109534 GAR1 −0.2659226 0.0434707 517 −6.117281 37.42112 0 493 3.80e-06
ENSG00000189007 ADAT2 −0.2668198 0.0473300 517 −5.637440 31.78073 0 493 2.23e-05
ENSG00000004487 KDM1A −0.2681836 0.0436481 517 −6.144227 37.75152 0 493 3.80e-06
ENSG00000160208 RRP1B −0.2715109 0.0432827 517 −6.244118 38.98902 0 493 3.80e-06
ENSG00000113356 POLR3G −0.2785138 0.0454217 517 −6.131739 37.59823 0 493 3.80e-06
ENSG00000148835 TAF5 −0.2852464 0.0433393 517 −6.581702 43.31880 0 493 7.00e-07
ENSG00000129351 ILF3 −0.2929693 0.0426313 517 −6.872171 47.22673 0 493 3.00e-07

aAll the top ten radiosensitive biomarkers are present in both the GDSC and CLLE.
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available drugs being administered are FDA-approved and have
been through a series of experimental and clinical trials, it is
still encouraging to use advanced technology like machine
learning for another round of validation. This is important
because machine learning models may help find common
patterns in the tumorous cell lines, making it clear to shortlist a
drug suitable for most cancer cell lines. Inspired by the
performance of machine learning models and our motivation
for studying breast cancer, we considered the available breast
cancer cell line data and drugs after intersecting two widely
used data sets known as CCLE and GDSE. Since these
databases already have the existing drug−cell line data, we
shortlisted the medications based on their IC50 and AAC
performance. Now, there are drugs whose experimental
performance may not be significant because they are either
the best drugs or not for breast cancer. However, because of
human or systematic errors, they did not show satisfactory
performance during the experiments. It is essential to mention
that several drugs exist but are not thoroughly tested. We
aimed to double-validate the already studied drugs’ perform-
ance on breast cancer cell lines only.

Once the drugs were shortlisted based on their excellent
experimental results (please refer to the IC50 and AAC curves
in the Supporting Information), we compared the results of
each drug using a supervised approach. It is always a good idea
to use more than one approach for validation to avoid biased
results. This is the reason we considered three linear regression
models known as LASSO, Elastic Net, and Ridge in our study.
Usually, in such machine learning studies, a given data set is
divided into 80% and 20% for training and testing,
correspondingly. However, in our case, we used two different
data sets for training and testing (GDSC and CCLE,
respectively); this is highly recommended to test the model’s
performance on entirely new data, pushing its accuracy
performance to the limits. Upon observing the outcomes of
three different machine learning models, it is quite interesting
to know that, during the training process, different drugs are
ranked differently by the models though few drugs are ranked
equally by the three models; as we can see in the case of
Selumetinib and PD-0325901 (Figure 4), the testing results
show all three models give the same score to each drug. We do
not know how this could be possible, but our understanding is
that all three models provided accurate results on the same
drug, giving the same value, or it is just a fluke. No matter
what, the results are consistent with the previous analysis in
this paper. Therefore, we maintain that the outcomes are
significant and these drugs are truly effective on the breast
cancer cell lines.

Since this is a pharmacogenomic approach, we cannot ignore
the genes up- or downregulated as a result of these drugs. We
provided a list of the top ten biomarkers sensitive to these
drugs and expressed in the breast cancer scenario. Apart from

the gene−drug relationship, during cancer treatment (breast
cancer in this case) as mentioned earlier, chemotherapy is
effective but has a short-term effect. Therefore, to cope with
this situation, we explored biomarkers that are radiosensitive,
so those genes which are chemo- and radiosensitive toward the
shortlisted drugs are indeed potential targets for the treatment
of breast cancer.

It is also worth noting that careful selection relying on a
mechanistic approach or primary experimental results would
benefit from the increased quantity of screened drugs. An
outstanding demonstration is an NCI60 column, which used a
separate viability assay through both CTRP and GDSC as the
objective research yet showed significantly better prediction
performance for CTRP versus GDSC. This might be related to
CTRP’s development of an Informer Set comprising 481
chemicals that target above 250 different proteins and target a
variety of biological processes associated with cancer cell line
expansion.54 Certain probe compounds were chosen because
they could cause distinct variations in gene expression profiles
even if they had no preidentified protein targets.

All of this shows that putting pharmacological variety first in
future screening studies would be advantageous. Intelligent
approaches that can make inferences about molecule categories
are required due to the enormous design space of chemical
compounds that have the potential to be active, which is
thought to number in the order of 1060.55

■ CONCLUSION
In both the early and late stages of the disease, chemotherapy
is a widely used, systematic way to treat cancer patients. Due to
the paucity of targeted medicines and the poor prognosis of
breast cancer patients, considerable effort has been made to
find responsive molecular targets for therapy. Despite the
increasing accessibility of data from high-throughput drug
sensitivity testing, effective drug response forecasting remains
challenging. Understanding cell line−drug response models
will eventually allow tailored medication sensitivity predictions
for specific cancer patients.56

The current work predicts drug sensitivity on breast cancer
cell lines, shortlists six biomarkers, and evaluates their response
to the drugs and radiation exposure. The highest accuracy in
the case of drug sensitivity prediction is observed for PLX4720
drugs using the Elastic Net and Ridge methods. Five main
biomarkers named TNFSF15, DCAF6, KDM6A, PHETA2,
and IFNGR1 show sensitivity toward all medicines and
radiations. At the same time, the lncRNA (LINC02370) is a
potential biomarker but is not tested for its response toward
drugs and radiations in this study.

This study provides a strong foundation for machine-
learning-based drug sensitivity prediction for breast cancer
which has not been explored at this level before. The
shortlisted markers could be potential therapeutic targets.
We expect future studies to explore the molecular modeling of
shortlisted drugs and biomarkers computationally and through
experimental assays. This insight will get us closer to the era of
tailored cancer therapy.
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