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ABSTRACT: Histatin-5 (Hst5) is a member of the histatin
superfamily of cationic, His-rich, Zn(II)-binding peptides in human
saliva. Hst5 displays antimicrobial activity against fungal and
bacterial pathogens, often in a Zn(II)-dependent manner. In
contrast, here we showed that under in vitro conditions that are
characteristic of human saliva, Hst5 does not kill seven
streptococcal species that normally colonize the human oral cavity
and oropharynx. We further showed that Zn(II) does not influence
this outcome. We then hypothesized that Hst5 exerts more subtle
effects on streptococci by modulating Zn(II) availability. We
initially proposed that Hst5 contributes to nutritional immunity by
limiting nutrient Zn(II) availability and promoting bacterial Zn(II)
starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that
Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain
that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical
examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete
with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the
availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our
findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.
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Antimicrobial peptides are short, often cationic peptides
that are secreted by diverse organisms from across the

domains of life.1 These peptides usually act as immune
effectors that kill invading microbes as part of the host innate
immune system, but many also play key functions in the
normal biology of the host organism. A subfamily of
antimicrobial peptides binds metals. Some of these metallo-
peptides become activated upon metal binding,2−4 for instance,
by folding into an optimal conformation for disrupting
microbial membranes or for acting on their targets (e.g.,
clavanin A from tunicates4 and piscidin from fish2). Other
metallo-peptides bind metals and withhold these essential
nutrients away from microbes, causing them to starve (e.g.,
microplusin from cattle ticks5).

Histatins comprise a family of cationic, His-rich, metallo-
peptides in the saliva and tears of humans and some higher
primates.6−8 These peptides are derived from two parent
peptides, namely, Histatin-1 and Histatin-3.6,9 Both parent
histatins are expressed by the salivary and tear glands.10,11

Upon secretion in saliva into the oral cavity, the parent
histatins are rapidly processed into shorter fragments12−14 by
unidentified human salivary proteases or proteases from

resident oral microbes. Whether the parent histatins are
proteolytically degraded in tears is currently unknown. Of the
various salivary fragments, Histatin-5 (Hst5; Table 1) is the
best characterized in vitro.

Hst5 is noted for its ability to kill the fungus Candida
albicans15,16, and several pathogenic bacterial species, namely,
Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter
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baumanii, Enterococcus faecium, and Enterobacter cloacae.16

Unlike other antimicrobial peptides, Hst5 does not appear to
permeabilize fungal membranes, although it does destabilize
some bacterial membranes.16 Beyond its direct action on
membranes, the antimicrobial activity of Hst5 requires the
peptide to be internalized into the cytoplasm, usually via
energy-dependent pathways for peptide uptake.16,17 Once in
the cytoplasm, Hst5 is thought to encounter its targets, which
in C. albicans include the mitochondria18 but in bacteria
remain unidentified, and causes toxicity via multiple pathways
that are not fully elucidated.15,18

Hst5 contains a characteristic Zn(II)-binding motif, His-
Glu-x-His-His (Table 1), but whether Hst5 associates with
Zn(II) in saliva is unknown. Likewise, whether Zn(II) binding
is essential for the antimicrobial activity of Hst5 is unclear.
Synthetic Hst5 derivatives that lack one or all three putative
Zn(II)-binding His residues remain active against C. albicans.19

In addition, conflicting reports show that addition of Zn(II)
can both enhance20 and suppress21 Hst5 activity against this
fungus. However, a recent report indicates that the role of
Zn(II) is concentration-dependent: low concentrations of
added Zn(II) enhance the antimicrobial activity of Hst5
against C. albicans (compared with the control without any
added Zn(II)), while high concentrations of added Zn(II)
suppress it.22

Beyond histatins and Zn(II)-binding metallo-peptides,
Zn(II)-dependent host innate immune responses are well
described. In response to microbial infection, Zn(II) levels and
those of Zn(II)-binding or Zn(II)-transporting proteins within
a host organism can rise and fall, leading to fluctuations in
Zn(II) availability within different niches in the infected host.
Increases in Zn(II) availability promote microbial poisoning
while decreases in Zn(II) availability promote microbial
starvation. These antagonistic host responses, known as
“nutritional immunity”,23 suppress microbial growth in the
host and inhibit the progress of infectious disease. Although
Zn(II) influences the activity of Hst5,22 it is unclear whether

histatins themselves participate in nutritional immunity by
modulating Zn(II) availability to microbes.

The healthy human oral cavity and oropharynx are colonized
by a mixture of microbial species, with Streptococcus as the
most abundant taxon.24−28 Some species, such as S. gordonii
and S. sanguinis, are considered commensals. These species
contribute to oral health, for example, by inhibiting
colonization by competitor species.29,30 Some streptococcal
species are considered pathogenic. For example, S. mutans and
S. pyogenes are associated with dental caries and pharyngitis,31

respectively. Nevertheless, asymptomatic carriage of these
pathogenic species is common32 and these species are
generally considered normal components of the healthy oral
and oropharyngeal microflora. Importantly, all streptococci are
opportunistic pathogens that can cause disseminated in-
fections, such as bacterial infective endocarditis.33

The goals of this study were to determine the antibacterial
activity of Hst5 against oral and oropharyngeal streptococci,
and to investigate the potential role of this peptide in
influencing Zn(II) availability to the streptococci as a
component of nutritional immunity. Based on the established
features of nutritional immunity, we specifically examined
whether Hst5 limits Zn(II) availability (and promotes
microbial Zn(II) starvation) and/or raises Zn(II) availability
(and promotes Zn(II) poisoning).

■ RESULTS
Hst5 Does Not Kill Oral or Oropharyngeal Strepto-

cocci. There is little consensus regarding the antibacterial
activity of Hst5 against streptococci�it varies depending on
the species or experimental conditions,34−40 but the chemical
and molecular reasons for these discrepancies have not been
identified. In this work, the ability of Hst5 to kill seven oral or
oropharyngeal streptococci, namely, S. anginosus, S. gordonii, S.
mutans, S. oralis, S. pyogenes, S. salivarius, and S. sanguinis, was
examined in parallel. Following the approach used previously
for C. albicans and ESKAPE pathogens, these kill assays were
performed for several hours in dilute phosphate buffer (10

Figure 1. Effects of Hst5 on survival of streptococci in (A) phosphate buffer and (B) artificial saliva buffer. Bacteria were incubated in phosphate
buffer (10 mM, pH 7.4; N = 3) or artificial saliva buffer (pH 7.2−7.4; N = 3), with (○) or without (●) Hst5 (50 μM), and sampled at t = 0 and 3 h
for enumeration. Hst5 did not affect the survival of any species in either buffer (P = 0.73, 0.99, 0.57, 0.72, 0.85, 0.71, 0.50 in phosphate buffer, and
0.72, 0.71, 0.43, 0.56, 0.52, 0.48, and 0.86 in artificial saliva buffer, for S. anginosus, S. gordonii, S. mutans, S. oralis, S. pyogenes, S. salivarius, and S.
sanguinis, respectively).
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mM).16,20 Under these conditions, up to 50 μM Hst5 (ca. total
histatin concentrations in fresh salivary secretions13) did not
promote killing of the streptococcal species (Figure 1A), even
when the assay was extended to 24 h (Figure S1). Consistent
with a previous report,16 parallel control experiments showed
that Hst5 killed P. aeruginosa and C. albicans (Figure S2),
confirming that our peptide preparations were active.

Like other cationic antimicrobial peptides, the antimicrobial
activity of Hst5 is influenced by pH and ionic
strength.16,19,41−45 To better reflect the physiological context
in which Hst5 plays a role, the kill assays were repeated in an
artificial, synthetic “saliva buffer”, whose pH and ionic
composition approximate that of saliva (Table S1A). Again,
Hst5 did not kill any of the streptococci (Figures 1B and S1).
Interestingly, under these new conditions, Hst5 did not kill the
control organisms P. aeruginosa and C. albicans (Figure S2).
The high ionic strength of the saliva buffer likely interferes with
electrostatic binding of the peptide to surface proteins or

membranes of these control organisms,16,46 and subsequent
internalization and killing. To better understand the activity of
Hst5 under conditions that are more characteristic of saliva,
further kill assays below used the artificial saliva buffer.
Zn(II) Does Not Influence the Activity of Hst5 against

Streptococci. Saliva typically contains low micromolar levels
of total Zn(II) (between 0.2 and 3 μM have been reported47),
although the speciation or bioavailability of this metal ion is
poorly defined. Our artificial saliva buffer is Zn(II)-deplete
(low nanomolar concentrations of Zn(II) are routinely
detected by inductively coupled plasma mass spectrometry
(ICP MS)). Thus, to determine if the activity of Hst5 against
streptococci is Zn(II)-dependent, the kill assays were repeated
in the presence of added Zn(II). The results showed that
added Zn(II), whether substoichiometric (5 μM), stoichio-
metric (50 μM), or super-stoichiometric (100 μM) relative to
Hst5 (50 μM), neither suppresses nor enhances killing of the
seven streptococcal species by Hst5 (Figure 2).

Figure 2. Effects of Zn(II) and Hst5 on survival of streptococci in artificial saliva buffer. Bacteria (N = 2) were incubated in artificial saliva buffer in
the presence of added Zn(II) (0, 5, 50, or 100 μM), with (○) or without (●) Hst5 (50 μM), and sampled at t = 3 h for enumeration. Addition of
Zn(II) did not influence the effects of Hst5 on the survival of any species (P values for the interaction between Zn(II) and Hst5 = 0.40, 0.46, 0.96,
0.98, 0.69, 0.45, and 0.09 for S. anginosus, S. gordonii, S. mutans, S. oralis, S. pyogenes, S. salivarius, and S. sanguinis, respectively).

Figure 3. Zn(II) homeostasis in GAS and hypothesized actions of Hst5. Zn(II) uptake: AdcAI and AdcAII capture extracellular Zn(II) and transfer
this metal to AdcBC for import into the cytoplasm. These proteins are transcriptionally upregulated in response to decreases in Zn(II) availability
and Zn(II) starvation (and downregulated in response to increases in Zn(II) availability).49 Alternatively, Zn(II) may enter the cytoplasm via
nonspecific cation transporters (wavy arrow). Zn(II) efflux: CzcD exports excess Zn(II) out of the cytoplasm. It is transcriptionally upregulated by
GczA in response to increases in Zn(II) availability and Zn(II) poisoning.50 Alternatively, Zn(II) may exit the cytoplasm via nonspecific cation
transporters (wavy arrow). Hypothesized actions of Hst5: Hst5 may bind extracellular Zn(II) and either remain extracellular to suppress Zn(II)
availability or become internalized as the Zn(II)−Hst5 complex and increase Zn(II) availability. Alternatively, Hst5 may enter the cytoplasm
(dotted arrow), bind intracellular Zn(II), and suppress intracellular Zn(II) availability.
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Figure 4. Effects of Zn(II) and Hst5 on growth of GAS. Bacteria (N = 3) were cultured in CDM in the presence of Zn(II) (0, 5, 25, or 50 μM),
with (○) or without (●) Hst5 (50 μM), and sampled every 20 min for a total of 10 h. While addition of Zn(II) inhibited bacterial growth (P = 1.0,
<0.0001, and <0.0001 for 5, 25, and 50 μM Zn(II), respectively), addition of Hst5 did not influence this effect (P = 0.88, 0.82, 0.83, and 0.56 for 0,
5, 25, and 50 μM Zn(II), respectively).

Figure 5. Effects of Hst5 on expression of Zn(II)-responsive genes in GAS. (A) Background expression of all genes. Bacteria (N = 7) were cultured
in CDM with (○) or without (●) Hst5 (50 μM). Levels of adcAI, adcAII, and czcD mRNA were determined by quantitative real-time polymerase
chain reaction (qRT-PCR) and normalized to holB. Addition of Hst5 did not affect the background expression of any of the three genes (P = 0.35,
0.74, and 0.08 for adcAI, adcAII, and czcD, respectively). (B) Zn(II)-dependent expression of czcD. Bacteria (N = 3) were cultured in CDM with or
without added Zn(II) (2 or 5 μM), with (○) or without (●) Hst5 (50 μM). Levels of czcD mRNA were measured by qRT-PCR, normalized to
holB, and compared with normalized mRNA levels of the corresponding untreated controls (0 μM added Zn(II)). Addition of Hst5 did not affect
Zn(II)-dependent expression of czcD (P = 0.21 and 0.71 for 2 and 5 μM Zn(II), respectively).

Figure 6. Effects of Hst5 on Zn(II) availability. (A) Survival of ΔadcAI. Bacteria (N = 3) were incubated in artificial saliva buffer, with (○) or
without (●) Hst5 (50 μM), and sampled at t = 0 and 3 h for enumeration. Hst5 did not affect the time-dependent survival of the ΔadcAI mutant
(P = 0.90). (B) Growth of ΔadcAI. Bacteria (N = 2) were cultured in CDM with or without Hst5 (50 μM). Hst5 did not affect the growth of the
ΔadcAI mutant (P = 0.26). (C) Survival of ΔczcD. Bacteria (N = 3) were incubated in artificial saliva buffer, with or without added Zn(II) (0, 5, 50,
or 100 μM), with (○) or without (●) Hst5 (50 μM). Hst5 did not affect the Zn(II)-dependent survival of the ΔczcD mutant (P value for the
interaction between Hst5 and Zn(II) = 0.73). (D) Growth of ΔczcD. Bacteria (N = 3) were cultured in CDM in the presence of Zn(II) (0−20
μM), with (○) or without (●) Hst5 (50 μM). Hst5 did not affect the growth of the ΔczcD mutant in the absence of Zn(II) (P = 0.61) but it did
affect growth in the presence of Zn(II) (P = 0.07, 0.02, and 0.01 for 5, 10, and 20 μM Zn(II), respectively). (E) Levels of cell-associated Zn(II) in
ΔczcD. Bacteria (N = 3) were cultured in CDM in the presence of Zn(II) (0−5 μM), with (○) or without (●) Hst5 (50 μM), and sampled at t = 4
h. Levels of cell-associated Zn(II) were measured by ICP MS and normalized to colony counts. Addition of Hst5 had a negative effect on cellular
Zn(II) levels (P = 0.005).
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Hst5 Does Not Contribute to Zn(II)-Dependent
Nutritional Immunity. To determine whether Hst5 contrib-
utes to Zn(II)-dependent nutritional immunity against
streptococci, either by promoting Zn(II) starvation or Zn(II)
poisoning, we examined the effects of Hst5 on transcription of
Zn(II)-responsive genes. S. pyogenes (Group A Streptococcus or
GAS) was used as a model Streptococcus, since the transcrip-
tional responses of this species to varying Zn(II) availability is
understood (Figure 3), mutant strains lacking key Zn(II)
transport proteins are available in our laboratory, and the
phenotypes of these mutant strains are known.48

In response to decreases in Zn(II) availability and Zn(II)
starvation, GAS upregulates transcription of the AdcR regulon,
including adcAI and adcAII. Conversely, in response to
increases in Zn(II) availability and Zn(II) poisoning, GAS
upregulates transcription of the GczA regulon, including czcD.
Expression of adcAI, adcAII, and czcD, with and without Hst5,
was thus examined here. However, poor RNA yields were
obtained from the static (nongrowing) bacterial suspensions
used in the kill assays. As an alternative approach, GAS was
grown in a metal-deplete (low nanomolar concentrations of
Zn(II) are routinely detected by ICP MS), chemically defined
medium (CDM).51 GAS displayed the same phenotypes in
CDM and in artificial saliva buffer, i.e., addition of up to 50 μM
Hst5 did not affect the growth of this streptococcus and
addition of Zn(II) did not influence this outcome (Figure 4),
thus validating the approach.

In the control experiment, adding Zn(II) alone did not
perturb transcription of adcAI and adcAII in wild-type GAS,
but it did induce expression of czcD (Figure S3A), consistent
with an increase in cellular Zn(II) availability or Zn(II)
poisoning. Conversely, adding the Zn(II) chelator TPEN
induced expression of adcAI and adcAII, consistent with a
decrease in cellular Zn(II) availability or Zn(II) starvation, but
it did not perturb transcription of czcD (Figure S3B). By
contrast, adding Hst5 perturbed neither the basal expression of
adcAI or adcAII (Figure 5A) nor the Zn(II)-dependent
expression of czcD (Figure 5B). These results indicate that

Hst5 promotes neither Zn(II) starvation nor Zn(II) poisoning
to GAS and that Hst5 does not contribute to Zn(II)-
dependent nutritional immunity against GAS.
Hst5 Weakly Suppresses Zn(II) Toxicity. To further

explore the hypothesized role of Hst5 in modulating Zn(II)
availability, the effects of Hst5 were examined using GAS
ΔadcAI and ΔczcD mutant strains that are deficient in Zn(II)
uptake and Zn(II) efflux, respectively (Figure 3). These
mutant strains were validated to be sensitive to growth
inhibition by the Zn(II) chelator TPEN52,53 and added
Zn(II),50,53 respectively (Figure S4). Although additional
Zn(II)-binding lipoproteins such as AdcAII contribute to
Zn(II) uptake, AdcAI is thought to act as the primary Zn(II)
uptake lipoprotein.52,53 Therefore, only the ΔadcAI mutant
was employed here.

The ΔadcAI mutant strain displayed wild-type survival and
growth phenotypes in the presence of Hst5 (Figure 6A,B),
strengthening our proposal that Hst5 does not starve GAS of
nutrient Zn(II). Similarly, the ΔczcD mutant strain displayed
wild-type survival phenotype (Figure 6C). However, mild
differences between the ΔczcD mutant and wild-type strains
were observed in growth experiments. While Hst5 did not
influence the growth of Zn(II)-treated wild-type organism (see
Figure 4), Hst5 weakly but reproducibly improved the growth
of the Zn(II)-treated ΔczcD mutant strain (Figure 6D). This
effect was observed most clearly upon comparing final culture
densities after 10 h of growth since the exponential growth
rates were unaffected (Figure S5). This growth-promoting
effect of Hst5 appeared to require the predicted Zn(II)-binding
ligands His15, His18, and His1954,55 since the ΔH15,18,19
variant of Hst5 did not rescue the growth of the Zn(II)-treated
ΔczcD mutant strain (Figure S6, see Table 1 for peptide
sequences). These results suggest that Hst5 binds to Zn(II)
and suppresses (instead of enhances) the toxicity of an excess
of this metal ion to GAS.

Two mechanisms are plausible (see Figure 3): (i) Hst5
binds extracellular Zn(II) and suppresses accumulation of this
metal ion in the cytoplasm, leading to less Zn(II) toxicity, or

Figure 7. Zn(II) affinity of Hst5. (A) Separation of Hst5 (○) and Zn(II) (●) on a polyacrylamide desalting column. (B) Representative spectral
changes upon addition of Zn(II) (0−50 μM) into apo-Zincon (20 μM): (i) in the absence (solid traces) or (ii) presence (dashed traces) of Hst5
(20 μM). (iii) Overlaid spectra for 0 and 50 μM Zn(II) from panels (i) and (ii). The new peak at 650 nm is indicated with a star. (iv)
Representative spectral changes upon addition of excess Hst5 (0−200 μM) into a solution of Zn(II) (20 μM) and apo-Zincon (25 μM). (C)
Normalized plot of the absorbance intensities of apo-Zincon at 467 nm upon addition of Zn(II), in the absence (●) or presence (○) of Hst5 (20
μM).
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(ii) Hst5 binds cellular Zn(II) and enables more Zn(II) to
accumulate in the cytoplasm, but with less toxicity. To
distinguish between these models, total cell-associated Zn(II)
levels in the ΔczcD mutant strain were assessed by ICP MS.
Only up to 5 μM Zn(II) was used, since adding 10 μM Zn(II)
or more into the cultures inhibited the growth of the ΔczcD
mutant and did not produce sufficient biomass for metal
analyses. Only wild-type Hst5 peptide was used, owing to the
large culture volumes required and the high cost of peptide
synthesis. Figure 6E shows that Zn(II) treatment increased
cell-associated Zn(II) levels in the ΔczcD mutant, but co-
treatment with Hst5 suppressed this effect. These results are
consistent with model (i) above, in which Hst5 binds
extracellular Zn(II) and suppresses accumulation of Zn(II)
in GAS.
Hst5 Binds Zn(II) with Micromolar Affinities. To

understand how Hst5 weakly modulates Zn(II) availability to
GAS and suppresses the toxicity of excess Zn(II) without
promoting nutrient Zn(II) starvation, we examined the ability
of this peptide to bind Zn(II). Hst5 is thought to bind up to
three Zn(II) ions. Previous measurements by isothermal
titration calorimetry (ITC) yielded log KZn(II) values of 5.1,
5.0, and 4.0,56 indicating that each Zn(II) ion binds to Hst5
with a high micromolar affinity. In agreement with this
proposal, a high micromolar concentration of the Zn(II)−Hst5
complex readily dissociated upon passage through a desalting
column (Figure 7A). The affinities of Hst5 to Zn(II) were
further re-examined here by competing the peptide with the
colorimetric Zn(II) indicator Zincon (log KZn(II) ∼ 6.0) in
(Mops) buffer and by monitoring solution absorbances of apo-
Zincon (466 nm) and Zn(II)-Zincon (620 nm) (Figure 7B).
The competition curve (in the presence of Hst5) was nearly
indistinguishable from the control (in the absence of Hst5)
(Figure 7C). Moreover, a new peak at 650 nm appeared in the
presence of Hst5 (Figure 7B(iii)), indicating the formation of a
new species, likely a ternary complex between Hst5, Zincon,
and Zn(II). This peak did not disappear upon adding excess
Hst5 (10 molar equiv; Figure 7B(iv)). These results indicate
that Hst5 does not compete effectively with Zincon and that
this peptide binds Zn(II) with high micromolar affinities, as
previously estimated by ITC.56

The lack of competition between Hst5 and Zincon as shown
in Figure 7 contrasts with a previous study showing an effective
competition between Hst5 and Zincon in phosphate buffer,
with Hst5 removing 2 molar equiv of Zn(II) from Zincon.20

Here it is important to highlight that phosphate binds to
Zn(II). Although the affinity of phosphate to Zn(II) is
relatively low (log KZn(II) ∼ 2.4),57 when used at millimolar
concentrations, phosphate can interfere with Zn(II) binding
studies by competing for Zn(II). Addition of Zn(II) to apo-
Zincon in phosphate buffer (50 mM) instead of Mops buffer
led to incomplete formation of Zn(II)-Zincon (monitored at
620 nm), suggesting that Zn(II) partitioned between Zincon
and phosphate (Figure S7A,B). Conversely, prolonged
incubation (>10 min) of a pre-formed Zn(II)-Zincon complex
in phosphate buffer led to a loss of the characteristic blue color
(Figure S7C), indicating removal of Zn(II) from Zn(II)-
Zincon by phosphate alone (without adding Hst5). Therefore,
our studies of Zn(II) binding by Hst5 in Mops buffer are likely
to be more reliable.
AdcAI from GAS Binds Zn(II) with Sub-Nanomolar

Affinity. The low affinity of Hst5 to Zn(II) was clearly
insufficient to starve wild-type GAS of nutrient Zn(II) (see

Figure 5A), indicating that this peptide does not compete with
the high-affinity, Zn(II)-specific uptake protein AdcAI (see
Figure 3). Therefore, the Zn(II) affinities of AdcAI were
examined here by competition with the colorimetric Zn(II)
indicator Mag-fura2 (Mf2). The competition curve, generated
by monitoring the solution absorbance of apo-Mf2 at 377 nm
(Figure 8A(i)), clearly showed two Zn(II) binding sites in

AdcAI as anticipated.58 The high-affinity Zn(II) binding site
outcompeted Mf2, as evidenced by the lack of spectral changes
upon adding up to 1 molar equiv of Zn(II) vs AdcAI (Figure
8A(ii)). The low-affinity site competed effectively with Mf2
with a log KZn(II) = 8.5 (±0.2). The high-affinity site was better
estimated using Quin-2 (Q2) as a competitor. By monitoring
the absorbance of apo-Q2 at 266 nm, log KZn(II) = 12.5 (±0.2)
was obtained for this site (Figure 8B).

The log KZn(II) values for AdcAI determined here were each
∼1000-fold higher than those determined previously by ITC.58

ITC can underestimate high metal binding affinities due to lack
of sensitivity.59 Crucially, Hst5 did not compete with Mf2 for
Zn(II) (Figure 8A(ii)). Thus, the relative affinities between
Hst5 and AdcAI, determined using the same approach under
the same conditions, support the hypothesis that Hst5 does
not compete with AdcAI for binding Zn(II). These relative
affinities also provide a molecular explanation for why Hst5
does not suppress the availability of nutrient Zn(II) to wild-
type GAS.

Hst5 did not affect the growth of GAS even when AdcAI was
deleted by mutagenesis (see Figure 6A,B), suggesting that this
peptide does not compete with other high-affinity Zn(II)
uptake proteins such as AdcAII (see Figure 3). AdcAII was also
expressed here for measurements of Zn(II) affinity. However,

Figure 8. Zn(II) affinity of AdcAI. (A) Low-affinity site. (i)
Representative spectral changes upon titration of Zn(II) (0−25
μM) into a mixture of apo-Mf2 (10 μM) and AdcAI (5 μM). (ii)
Normalized plot of the absorbance intensities of apo-MF2 (10 μM) at
377 nm upon addition of Zn(II), in the absence (●) or presence (○)
of AdcAI (5 μM). Competition with Hst5 (X; 10 μM) is shown for
comparison. (B) High-affinity site. (i) Representative spectral changes
upon titration of Zn(II) (0−25 μM) into a mixture of apo-Q2 (7.5
μM) and AdcAI (10 μM). (ii) Normalized plot of the absorbance
intensities of apo-Q2 (7.5 μM) at 262 nm upon addition of Zn(II), in
the absence (●) or presence (○) of AdcAI (10 μM).
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consistent with a previous report,60 recombinant AdcAII co-
purified with 1 molar equiv of bound Zn(II), which could not
be removed without denaturing the protein. Nevertheless, the
reported apparent affinity of the S. pneumoniae homologue to
Zn(II) (log KZn(II) = 7.7; 67% identity, 81% similarity),
determined via competition with Mf2,61 is ∼100-fold higher
than that of Hst5, consistent with our proposal that Hst5 does
not compete effectively with AdcAII for binding Zn(II).

■ DISCUSSION
Role of Histatins as Salivary Antimicrobial Agents.

The oral cavity is rich in saliva, and interactions between with
the components of this host fluid are key for colonization,
maintenance, infection, and subsequent transmission of
streptococci.62−64 For example, exposure to saliva promotes
aggregation of some streptococci and blocks adherence to
mucosal epithelia.65,66 Saliva also contains polysaccharides and
glycoproteins that may serve as sources of nutrients. Finally,
antimicrobial peptides and enzymes such as lysozyme,
lactoperoxidase, and chitinase directly inhibit or kill
streptococci.67

Given the widely reported antimicrobial activity of Hst5,
histatins are thought to function as salivary antimicrobial
peptides. Yet, our work shows that Hst5 does not kill seven
oral and oropharyngeal streptococcal species under in vitro
experimental conditions that are characteristic of saliva. It is
tempting to speculate that histatins help shape the microbial
composition in the healthy oral cavity by suppressing the
viability of some microbes (e.g., C. albicans) but not others
(e.g., streptococci). Future work should carefully examine this
potential for histatins to exert a selective antimicrobial activity,
to verify that it is not associated only with low ionic strength
conditions that are not characteristic of saliva. For example,
our work showed that antimicrobial activity of Hst5 against C.
albicans and P. aeruginosa disappears when examined in our
artificial saliva buffer (see Figure S2).

To date, there is no consensus as to whether histatin levels
in saliva correlate with infection levels in the oral cavity.
Comparisons of children or adult patients with and without
dental caries have found no variation in salivary histatin
levels,68,69 higher salivary histatin levels in patients with
caries,70,71 and lower salivary histatin levels in patients with
caries.72−74 Similarly, there is no clear correlation between
histatin levels and the prevalence of oral C. albicans in healthy
people75 but high histatin levels do correlate with high
prevalence of oral candidiasis in immunocompromised
patients.76 It is important to note that distinct ecological
niches exist within the oral cavity. These niches differ in,
among many variables, nutrient content, pH, and oxygen
tension. Our work does not discount the possibility that
histatins exert strong and selective antimicrobial activity in
some niches.
Interactions between Zn(II) and Histatins. Systems for

the uptake and efflux of metals such as Zn(II) are important
for the survival of streptococci in the oral cavity and
oropharynx since salivary concentrations of metals can
fluctuate, for example, during and between meals, disease, or
human hygiene and dental interventions. In addition, salivary
components such as lactoferrin and calprotectin sequester
metals and restrict microbial growth.

Our work showed that Hst5 does not contribute to Zn(II)-
dependent nutritional immunity against streptococci, since this
peptide neither starves our model Streptococcus (S. pyogenes or

GAS) of nutrient Zn(II) nor enhances Zn(II) toxicity to this
bacterium. These findings are consistent with results from a
genome-wide screen of a GAS mutant library, which did not
identify genes involved in Zn(II) uptake or Zn(II) efflux as
essential for growth in saliva.77 Given the general conservation
of Zn(II) homeostasis mechanisms among the streptococci, we
anticipate that Hst5 does not contribute to Zn(II)-dependent
nutritional immunity against other streptococci.

The low affinity of Hst5 to Zn(II), particularly compared
with the high affinities of the Zn(II) uptake lipoproteins AdcAI
and AdcAII, explains why Hst5 does not starve GAS (and,
presumably, other streptococci) of nutrient Zn(II). Here, the
antimicrobial protein calprotectin provides a useful compar-
ison. Calprotectin binds two Zn(II) ions with affinities
(log KZn(II) > 11 and >9.6)78 that are comparable to those of
AdcAI and higher than that of AdcAII. Indeed, adding
calprotectin induces a robust Zn(II) starvation response in
streptococci,79,80 consistent with its established role in
nutritional immunity.

Its low affinity to Zn(II) also explains why Hst5 only weakly
suppresses the availability of excess (toxic) Zn(II) to GAS in
vitro. Like most culture media, our CDM51 contains phosphate
(∼6 mM) and amino acids (∼6 mM total), which would
outcompete Hst5 (50 μM) for binding Zn(II).57 However, if
these competing ligands become depleted, for example as a
result of bacterial growth, then Hst5 may become competitive
and bind Zn(II), particularly when Zn(II) concentrations are
high. Such shifts in Zn(II) speciation likely explain why the
protective effect of Hst5 on the GAS ΔczcD mutant strain
during conditions of Zn(II) stress became apparent only at the
later stages of growth (see Figure S5). The increased binding
of Zn(II) to Hst5 in these later stages of growth may suppress
nonspecific Zn(II) import into the GAS cytoplasm, for
instance by outcompeting promiscuous divalent metal trans-
porters.

Unlike in vitro growth media, saliva and its components are
continuously replenished in vivo. Saliva contains ∼10 mM
phosphate81,82 and proteinaceous components that also bind
Zn(II).83 Thus, in vivo, Hst5 is unlikely to be competitive for
binding Zn(II). Nonetheless, synergistic effects between
Zn(II) and Hst5 may occur in vivo, but likely via indirect
mechanisms that do not rely on direct binding of Zn(II) to
Hst5 and formation of a Zn(II)−Hst5 complex. Zn(II) and
Hst5 may separately target the same cellular pathways in a
microbe, leading to the enhancement of the antimicrobial
activity of Hst5 by Zn(II). Alternatively, Zn(II) may disable
cellular pathways that render the target microbe more
susceptible to the separate action of Hst5 on a different
cellular pathway (or vice versa), again leading to the
enhancement of microbial killing. Indirect interactions
between Zn(II) and Hst5 may also exert subtle effects on
microbial physiology that do not lead to a direct antimicrobial
action and thus are not captured by the assays described here.
For example, a combination of Zn(II) and Hst5 at nonlethal
doses is thought to reduce the virulence of C. albicans.84

Whether Hst5 reduces the virulence of streptococci and
subsequently enables these organisms to become the dominant
commensal microorganisms in the oral cavity and oropharynx
is an intriguing concept that warrants further investigation.

■ METHODS
Data Presentation. Except growth curves, individual

replicates from microbiological experiments are plotted, with
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shaded columns representing the means and error bars
representing standard deviations. Growth curves show the
means, with shaded regions representing standard deviations.
The number of biological replicates (independent experiments,
using different starter cultures and different medium or buffer
preparations, performed on different days; N) is stated in figure
legends. In the case of metal−protein and metal−peptide
titrations, individual data points from two technical replicates
(independent experiments performed on different days but
using the same protein or peptide preparation) are plotted, but
only representative spectra are shown for clarity of
presentation.
Statistical Analyses. Descriptive statistics are displayed on

all graphical plots. Inferential statistics have been computed for
all data and the relevant P values are listed in figure legends.
Unless otherwise stated, tests of significance used two-way
analysis of variance using the statistical package in GraphPad
Prism 8.0. All analyses were corrected for multiple compar-
isons.
Reagents. The nitrate salt of Zn(II) was used in

experiments. Numerous additional tests did not identify any
observable difference in the results when the chloride or sulfate
salts of Zn(II) were used. Peptides were synthesized
commercially with free N- and C-termini as the acetate salt,
purified to >95% (GenScript), and confirmed to be metal-free
by ICP MS. Concentrations of stock peptide solutions were
estimated using solution absorbances at 280 nm in Mops
buffer (50 mM, pH 7.4; ε280 = 2667 cm−1). Concentrations of
fluorometric and colorimetric metal indicators (Zincon, PAR,
Mf2, Q2) were standardized using a commercial standard
solution of copper chloride. Concentrations of optically silent
chelators (NTA) were standardized by competition with a
standardized solution of Zn(II)-Zincon.
Strains and Culture Conditions. All bacterial strains

(Table S1B) were propagated from frozen glycerol stocks onto
solid THY (Todd Hewitt + 0.2% yeast extract) medium
without any antibiotics and incubated overnight in the
presence of 5% v/v of atmospheric CO2. Liquid cultures
were prepared in THY or CDM.51 All solid and liquid growth
media contained catalase (50 μg/mL).
Streptococcal Kill Assays. Fresh colonies from an

overnight THY agar were resuspended to 106−107 CFU/mL
in either potassium phosphate buffer (10 mM, pH 7.4) or
artificial saliva buffer (pH 7.2; Table S1A). The cultures were
incubated at 37 °C with or without Hst5 and/or Zn(II) as
required. At t = 0 and 3 h, cultures were sampled and serially
diluted in CDM. Exactly 10 μL of each serial dilution was
spotted onto THY agar. Colonies were enumerated after
overnight incubation at 37 °C.
C. albicans Kill Assays. Cells from a fresh YPD plate were

harvested, washed three times in phosphate-buffered saline
(PBS), and resuspended in either potassium phosphate buffer
(10 mM, pH 7.4) or saliva salts (pH 7.2) to an OD600 of 0.4
(∼5 × 106 CFU/mL). Cultures were incubated with or
without Hst5 at 37 °C. Tubes were inverted every 20 min to
maintain cell suspension. At t = 0, 1, and 3 h, samples were
taken, serially diluted, and plated onto YPD agar. Colonies
were numerated following overnight incubation at 30 °C.
Growth Assays. Colonies from an overnight THY agar

were resuspended in CDM to an OD600 = 0.02 and dispensed
into wells in flat-bottomed 96-well plates (200 μL per well)
containing Hst5 and/or Zn(II) as required. Bacterial growth
was monitored using an automated microplate shaker and

reader. Each plate was sealed with a gas-permeable, optically
clear membrane (Diversified Biotech). OD600 values were
measured every 20 min for 10 h. The plates were shaken
immediately before each reading (200 rpm, 1 min, double-
orbital mode). OD600 values were not corrected for path length
(ca. 0.58 cm for a 200 μL culture).
RNA Extraction. Colonies from an overnight THY agar

were resuspended in CDM to an OD600 = 0.02 and incubated
in 24-well plates (1.6 mL per well), with or without Hst5 or
Zn(II) as required, without shaking, at 37 °C. Each plate was
sealed with a gas-permeable, optically clear membrane
(Diversified Biotech). At t = 4 h, cultures were centrifuged
(4000g, 4 °C, 5 min) and the resulting bacterial pellets were
resuspended immediately in RNAPro Solution (0.5 mL; MP
Biomedicals). Bacteria were lysed in Lysing Matrix B and total
RNA was extracted following the manufacturer’s protocol (MP
Biomedicals). Crude RNA extracts were treated with RNase-
Free DNase I (New England Biolabs). Removal of gDNA was
confirmed by PCR using gapA-check-F/R primers (Table
S1C). gDNA-free RNA was purified using Monarch RNA
Clean-up Kit (New England Biolabs) and visualized on an
agarose gel.
qRT-PCR Analyses. cDNA was generated from RNA (1.6

μg) using SuperScript IV First-Strand Synthesis System
(Invitrogen). Each qRT-PCR reaction (20 μL) contained
cDNA (5 ng) as template and the appropriate primer pairs (0.4
μM; Table S1C). Samples were analyzed in technical
duplicates. Amplicons were detected with Luna Universal
qRT-PCR Master Mix (New England Biolabs) in a
CFXConnect Real-Time PCR Instrument (Bio-Rad Laborato-
ries). Cq values were calculated using LinRegPCR85 after
correcting for amplicon efficiency. Cq values of technical
duplicates were typically within ±0.25 of each other. holB,
which encodes DNA polymerase III, was used as reference
gene. Its transcription levels were verified to remain constant in
the experimental conditions tested here.
Cellular Metal Content. Colonies from an overnight THY

agar were resuspended in CDM to an OD600 = 0.02 and
incubated at 37 °C with or without Hst5 and/or Zn(II) as
required. At t = 4 h, an aliquot was collected for the
measurement of plating efficiency (colony counts). The
remaining cultures were centrifuged (5000g, 4 °C, 10 min).
The resulting bacterial pellets were washed once with ice-cold
wash buffer (1 M D-sorbitol, 50 mM Tris−HCl, 10 mM MgCl2,
1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.4) and
twice with ice-cold PBS. The final pellets were dissolved in
concentrated nitric acid (100 μL), heated (85 °C, 1.5 h), and
diluted to 3.5 mL with 2% nitric acid. Total metal levels were
determined by ICP MS and normalized to colony counts.
Elution of Zn(II)−Hst5 on a Desalting Column. Apo-

Hst5 (100 μM) was incubated with 1.5 molar equiv of Zn(II)
for 15 min at the bench and loaded onto a polyacrylamide
desalting column (1.8 kDa molecular weight cutoff, Thermo
Scientific). Peptide and Zn(II) were eluted from the column
using Mops buffer (50 mM, pH 7.4). The concentration of
Hst5 in each fraction was determined using QuantiPro BCA
Assay Kit (Merck) and known quantities of Hst5 as standards.
The concentration of Zn(II) was determined using the
colorimetric Zn(II) ligand PAR against a standard curve.
Equilibrium Competition Reactions. Our approach to

determine metal-binding affinities followed that described by
Young and Xiao.59 For each competition (eq 1), a master stock
was prepared to contain both competing ligands (L1 and L2)
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in Mops buffer (50 mM, pH 7.4). Serial dilutions of the metal
(M) were prepared separately in deionized water. Exactly 135
μL of the master stock was dispensed into an Eppendorf
UVette and 15 μL of the appropriate metal stock was added.
Solution absorbances were recorded and used to calculate
concentrations of apo- and metalated forms of each ligand.
These concentrations were plotted against metal concen-
trations and fitted in DynaFit86 using binding models as
described in the text. The known association or dissociation
constants for all competitor ligands are listed in Table S1D

Fm nM L1 L2 L1 M L2n m+ + (1)

Overexpression and Purification of AdcAI and
AdcAII. Nucleic acid sequences encoding the soluble domains
of AdcAI (from Thr21) and AdcAII (from Thr31) from
M1GAS strain 5448 were subcloned into vector pSAT1-LIC
using primers listed in Table S1C. This vector generates N-
terminal His6-SUMO fusions with the target proteins. The
resulting plasmids were propagated in Escherichia coli Dh5α,
confirmed by Sanger sequencing, and transformed into E. coli
BL21 Rosetta 2(DE3).

To express the proteins, transformants were plated onto
Lysogeny Broth (LB) agar. Fresh colonies were used to
inoculate LB (1 L in 2 L baffled flasks) to an OD600 of 0.01.
The culture medium contained ampicillin (100 μg/mL) and
chloramphenicol (33 μg/mL). Cultures were shaken (200 rpm,
37 °C) until an OD600 of 0.6−0.8 was reached, and expression
was induced by adding isopropyl β-D-1-thiogalactopyranoside
(IPTG) (0.1 mM). After shaking for a further 16 h at 20 °C,
the cultures were centrifuged (4000g, 4 °C) and the pellets
were resuspended in buffer A500 (20 mM Tris−HCl, pH 7.9,
500 mM NaCl, 5 mM imidazole, 10% glycerol).

To purify proteins, bacteria were lysed by sonication (40
kpsi), centrifuged (20,000g, 4 °C), and filtered through a 0.45
μm poly(ether sulfone) (PES) membrane filtration unit.
Clarified lysates were loaded onto a HisTrap HP column
(Cytiva). The column was washed with 10 column volumes
(CV) of buffer A500 followed by 10 CV of buffer A100 (20
mM Tris−HCl, pH 7.9, 100 mM NaCl, 10% w/v glycerol)
containing imidazole (5 mM). Both AdcAI and AdcAII were
bound to the column and subsequently eluted with 3 CV of
buffer A100 containing 250 mM imidazole followed by 5 CV
of 500 mM imidazole. Protein-containing fractions were
loaded onto a Q HP column (Cytiva). The column was
washed with 5 CV of buffer A100 and bound proteins were
eluted using a step gradient of 0, 10, 15, and 20% buffer C1000
(20 mM Tris−HCl, pH 7.9, 1000 mM NaCl, 10% w/v
glycerol). Eluted proteins were incubated overnight at 4 °C
with hSENP2 SUMO protease to cleave the His6-SUMO tag
from the target protein. Samples were passed through a second
Q HP column and the flowthrough fractions containing
untagged target protein were collected.
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Zn (Figure S7) (PDF)
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