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Abstract

Neuroimaging research has been at the forefront of concerns regarding the failure of experimental 

findings to replicate. In the study of brain-behavior relationships, past failures to find replicable 

and robust effects have been attributed to methodological shortcomings. Methodological rigor 

is important, but there are other overlooked possibilities: most published studies share three 
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foundational assumptions, often implicitly, that may be faulty. In this paper, we consider the 

empirical evidence from human brain imaging and the study of non-human animals that calls each 

foundational assumption into question. We then consider the opportunities for a robust science 

of brain-behavior relationships that await if scientists ground their research efforts in revised 

assumptions supported by current empirical evidence.

Guiding assumptions in the study of brain-behavior relationships

Most brain imaging studies present stimuli and measure behavioral responses in temporal 

units (trials) that are ordered randomly. Participants’ brain signals are typically aggregated to 

model structured variation that allows inferences about the broader population from which 

people were sampled. These methodological details, when used to study any phenomenon 

of interest, often give rise to brain-behavior findings that vary unexpectedly (across stimuli, 

context, and people). Such findings are typically interpreted as replication failures, with 

the observed variation discounted as error caused by less than rigorous experimentation 

(Box 1). Methodological rigor is of course important, but replication problems may stem, in 

part, from a more pernicious source: faulty assumptions (i.e., ontological commitments) that 

mis-specify the psychological phenomena of interest.

In this paper, we review three questionable assumptions whose reconsideration may offer 

opportunities for a more robust and replicable science:

1. The localization assumption: the instances that constitute a category of 

psychological events (e.g., instances of fear) are assumed to be caused by 

a single, dedicated psychological process implemented in a dedicated neural 
ensemble (see Glossary).

2. The one-to-one assumption: the dedicated neural ensemble is assumed to map 

uniquely to that psychological category, such that the mapping generalizes across 

contexts, people, measurement strategies, and experimental designs.

3. The independence assumption: the dedicated neural ensemble is thought to 

function independently of contextual factors, such as the rest of the brain, the 

body, and the surrounding world, so the ensemble can be studied alone without 

concern for those other factors. Contextual factors might moderate activity in 

the neural ensemble but should not fundamentally change its mapping to the 

instances of a psychological category.

These three assumptions are rooted in a typological view of the mind, brain, and behavior 

[1] that was modeled on 19th century physics and continues to guide experimental practices 

in much of brain-behavior research to the present day. In this paper, we have curated 

examples from studies of human functional magnetic resonance imaging (fMRI) and 

neuroscience research using non-human animals that call each assumption into question. We 

then sketch the beginnings of an alternative approach to study brain-behavior relationships, 

grounded in different ontological commitments: (i) a mental event comprises distributed 

activity across the whole brain; (ii) brain and behavior are linked by degenerate (i.e., 

many-to-one) mappings; and (iii) mental events emerge as a complex ensemble of weak, 
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nonlinearly interacting signals from the brain, body, and external world (Table 1 and Figure 

1).

Localization reconsidered: evidence of whole-brain contributions to mental 

events

Functional neuroimaging methods were initially assumed to reveal the unique neural 

locations for different mental phenomena (e.g., [2]). Decades of study ironically produced 

evidence for the opposite: localized neural computations contribute to a range of phenomena 

(e.g., [3,4]) and several key studies suggest that psychological phenomena like attention and 

vision might be better modeled as whole-brain events. We present three lines of evidence 

that call the localization assumption into question. They also demonstrate the existence of 

whole-brain ensembles when studies are designed to permit their discovery.

Whole-brain responses in human brain imaging

Whole-brain modeling of a psychological phenomenon is first suggested by studies that 

deeply sample and model data from individuals. Standard experimental designs typically 

sample relatively few trials per participant and use stringent statistical thresholds to avoid 

type I errors. Consequently, studies generally observe and report only the strongest effects, 

producing ‘islands’ of signal change that are interpreted as evidence for localized activity. 

These ‘islands’ might actually result from studies that are insufficiently powered within 

individual participants. Stringent statistical thresholds ignore weaker signals as noise, but 

studies specifically designed to examine those signals show that they are both reliable and 

psychologically meaningful. For example, consider a study in which participants viewed 

letters and numbers and completed a letter–number discrimination task across 500 trials and 

researchers observed a significant increase in blood oxygen level dependent (BOLD) signal 

in ~72% of brain voxels [5]; by comparison, a significant increase was observed in an island 

of only ~20% of brain voxels (mostly in the primary visual cortex) after 25 trials. These 

findings were replicated with high-resolution 7-Tesla imaging, both using the same letter–

number discrimination task [6] and using a visual checkerboard task [7]. The problems 

caused by under-sampling trials within a participant cannot be overcome by increasing the 

number of participants in a study; larger between-subject sample sizes are no substitute for 

within-subject sampling because individuals are not interchangeable (a mistaken assumption 

called the ‘evils of averaging’ [8,9]).

An overreliance on default modeling assumptions compounds the problem. Most fMRI 

studies use a single function (i.e., a gamma distribution) to model the hemodynamic 

response function (HRF) across all voxels in the human brain. Modeling the HRF without 

presuming its shape (other than its alignment with task on/offsets) resulted in a reliable 

task-based signal increase from ~72% of brain voxels to an average of ~96% of imaged 

voxels [5]. Modeling variation in the shape of the HRF across voxels and/or participants 

can have a large impact on the conclusions drawn from findings [10] (also see [11]). These 

findings show that modeling decisions, rooted in an ontological commitment to localization, 

can create self-fulfilling prophecies, leading scientists to observe the small ‘islands’ of 

signal change that they set out to identify in the first place.
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It has been suggested that brain signals outside of localized regions of interest may be 

epiphenomenal to the phenomenon of interest (e.g., [12]) and that interventions (e.g., focal 

lesions) are necessary to fully understand whether a brain region is functionally implicated 

in a given task. Yet such interventions are not in and of themselves a gold standard. A 

disrupted function could be due to damaged fibers of passage and lesions only provide 

an understanding of what functional capacity remains in the absence of the lesioned area, 

rather than revealing that region’s function in an intact whole-brain system (e.g., a lesioned 

area might be a weak but necessary factor in complex, nonlinear ensembles of causation). 

Optogenetic manipulations also suffer from this latter concern.

Some methods attempt to move beyond the localization assumption, such as intrinsic 

functional connectivity analyses, in which spatially distributed collections of voxels with 

BOLD signal that correlates over time are assumed to form functional networks (e.g., 

[13,14]). Analytic decisions, guided by the localization assumption, typically truncate the 

topography of these networks, forcing them to have discrete boundaries (e.g., the non-

overlapping networks in [15]), when in fact the networks spatially overlap in a way that is 

functionally meaningful (e.g., [16,17]). Other attempts to account for whole-brain patterns 

have improved upon the problem of discretizing networks (e.g., graph theoretic approaches 

[18]; gradient-based approaches [19,20]; and multivariate approaches such as multivariate 

pathway identification [21], or full correlation matrix analysis [22]).

Brain-wide representations of behavior in non-human animals

A second line of evidence supporting whole-brain modeling (rather than localized 

ensembles) comes from studies of non-human animals, which document brain-wide patterns 

of neural activity associated with ongoing behavior (e.g., [23–27]; for a review see [28]). 

For example, global increases in brain activity (measured via near-whole-brain light field 

microscopy) correlate with walking movements in Drosophila flies [25] (for similar findings 

using two-photon imaging in flies, see [26]). Brain-wide signals (measured via calcium 

imaging) relate to inferred motor commands in Caenorhabditis elegans worms (i.e., signals 

related to the intent to move that are uncoupled from the actual movement by immobilizing 

the worm; [27]). Cortex-wide activity (measured via wide-field calcium imaging) and single 

neuron activity (measured via two-photon imaging) in many cortical and subcortical areas 

are related to an array of uninstructed movements in mice [29].

Multimodal signals in presumed unimodal areas of the brain

Evidence consistent with a whole-brain modeling approach can also be found in research 

on multisensory processing. For example, primary sensory or motor regions are thought to 

process signals only for their dedicated modality [e.g., the occipital pole is called primary 

visual cortex (V1), on the assumption that it is exclusively engaged by visual signals; 

primary motor cortex is likewise assumed to be exclusive for skeletomotor movements]. 

But ‘primary sensory cortices’ carry information about several sensory modalities and motor 

actions [30–33], and ‘primary motor cortex’ is involved in sensory processing [34]. In a 

particularly striking experiment in humans, fMRI BOLD signal patterns associated with 

simple sensory stimuli in one modality (e.g., tactile, visual, or auditory stimulation) could 
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be distinguished in the signal patterns within the other primary sensory cortices (e.g., V1 

activity distinguished between touch and sound [35]). BOLD signal patterns in V1 and A1 

also distinguished between tactile sensory data from a person’s index versus pinky finger 

[35]. V1 even distinguished between categories of auditory input (e.g., people, forest, traffic) 

when participants were blindfolded [36]. Multimodal signals in primary sensory cortices 

have similarly been reported in several species of non-human animals [23,29,31,37–44]. 

Likewise, primary motor cortex also contains multimodal signals: a ‘polysensory zone’ of 

motor cortex contains many neurons that respond to tactile and visual stimuli [34], and 

electrical stimulation of primary motor cortex can influence visceromotor function, causing 

alterations in kidney function such as decreases in renal blood flow [45,46].

Additional evidence suggests that multimodal information is not just incidentally present 

in primary sensory regions but plays a functional role. For example, normally-sighted 

individuals showed increased BOLD signal in visual cortex during tactile stimulation 

after prolonged visual deprivation (via blindfolding), compared to non-visually deprived 

individuals [47]. Most importantly, only the blindfolded individuals performed worse on 

a Braille discrimination task when visual cortex function was disrupted via transcranial 

magnetic stimulation, suggesting that the multimodal signal in their visual cortex was 

functionally related to task performance. Likewise, activity in visual cortex increased 

during auditory stimulation and sound localization abilities improved in visually deprived 

non-human animals compared with non-deprived animals [48,49]. Neurons in visual cortex 

continue to fire in mice after their retinas are ablated, once again suggesting that signals in 

visual cortex are not indicative of only visual input [50]. These and other similar research 

findings suggest that there may be no truly ‘unimodal’ neurons in the brain and that a 

‘primary’ sensory or motor area of cortex might also be thought of as an ‘association region’ 

for other modalities.

If scientists assumed that ensembles across the whole brain may be involved in a given 

phenomenon, and correspondingly they designed studies that allow for this possibility, then 

they could test whole-brain hypotheses, while still discovering localization if it indeed 

exists.

One-to-one mappings reconsidered: evidence of many-to-one mappings

Even after setting aside the localization assumption, perhaps particular psychological 

phenomena might uniquely map, one-to-one, with particular widely distributed brain 

patterns. This one-to-one mapping assumption is called into question, however, by evidence 

within many different biological systems that more than one mechanism can produce a 
single functional outcome (i.e., many-to-one mapping, also called degeneracy [51]). Here 

we review key examples of degeneracy and consider their implications for studies of brain-

behavior mapping.

Degeneracy of causal mechanisms is an organizing principle of virtually all biological 

domains (e.g., in genetics [51,52], the immune system [51,53], the motor system [54]). 

In the nervous system, many combinations of neurons give rise to the same intrinsic 

network with the same function (e.g., [55,56]) and different patterns of neural activation 
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give rise to the same behavior [57]. Neuroimaging studies have been slow to model 

degeneracy in the causes and correlates of psychological phenomena, but there are notable 

exceptions. For example, participants underwent fMRI as they watched videos intended to 

induce instances of anger, disgust, or loss, and unsupervised machine learning applied to 

patterns of BOLD signal across the length of the time series identified numerous reliable 

dynamic patterns within each psychological category [58]. Likewise, atypical instances of 

an emotion category (e.g., pleasant instances of fear) were associated with patterns of 

BOLD signal that were distinct from those associated with typical instances of the same 

category (e.g., unpleasant instances of fear [59]; see also [60]). Degenerate patterns of 

functional connectivity (i.e., the coordinated activity of different brain regions) associated 

with emotional experiences have also been observed. For example, unsupervised machine 

learning applied to patterns of functional connectivity while individuals listened to music 

intended to induce instances of anger and anxiety also revealed several degenerate patterns 

within each emotion category [61] (also see [62]). Beyond emotion research, degeneracy 

has been observed in the functional connectivity patterns of infants experiencing looming 

danger [63] and in the physiology of the hippocampus [64] (also see [65]). Degeneracy 

can also be observed in disorders of the nervous system, such as epilepsy, where multiple 

firing patterns of different cell types in the hippocampus produce the same pattern of 

electroencephalography signals recorded during an epileptic seizure [66,67]. Specialized 

methods can identify degeneracy in BOLD data (e.g., neural topographic factor analysis 

[68], network measures [69]), making clear that multiple, reliable solutions can be separated 

from noise, provided a study has been designed accordingly.

Lesion studies in both humans and non-human animals provide additional evidence for 

degeneracy. For example, patient S.M., who has bilateral amygdala lesions, shows deficits 

perceiving fear in posed, stereotypic facial expressions [70] and in experiencing fear [71], 

but she can experience and perceive fear under certain conditions (discussed in [72]), 

suggesting that her brain must accomplish both functions with ensembles of neurons that 

do not involve the amygdala. This conclusion is reinforced by studies of monozygotic 

twins with almost full amygdala lesions, only one of whom has deficits in perceiving 

and experiencing fear [73,74]. Additionally, rats with bilateral lesions to the basolateral 

amygdala (a region thought to be necessary for conditioning of fear behaviors) do not have 

impairments in memory of contextual fear conditioning, again suggesting that there are 

multiple mechanisms for this function [75]. For circuit level examples of degeneracy, see 

[55,76–78].

To test whether degeneracy is an organizing principle in brain-behavior mapping, 

experiments must sample variable instances within a psychological category, and sample 

similar instances more than once, within the same person (or the same non-human animal, 

if sampling spontaneous behavior, for example [79]). With sufficient sampling, one-to-one 

mappings can still be discovered if present. Even so, degenerate mappings remain likely: the 

first experience of any sort will be different from the second due to learning, plasticity, and 

temporal history (i.e., the brain and/or the body were in different starting states during each 

instance [80]).
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Independence reconsidered: evidence for the brain as a complex system

A final ontological commitment impeding the study of brain-behavior relations is the 

assumption of independence: that neural activity corresponding to one psychological 

phenomenon, such as attention or perception, can be studied independently of any other 

phenomena, such as memory (for a discussion, see [81]). Criticisms of the independence 

assumption have been discussed in ecological psychology (e.g., [82]), developmental 

psychology (e.g., [83]), social psychology (e.g., [84]), and neuroscience (e.g., [3]). We build 

on these insights to suggest that mental events emerge as a complex ensemble of interacting 

signals from the brain, body, and surrounding world. In other words, we suggest, like others, 

that the brain is a complex system continually influenced by input signals from the body 

and the world (which we refer to as the brain complexity hypothesis; Box 2).

In the brain complexity hypothesis, a given neuron does not function in isolation and its 

action potentials are profoundly influenced by its neural context. For example, action 

potentials in a given neuron are influenced by the assembly of neurons to which it 

momentarily belongs [85]. Another form of neural context is ephaptic signaling, in which 

axons from different neurons that touch each other influence each other’s action potentials 

[86] and nearby neurons that are not necessarily in physical contact nonetheless influence 

one another’s excitability via extracellular local field potentials [87]). In fact, the function 

of a train of action potentials is determined by the neurons that receive them, not by the 

neuron issuing them (e.g., when action potentials from a single neuron are received by a 

motor neuron, they are considered motor signals; when the same action potentials are sent 

by collateral axons to sensory neurons, they are considered sensory signals). And a neuron 

can have multiple synaptic connections and switch from being a part of one network to 

another [77,88].

Evidence like this suggests that the relevance of any neuron’s action potentials to a given 

psychological process is dependent on the other neurons it is interacting with. For example, 

in the anterior cingulate cortex (ACC), a similar pattern of BOLD activity contributed to 

either an attentional function or a memory function, depending on the regions to which it 

was functionally connected during a task [89]. The ACC is considered a ‘rich-club’ hub 

[16,90,91]) because it is densely interconnected with many groups of neurons throughout the 

brain [92]. The dense interconnections between the ACC and other nodes allow this region 

to take on different functions (e.g., emotion [93], multimodal integration [94], decision 

making [95], value [96], attention [97], and visceromotor control [98]), depending on the 

ensemble to which it belongs, suggesting that isolated neural signals do not have inherent 

psychological meaning.

A routinely overlooked aspect of the neural context in brain-behavior relations involves 

the signals associated with the sensory conditions of the body. These signals routinely 

go unmeasured in studies of psychological phenomena, yet evidence suggests they play a 

substantial role. For example, an individual’s heart rate modulates functional connectivity 

between several regions involved in autonomic regulation ([99], also see [100,101]) and, 

likewise, respiration rate correlates with signal changes across the whole-brain during 

resting state fMRI [102–105]. The signals of import may be the sensory surfaces of the 
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body (peripheral interoceptive signals informing on the state of the body) or the motor 

prediction signals that control the viscera, the immune system, energy regulation, and 

so on ([106,107]). In fact, many physical phenomena that impact bodily signals also 

influence BOLD signals, such as quality of sleep [108], physical fitness [109], time of 

day (i.e., circadian rhythms [110]), or how recently the participant ate [111]. The often-

overlooked role of bodily signals may offer an alternative explanation for intrinsic fMRI 

activity observed in the ‘resting state’ [112], which involves no task-based stimulation, but 

does involve continuous and dynamically changing brain–body interactions, meaning that 

‘intrinsic activity’ may be better understood by considering the broader signal context (e.g., 

[113]).

If neural ensembles are not independent actors, then the nature of any mental event can 

be better understood by accounting for a larger, interdependent ensemble of signals, some 

of which might be weak when viewed alone. Neuroimaging experiments typically report 

modest effect sizes [114], but this may be because standard experiments only measure a 

small fraction of the relevant signals. A lack of robust and replicable effects in the study 

of brain-behavior relationships, then, may partly stem from incorrectly modeling complex 

systems as simple, mechanistic ones. Complexity not only implies that experiments should 

be modeling many more causal factors than are typically measured, but also reinforces the 

likelihood of degeneracy within a system (i.e., multiple causal mechanisms increase the 

likelihood of multiple functional solutions [51]).

Improving the study of brain-behavior relationships

A model-first approach

The standard empirical paradigm when investigating mental phenomena typically follows 

these steps: researchers formulate a hypothesis, design an experiment that can test the 

hypothesis, and then analyze data using statistical methods that are conventionally used 

to test similar questions. This approach does not require researchers to specify their 

assumptions up front, which may make those assumptions difficult to identify and evaluate, 

let alone change them in future investigations. A model-first approach partially remedies 

this situation, because researchers begin an investigation by formally specifying a model 

of the phenomena of interest and then formulate hypotheses based on this model and 

design an experiment to test it. Model specification requires an explicit acknowledgement 

of assumptions, allowing researchers to evaluate and refine their assumptions and the 

research practices conditioned on them. In an example of a model-first approach, researchers 

first developed a computational model of functional neuroanatomy that incorporated an 

assumption of degeneracy up front, formulated hypotheses about within-participant or 

within-condition degeneracy, and then analyzed data with methods appropriate to test those 

hypotheses ([68]; see also [58,115]). Model-first approaches are found in investigations of 

complexity: researchers have formulated models of neural activity occurring at multiple 

time-scales [116], which then revealed that the necessary data to test such a model requires 

naturalistic paradigms, rather than standard trial-based paradigms [117].
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Sampling relevant signals

Modeling the whole brain as a complex system with degenerate solutions requires sampling 

signals from the brain, body, and surrounding environment (assuming that ascending 

interoceptive and somatosensory signals are considered inputs that influence the intrinsic 

trajectory of brain signals, rather than part of the system itself, which is another assumption 

that a researcher must make explicitly). It is not currently realistic to sample all relevant 

signals at the present time, but future technology development efforts might aspire to 

correct this problem. In the meantime, it might be optimal to acquire as many relevant 

signals as possible (e.g., signals measuring the mental features of an event) and build a 

model accordingly, making explicit which necessary signals are missing, considering the 

limitations therein, or even finding modeling solutions for the missing signals. As a start, 

assumptions of degeneracy and complexity suggest the need for analytical methods that 

allow signals across voxels, parcels, or regions to interact, producing effects that are more 

than the sum of their parts, rather than be modeled as independent elements of a system 

(e.g., [118–120]). A similar plea can be made for methods that do not assume singular 

mappings (e.g., soft-versus hard-clustering algorithms [121]).

Within-versus between-participant sampling

Current data collection efforts tend to prioritize between-participant sample sizes (over 

within-participant), which improve estimates of population-level effects. Such effects are 

abstractions, however [122], that as a rule do not generalize to individuals [8,9]. Increasing 

the number of participants in a sample is not a substitute for increasing the sampling within 

a person over time. Whole-brain modeling of degeneracy and complexity depends on more 

attention to experimental design for within-subject sampling across instances and contexts.

Concluding remarks

Scientific communities tacitly agree on assumptions about what exists (called ontological 

commitments), what questions to ask, and what methods to use. All assumptions are 

firmly rooted in a philosophy of science that need not be acknowledged or discussed 

but is practiced nonetheless. In this article, we questioned the ontological commitments 

of a philosophy of science that undergirds much of modern neuroscience research and 

psychological science in particular. We demonstrated that three common commitments 

should be reconsidered, along with a corresponding course correction in methods (see 

Outstanding questions). Our suggestions require more than merely improved methodological 

rigor for traditional experimental design (Box 1). Such improvements are important, but 

may aid robustness and replicability only when the ontological assumptions behind those 

methods are valid. Accordingly, a productive way forward may be to fundamentally rethink 

what a mind is and how a brain works. We have suggested that mental events arise from 

a complex ensemble of signals across the entire brain, as well as the from the sensory 

surfaces of the body that inform on the states of the inner body and outside world, such that 

more than one signal ensemble maps to a single instance of a single psychological category 

(maybe even in the same context [51,56]). To this end, scientists might find inspiration by 

mining insights from adjacent fields, such as evolution, anatomy, development, and ecology 

(e.g., [123,124]), as well as cybernetics and systems theory (e.g., [125,126]). At stake is 
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nothing less than a viable science of how a brain creates a mind through its constant 

interactions with its body, its physical environment, and with the other brains-in-bodies that 

occupy its social world.
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Glossary

Complex ensemble a collection of weak, nonlinearly interacting signals (see 

Complex system).

Complex system a system where many weak, causal factors interact 

in nonlinear ways to produce a larger-scale collective 

outcome.

Degeneracy the ability for many independent mechanisms to produce 

the same functional outcome. Also called a many-to-one 

mapping.

Many-to-one mapping see Degeneracy above.

Mental event any instance of a psychological category, such as an 

instance of behavior or subjective experience (e.g., an 

instance of memory, attention, emotion, or action).

Mental features features of the brain’s state that usefully describe what a 

brain is doing in psychological terms at any given moment 

in time. Features can be higher in dimensionality and closer 

to the sensory surfaces of an animal’s body (e.g., lines, 

edges, temperature) or lower dimensional, multimodal 

summaries (e.g., arousal, threat, or reward).

Neural context the assembly of neurons to which any given neuron 

momentarily belongs.

Neural ensemble a brain region, circuit, network, or distributed pattern in the 

brain.

One-to-one mapping a particular neural ensemble is assumed to map uniquely to 

a particular psychological phenomena.
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Highlights

The study of brain-behavior relationships has been guided by several foundational 

assumptions that are called into question by empirical evidence from human brain 

imaging and neuroscience research on non-human animals.

Neural ensembles distributed across the whole brain may give rise to mental events rather 

than localized neural populations. A variety of neural ensembles may contribute to one 

mental event rather than one-to-one mappings. Mental events may emerge as a complex 

ensemble of interdependent signals from the brain, body, and world rather than from 

neural ensembles that are context-independent.

A more robust science of brain-behavior relationships awaits if research efforts are 

grounded in alternative assumptions that are supported by empirical evidence and which 

provide new opportunities for discovery.
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Box 1.

Replicability of brain-behavior relationships

When a given brain-behavior relationship varies across stimuli, context, people, or 

studies, this variation is often interpreted as a failure to replicate, possibly due to 

methodological issues, such as small sample sizes (e.g., [127–129]), insufficient reporting 

of methods (e.g., [130,131]), or the use of variable preprocessing parameters or different 

analytical workflows (e.g., [132]). These sorts of methodological concerns are important 

and recent publications have offered guidance for improvements [114,133]. But there 

may be a deeper source of variable brain-behavior findings: the typical brain imaging 

study may mis-specify the psychological phenomena of interest. A given brain-behavior 

relationship likely varies in meaningful and predictable ways across stimuli, context, 

and/or people. This variation typically goes unmeasured or unmodeled, however, because 

of key assumptions about the nature of the psychological phenomena under investigation, 

the design of experiments, and the modeling of the observed data. As a consequence, 

the variation is misunderstood as error and is interpreted as a failure to replicate, 

when in fact it might contain structure and be better understood as an opportunity 

for scientific discovery. Methodological recommendations, then, are not sufficient to 

solve the replication problem. First, we must reconsider our underlying assumptions 

about the phenomena we are studying and then we may look towards methodological 

improvements that are grounded in revised assumptions.
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Box 2.

The brain complexity hypothesis

A system is a collection of regularly interacting parts, organized for a common purpose. 

Biological systems, such as the cell, have historically been described as machines [134]. 

The machine metaphor implies that the system can be broken down into independent, 

separable mechanisms, where each mechanism can be studied independently of one 

another. But many domains of biology have shown that biological systems cannot be 

studied as independent mechanisms, because the systems’ functions emerge through 

the collective interaction of their parts [135]. Instead, biological systems are thought 

to function as complex systems, where many weak, causal factors interact in a 

nonlinear way to produce a larger-scale collective outcome [135]. Accordingly, some 

neuroscientists have begun to consider the brain as a complex system, whose functions 

emerge from the dynamic interactions between neurons, glial cells, and other biological 

elements (e.g., [69,85,125,135–140]).
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Outstanding questions

Well-powered brain-wide analyses imply that meaningful signals exist in brain regions 

that are considered nonsignificant in studies with low within-subject power, but is all of 

the observed brain activity necessarily supporting a particular behavior? By thresholding 

out weak yet consistent effects, are we removing part of the complex ensemble of 

causation? What kinds of technical innovations or novel experimental methods would 

allow us to make progress in answering this question?

How might we incorporate theoretical frameworks, such as a predictive processing 

framework, to better understand the involvement of the whole-brain in producing a 

mental event? Such an approach hypothesizes the involvement of the whole-brain as a 

general computing system, without implying equipotentiality (i.e., that all areas of the 

brain are equally able to perform the same function).

Why are some reported effects (e.g., the Stroop effect) seemingly robust and replicable 

if psychological phenomena are necessarily degenerate? These effects should be explored 

to determine if they remain replicable outside of constrained laboratory contexts and to 

understand what makes them robust.

Given that measuring every signal in a complex system is unrealistic given the time 

and cost constraints of a standard neuroimaging experiment, how can we balance the 

measurement of meaningful signals in the brain, body, and world with the practical 

realities of experimental constraints?

Is the study of brain-behavior relationships actually in a replication crisis? And if so, 

is it merely a crisis of method? Traditional assumptions suggest that scientists should 

replicate sample summary statistics and tightly control variation in an effort to estimate a 

population summary statistic, but perhaps this goal should be reconsidered.
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Figure 1. Schematic summary of current guiding assumptions contrasted with the revised 
assumptions presented in this article.
See Table 1 for an explanation of each assumption. This figure was created using BioRender 

(https://biorender.com/). Abbreviation: BOLD, blood oxygen level dependent.
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Table 1.

Current guiding assumptions contrasted with revised assumptions for the study of brain-behavior relationships

Current guiding assumptions Revised assumptions

(1) Localization assumption: instances of a psychological category can 
be localized to a dedicated neural ensemble. Instances of the same 
psychological category are assumed to be more similar to each other with 
respect to that neural ensemble and more different from instances of other 
psychological categories, which have their own ensembles.

(1) Whole-brain signals contribute to mental events: instances 
of a psychological category arise from activity across the entire 
brain, not from a separable neural ensemble.

(2) One-to-one assumption: neural ensembles correspond one-to-one with 
psychological categories. This correspondence is stable across all instances 
of the category, regardless of context, people, measurement strategy, or 
experimental design.

(2) Many neural ensembles for one psychological category: 
there are degenerate (many-to-one) mappings between neural 
ensembles and a psychological category.

(3) Independence assumption: a stimulus will reliably evoke activity in 
a specific neural ensemble that produces an instance of the specific 
psychological category of interest. This neural ensemble can be studied 
separately from other signals that may moderate its function.

(3) Mental events emerge as a complex ensemble of signals: an 
instance of a psychological category emerges from a complex 
ensemble of signals from the brain, body, and world. These 
signals can only be understood in relation to the rest of the 
ensemble; i.e., each may have a weak effect on its own, but a 
strong effect when considered collectively.
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