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Introduction

Extreme value statistics (EVS) is a branch of statistics inves-
tigating the distributions of observations with unusually low 
or high values, thus it finds natural applications in biomedi-
cal science.1 Despite that, few examples exist for such 
approaches in medicine, in contrast to fields like architec-
ture,2 weather and climate analysis,3 sports, and finance sta-
tistics,4,5 where rare, extreme events have an overwhelming 
impact too. Because of the rarity of these events or observa-
tions, they form just a fraction of the total sample, thus have 
much smaller effective sample size, therefore their analysis 
could be exceptionally difficult. EVS is rarely used in medi-
cal statistics, the main reason being the lack of data on 
extremes and the cost of obtaining them compared to natural 

factors like weather which is simple and cheap to observe 
and abundant data are publicly available, with daily or even 
higher frequency and recorded for decades. In contrast, even 
for very severe conditions, important biomarkers are usually 
those that require some sample taken which is typically fol-
lowed by a complex and expensive process to analyze that; 
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Abstract
Objective: Characterizing blood glucose curves and providing precise patient level risk assessment of hyperglycemia using 
extreme value statistics and comparing these assessments with traditional indicators of glycemic variability which are not 
designed to specifically capture the risk of hyperglycemia.

Research Design and Methods: One year return level (blood glucose level exceeded exactly once every year on average) 
and probability of exceeding and expected time spent above certain thresholds (600 and 400 mg/dL) per year were calculated. 
As a comparison, traditional metrics for glycemic variability were determined too. The effect of body mass index on extremes 
was also investigated using non-stationary models. Metrics were calculated on a dataset containing 170.8 patient-years of 
measurements of 226 patients.

Results: Nine high-risk patients were identified with the novel metrics: their estimated time spent above 600 mg/dL per year 
were above 2 hours. These patients were at moderate risk according to the traditional metrics. Higher body mass index was 
associated with more extreme glucose levels.

Conclusions: Through these estimates it is possible to assess each patient’s individual clinical risk of hyperglycemia even 
beyond the observed blood glucose levels and detection limits. Additionally, it allows the assessment of the impact of clinical 
characteristics and treatments on blood glucose control in a novel, mathematically well-founded and potentially clinically 
more useful way than the already existing indicators.
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thus, it might be measured for patient maybe a couple or 
dozen times through their clinical history and that is often 
enough for clinical decision making.

However, advances in measurement technology make dia-
betology an exception. In particular, with the widespread 
availability of continuous glucose monitoring (CGM), high-
frequency (typically 5 minutes sampling time) and longer-
term (up to a week even in routine clinical practice) 
measurements became possible relatively long time ago.6 But 
metrics to measure glycemic variability (GV) from blood glu-
cose curves provided by CGM are still not optimal and widely 
agreed upon7-9 even until very recently.10 Additionally, the 
lack of accuracy and reliability limits their use in clinical prac-
tice.11 Even more importantly, while GV and risk of hypergly-
cemia are likely correlated, traditional GV metrics are 
inherently limited as hyperglycemia risk metrics as they are 
very insensitive to high values if there are only a few of them. 
This is in contrast both to intuition (even a single or very few 
measurements above, say, 400 mg/dL raises the fear that the 
patient has a high risk of hyperglycemia) and to the mathemat-
ical behavior of extreme values as described by EVS.

The current practice of summarizing continuously mea-
sured blood glucose curves uses several indicators, such as 
the Mean Amplitude of Glycemic Excursions (MAGE),12 
using glycemic excursions in excess of 1 standard deviation 
(SD) above the mean, the Continuous Net Overall Glycemic 
Action (CONGA),13 which is the SD of the differences 
between measurements taken at regular time intervals, sim-
ple coefficient of variation (CV; ratio of the SD to the mean), 
interquartile range, or percentage time spent in, above or 
below standardized clinical target glucose ranges14 or the 
control-variability grid analysis (CVGA) plot15 (which is 
essentially the same, but in graphical form) and other type of 
graphical tools16 and composite metrics17 which enable the 
rapid evaluation of the CGM measurements collected for 
several days or weeks.

Instead of these metrics, EVS allows the estimation of the 
probability that the measurement exceeds a certain threshold 
(which is the relevant factor for hyperglycemia), even if such 
values were never observed in the sample. By taking the sam-
pling frequency into account, this can be used to calculate the 
probability that the patient’s blood glucose will be above a 
threshold in a given time span (e.g., in 1 year) and the expected 
time spent above the threshold in the interval. The concept of 
return level is also often used in EVS: this is the level, blood 
glucose value in the present case, that is expected to be 
exceeded exactly once in every year (or any other time inter-
val specified, usually called the return period).

Taken together, these factors raise the possibility that met-
rics based on EVS are more useful to accurately capture the 
risk of hyperglycemia.

Following our previous works18,19 the aim of the present 
study is therefore the investigation of how EVS can be 
applied to characterize blood glucose curves and provide 
patient level risk assessment of hyperglycemia.

Methods

Blood glucose measurements will be considered as realiza-
tions of a random variable, that is, instead of analyzing it on 
the time domain, we will focus on the extremes of these 
observations; for simplicity, the modeling of maximum will 
be considered here.

The behavior of the maximum of random variables were 
described by Ronald Fisher and Leonard Henry Caleb Tippett 
in 192820 and this result was later proven by Boris 
Vladimirovich Gnedenko in 1943.21 Together these form the 
Fisher–Tippett–Gnedenko theorem which establishes that if 
there are constants with which the maximum of independent 
and identically distributed random variables can be linearly 
transformed so that this renormalized variable converges to a 
non-degenerate distribution, then this distribution must be 
one of the following:
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Here µ∈R  is the location, σ > 0  is the scale and ξ∈R  is 
the shape parameter.

While this formulation is suitable for analysis from the 
probability theory point of view, in statistical investigation 
the maxima has to be estimated. A sample is needed, so we 
can’t simply take the maximum of the whole series. One of 
the possible solutions is the so-called block maxima (BM) 
method, which first splits the data to equal sized blocks and 
takes only the maximum of each block to form a secondary 
sample to analyze, that is, BM are used to capture maxima.

It should be noted that blood glucose observations are  
temporally dependent (likely positively autocorrelated). Fortu
nately, this causes minimal difficulty in case of the BM approach 
(in contrast to the other, so-called peak over threshold 
approach).22 In the BM method, local dependence is much less 
of concern, and even for the long-term dependence only a rather 
weak condition (the so-called D(un) condition of Leadbetter)23 
is required to ensure that BM of the dependent data will have 
the same distribution as independent data would have. It is 
true that the parameters will be different if the data are depen-
dent, but as parameters are estimated from the sample any-
way, it causes no problem.22 (The drawback of the BM 
approach is the less efficient use of sample size, but as we 
now have very large samples this is of less concern.)

Patient Data

The REPLACE-BG24 trial’s dataset excluding the calibration 
measurements obtained through the T1D Exchange25 was 



402	 Journal of Diabetes Science and Technology 17(2)

used in the present investigation containing 14.8 million 
CGMS measurements of 226 patients (median duration: 33 
weeks) with Type I diabetes. The sampling frequency was 5 
minutes using Dexcom G4 Platinum CGM device (Dexcom, 
San Diego, California). Basic clinical data (except age) were 
available for all patients.

The patients were relatively homogeneous due to the 
inclusion and exclusion criteria of the REPLACE-BG 
study.24 Of note, patients with more than 1 episode of dia-
betic ketoacidosis (DKA) in the past year were excluded, and 
it is also known that no patient had DKA during the study. 
Patients with an estimated glomerular filtration rate <30/
min/1.73 m2 obtained within the prior 12 months as part of 
usual care or kidney transplant were excluded as well, and no 
serious events occurred that could have realistically led to 
renal dialysis or mannitol administration.24 Seven partici-
pants were hospitalized for a total of 8 times, including a 
single surgery; none of these were related to glucose 
metabolism.24

Patients were on insulin pump for at least 3 months prior 
to the starting of the measurements and were not using a low-
glucose-suspend function.24 We had no information on the 
actual pump usage, but due to the inclusion criteria of 
REPLACE-BG it could be assumed that no long-term lack of 
pump usage occurred during the measurements.

Classical Metrics

Classical metrics were calculated for each patient. These 
metrics included the time spent in standardized ranges speci-
fied by Battelino et al,14 mean daily CONGA,13 CV,26 inter-
quartile range (IQR),27 and mean daily MAGE12 and 
MAGE+ which is the same but for the ascending phases 
only.

Statistical Methods

Block maxima method was used to analyze the dataset. Two 
different models were investigated: one in which each 
parameter is allowed to be different from patient to patient, 
and a non-stationary in which all parameters were allowed to 
be—linear—functions of BMI.

Probabilities for exceeding, and estimated time spent 
above the clinically relevant level of 600 mg/dL (threshold 
for diabetic hyperosmolar syndrome)28 and 400 mg/dL, in 
addition to 1 year return level were calculated for each 
patient. Neither missing clinical nor CGM data were imputed.

Programs Used

The analysis was carried out using the R statistical program 
package version 4.1.029 with ExtRemes 2.130 and gluvarpro 
4.031 packages.

Results

Patient Characteristics

The histogram of all measurements are shown in Figure 1. 
We can observe a skewed distribution with 2 “spikes” at the 
two ends of the histogram which strongly indicates that there 
are lower and upper detection limits present leading to the 
loss of information. Dexcom G4 Platinum’s user’s manual32 
confirms that the detection limits are 40 to 400 mg/dL. We 
found no literature that investigates the impact of the pres-
ence of an upper detection limit on GV metrics.

Of the 226 patients, 114 (50.5%) were male, mean age 
was 44 years (SD = 14) and mean HbA1c was 7.0 (SD = 
0.6) at baseline, however due to the anonymization, only 
height, weight and ethnicity were available on patient level.

Figure 1.  Histogram of all CGM measurements. Abbreviation: CGM, continuous glucose monitoring.
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Risk Assessment of Hyperglycemia of Individual 
Patients

The BM models were fitted to the dataset with the block 
maximum calculated with a block size of 12 (of 5 minutes 
long periods, i.e., hourly maxima were calculated) for each 
patient’s CGM record separately so all 3 parameters of the 
generalized extreme value distribution were estimated 
individually.

The median and (range) of the parameters were: shape 
ξ : .−0 077 (-0.432, 0.107); location  : .150 2  (94.6, 251.5) 
and scale σ : .52 3  (15.4, 100.3). The distribution of the 
parameters of the fitted models for each patient can be found 
in Figure S1.

Results expressed as return levels with their 95% confi-
dence interval (CI) are plotted in Figure S2; CIs indicate rea-
sonably precise estimates.

With the BM approach we were also able to calculate the 
probability that the blood glucose level exceeds a certain 
threshold, as the appropriate quantile of the fitted distribu-
tion and through this we are able to estimate the proportion 
or actual time spent above this threshold.

The expected number of hours spent above 600 mg/dL 
(Figure S3) and above 400 mg/dL (Figure S4) over a year 
were also plotted.

Comparison with Classical Metrics

The distribution and relationship of classical GV metrics and 
the metrics calculated with EVS (1 year return level and 
hours spent above 600 and 400 mg/dL) are shown on Figure 
2 and Figure S5. The highlighted patients are those 9 patients 
who are estimated to spend more than 2 hours above 600 mg/
dL a year, thus are at highest risk of hyperglycemia. Figure 2 
shows that these patients had moderate scores in percentage 
time above range (TAR) >250 mg/dL, CONGA, IQR and 
MAGE but were in the top third in Coefficient of Variation 
and—obviously—had the highest return levels. It also shows 
that they had the their estimated times above 400 mg/dL is 
mixed: a patient can spend more time above 400 mg/dL but 
less above 600 mg/dL or the other way around and the low 
correlation between these too metrics is due to that the major-
ity of their values were zero.

Return level and hours spent above 400 mg/dL were com-
pared with standardized clinical ranges14 in Figure S5 with 
the same patients highlighted as in Figure 2. Interestingly, 
the estimated time spent above 400 mg/dL had a strong nega-
tive correlation with the time in (target) range (TIR 70-180) 
and as expected correlated with the categories corresponding 
to the higher glucose levels similarly to the return level.

The histogram of CGM measurements of the 9 high risk 
patients show that 8 of them were heavily affected by the 
detection limits (Figure 3). Looking at the top 20 patients 
(Figure S6) the ratio of patients relevantly reaching the upper 
detection limit is still very high.

Non-Stationary Models: The Impact of BMI

Additionally, we modeled the effect of BMI on blood glu-
cose extremes using a non-stationary model where all 3 
parameters might depend on BMI. The effect of BMI on all 
parameters was statistically significant, with each unit of 
BMI changing the shape parameter with βξ1 0 0025= − .  
(95% CI: -0.0028, -0.0022), the location parameter with 
βµ 1

0 76= .  (95% CI: 0.73, 0.79), and the scale parameter 
with βσ 1

0 400= .  (95% CI: 0.381, 0.418).
The overall effect of BMI on the distribution of the hourly 

maximum is shown in Figure 4. Compared to the reference 
level of 20, having 40 BMI was associated with a flatter dis-
tribution thus higher variability and a shift toward higher val-
ues and prolonged tail. Note that despite BMI added as a 
linear parameter its effect on the results is non-linear, as 
maxima depends non linearly on the shape parameter.

Accuracy of CGM Measurements

The validation of CGM measurements, especially unusual 
values was essential; fortunately, the REPLACE-BG dataset 
included confirmatory blood glucose measurements (BGM).

We compared CGM measurements over 300 mg/dL with 
corresponding blood glucose measurements within +/- 2.5 
minutes time frame where this was available (N = 15,965). 
These were plotted against each other and assessed graphi-
cally (Figure S7).

Additionally, Figure S8 shows the histogram of the cor-
responding blood glucose measurements where the CGM 
measurement was exactly 400 mg/dL (N = 1,603).

These analyses show that BGM values randomly scatter 
around CGM values, and, importantly, this is true even for 
the case when CGM was 400 mg/dL. Should those CGM 
measurements result from a malfunction (which won’t affect 
the BGM), the results wouldn’t scatter around the CGM 
value, thus this finding rules out the possibility of a system-
atic error with high certainty.

Discussion

Previously in the biomedical field, EVS methods like the 
BM approach were rarely used. Although EVS was used to 
analyze cholesterol levels33 or pneumonia and influenza 
deaths,34 the lack of sufficient data is a serious limitation in 
the application of EVS in biomedical field. Our study is the 
first where EVS was applied in diabetology, moreover on a 
particularly large dataset.

Our aim was to demonstrate that EVS enables us to 
characterize a blood glucose curve focusing on the more 
relevant extremes if hyperglycemia risk is to be captured, 
which can be used—among others—to create patient-level 
summary metrics and to assess the impact of clinical char-
acteristics or treatments in a more precise and practical 
way.

µ
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In general there are not many patients who got high score 
according to the classical metrics but low score with the EVS 
metrics, but for EVS-based metrics, the patients with the highest 
values (and thus the highest attributable risk) had moderate 

values with the regular metrics meaning they were not identified 
as high-risk patients using regular values. The examination of 
these cases shows that these patients often reached the upper 
detection limit of the CGMS sensor at 400 mg/dL.

Figure 2.  Pairwise scatterplots, distribution and linear correlation coefficients of the investigated metrics. Distribution of each 
metric can be found in the main diagonal, pairwise correlation coefficients in the upper right triangle and their pairwise scatterplots in 
the bottom left half. The 9 highest risk patients according to the estimated time above 600 mg/dl obtained with EVS are highlighted. 
Abbreviations: CONGA, continuous net overall glycemic action; CV, coefficient of variation; EVS, extreme value statistics; Hrs 400+, 
EVS estimation of hours spent above 400 mg/dl per year; Hrs 600+, EVS estimation of hours spent above 600 mg/dl per year; IQR, 
interquartile range; MAGE, mean amplitude of glycemic excursions; RL, return level; TAR (>250), observed time above range (TAR) 
spent above >250 mg/dl.
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Our hypothesis was that traditional GV metrics are inher-
ently limited as hyperglycaemia risk metrics as they are 
insensitive to high values if there are only a few of them. To 
investigate this issue, we performed an additional analysis: 
we checked the behavior of both traditional variability met-
rics and our new, proposed metrics if saturation point is artifi-
cially lowered by replacing values above it with the saturation 
point. This essentially means testing on a synthetic dataset, 
i.e., we could simulate the effect of saturation this way (of 
course only for saturation levels < 400 mg/dL). Results 
shown on Figure 5 and Figure S9 confirmed that traditional 
metrics are very insensitive to saturation (i.e., extreme values) 
making them unlikely to be a good metric for the risk of 
hyperglycemia, in contrast to our proposed metrics.

Through the non-stationary analysis we found that higher 
BMI is associated with higher variability. This is in contrast 
to a previous study, that reported an association of higher 
BMI with lower glycemic variability metrics.35

The assessment of the confirmatory blood glucose mea-
surement was based upon a large sample and characterized 

Figure 3.  Histograms of CGM measurements of the patients with the highest risk. Abbreviation: CGM, continuous glucose monitoring.

Figure 4.  The effect of BMI on the distribution of the hourly 
maximum blood glucose. Abbreviation: BMI, Body Mass Index.
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the level and distribution of measurement errors at high glu-
cose levels and the findings confirmed that our results were 
based on valid measurements.

Conclusion

The main advantage of using EVS models is that we are able 
to provide risk assessment for hyperglycemia on patient 
level, way beyond the scope of the observation time and 
detection levels on strong statistical fundamentals which the 
generally used methods in this field are not capable of.

A further development could extend these methods to 
analyze minimums in a similar way. Another limitation—
and therefore way for possible extension—is to allow the 
covariates to have non-linear effect on the parameters (pos-
sibly using splines). It would be also beneficial to investigate 
the temporal coherence of these metrics, quantifying their 
variability for the same patient between different days or 
weeks. Most importantly, these metrics have to be externally 
validated on hard endpoints, that is, by comparing onset of 
complications with the values of the novel metrics. This, 
however, requires very long follow-up and large sample size.

Figure 5.  Impact of upper saturation level (trimming) on traditional GV metrics and metrics based on EVS. Values obtained with the 
given upper saturation level were divided with the original value (i.e., when only the physical 400 mg/dl saturation level was in effect). 
Abbreviations: CONGA, continuous net overall glycemic action; CV, coefficient of variation; EVS, extreme value statistics; GV, glycemic 
variability; Hrs 400+, EVS estimation of hours spent above 400 mg/dl per year; Hrs 600+, EVS estimation of hours spent above 600 mg/
dl per year; IQR, interquartile range; MAGE, mean amplitude of glycemic excursions; RL, return level; TAR (>250), observed time above 
range (TAR) spent above >250 mg/dl.
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Abbreviations

BM, Block Maxima; CGM, Continuous Glucose Monitoring; 
CONGA, Continuous Net Overall Glycemic Action; CV, 
Coefficient of Variation; CVGA, Control-Variability Grid Analysis; 
DKA, diabetic ketoacidosis; EVS, Extreme Value Statistics; GV, 
Glycemic Variability; IQR, Interquartile Range; MAGE, Mean 
Amplitude of Glycemic Excursions; SD, Standard Deviation.
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