
Integrative Systems

Physiological Condition-Dependent Changes in
Ciliary GPCR Localization in the Brain
Kathryn M. Brewer,1 Staci E. Engle,1 Ruchi Bansal,1 Katlyn K. Brewer,1 Kalene R. Jasso,2

Jeremy C. McIntyre,2 Christian Vaisse,3 Jeremy F. Reiter,4 and Nicolas F. Berbari1,5,6

https://doi.org/10.1523/ENEURO.0360-22.2023

1Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, 2Department
of Neuroscience and Center for Smell and Taste, University of Florida, Gainesville, Florida 32603, 3Diabetes Center
and Department of Medicine, University of California San Francisco, San Francisco, California 94143, 4Department of
Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco,
California 94158, 5Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana 46202, and 6Center
for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46202

Abstract

Primary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell
types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled recep-
tors (GPCRs) and are critical for mediating the signaling of these receptors. Several of these neuronal
GPCRs have recognized roles in feeding behavior and energy homeostasis. Cell and model systems,
such as Caenorhabditis elegans and Chlamydomonas, have implicated both dynamic GPCR cilia local-
ization and cilia length and shape changes as key for signaling. It is unclear whether mammalian ciliary
GPCRs use similar mechanisms in vivo and under what conditions these processes may occur. Here, we
assess two neuronal cilia GPCRs, melanin-concentrating hormone receptor 1 (MCHR1) and neuropeptide-Y
receptor 2 (NPY2R), as mammalian model ciliary receptors in the mouse brain. We test the hypothesis that
dynamic localization to cilia occurs under physiological conditions associated with these GPCR functions.
Both receptors are involved in feeding behaviors, and MCHR1 is also associated with sleep and reward.
Cilia were analyzed with a computer-assisted approach allowing for unbiased and high-throughput analysis.
We measured cilia frequency, length, and receptor occupancy. We observed changes in ciliary length, re-
ceptor occupancy, and cilia frequency under different conditions for one receptor but not another and in
specific brain regions. These data suggest that dynamic cilia localization of GPCRs depends on properties
of individual receptors and cells where they are expressed. A better understanding of subcellular localization
dynamics of ciliary GPCRs could reveal unknown molecular mechanisms regulating behaviors like feeding.
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Significance Statement

Often, primary cilia localize specific G-protein-coupled receptors (GPCRs) for subcellular signaling.
Cell lines and model systems indicate that cilia deploy dynamic GPCR localization and change their
shape or length to modulate signaling. We used mice to assess neuronal cilia GPCRs under physiolog-
ical conditions associated with the known functions of receptors and ciliopathy clinical features like
obesity. We show that particular cilia with specific GPCRs appear to dynamically alter their length,
while others appear relatively stable under these conditions. These results implicate multiple themes
across cilia GPCR-mediated signaling and indicate that not all cilia modulate GPCR signaling using
the same mechanisms. These data will be important for potential pharmacological approaches to tar-
get cilia GPCR-mediated signaling.
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Introduction
Cilia are nearly ubiquitous, small microtubule-based

cellular appendages critical for proper development and
homeostasis where they coordinate specific signaling
pathways (Reiter and Leroux, 2017). Thus, cilia structure
or function defects can result in many disorders with a
broad array of clinical features (Reiter and Leroux, 2017).
Collectively known as ciliopathies, these disorders are
often associated with neural developmental or behav-
ioral deficits. In addition, certain ciliopathies are associ-
ated with increased feeding behavior and obesity (Vaisse
et al., 2017; Engle et al., 2021; Lee et al., 2022). Altered
hypothalamic cilia signaling has been implicated in cilio-
pathies associated with obesity (Davenport et al., 2007;
Loktev and Jackson, 2013; Sun et al., 2021; Wang et al.,
2021b,c).
Despite their clinical relevance and an understanding

of cilia-mediated signaling in development, little is known
about the roles of cilia on terminally differentiated neurons
in vivo and how they influence mammalian behaviors. A
diverse set of G-protein-coupled receptors (GPCRs)
appear to preferentially localize to cilia, including spe-
cific GPCRs with known roles in feeding behavior and
energy homeostasis, such as melanin-concentrating
hormone receptor 1 (MCHR1) and neuropeptide-Y re-
ceptor 2 (NPY2R) (Berbari et al., 2008a,b; Loktev and
Jackson, 2013).
During embryonic development, dynamic localization of

signaling machinery and a GPCR (GPR161) to the ciliary
compartment in a ligand-dependent manner is critical for
proper hedgehog signaling (Mukhopadhyay et al., 2013;
Hwang and Mukhopadhyay, 2015; Pal et al., 2016). In ad-
dition, Chlamydomonas and Caenorhabditis elegans use
cilia length, shape, vesicular shedding, and receptor lo-
calization changes to mediate signaling (Mukhopadhyay
et al., 2008; Olivier-Mason et al., 2013; Wang et al., 2020,
2021a). Mammalian cell line data also clearly demonstrate
the dynamic localization of ciliary GPCRs as a potential
mechanism to mediate signaling, and ciliopathy mutations
are associated with deficits in these processes (Ye et al.,
2013; Nager et al., 2017; Phua et al., 2017; Shinde et al.,
2020).

In mammalian adult homeostasis, less is understood
about how cilia mediate GPCR signaling in the CNS. The
most well studied examples are the photoreceptor and
olfactory sensory neuron cilia, which mediate opsin/rho-
dopsin and odorant receptor signaling for vision and ol-
faction (Singla and Reiter, 2006; Berbari et al., 2009).
Here, we sought to determine whether cilia GPCR local-
ization, frequency, and length dynamics change within
brain regions associated with both the specific GPCR
function and ciliopathy-associated clinical features such
as obesity. We focused on two ciliary GPCRs: MCHR1 and
NPY2R. Both are expressed in the brain, including hypo-
thalamic feeding centers. MCHR1 has also been implicated
in sleep and reward (Pissios et al., 2008; Presse et al., 2014;
Blanco-Centurion et al., 2019; Dilsiz et al., 2020). To deter-
mine whether these GPCRs dynamically localize to cilia in
vivo, we assessed their localization under different feeding
conditions. We hypothesized that cilia GPCRs throughout
the CNS would dynamically localize to the compartment
based on changes in signaling, similar to other model sys-
tems and cell line data.

Materials and Methods
Mice
All procedures were approved by the Institutional

Animal Care and Use Committee at Indiana University-
Purdue University Indianapolis. Adult C57BL6/J mice
were obtained from The Jackson Laboratory (stock
#022409). Unless identified within the figure (see Fig.
2), all experiments were conducted in male animals.
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Figure 1. Antibody validation in MCHR1KO and Mchr1mCherry fu-
sion allele animals. A, MCHR1 knock-out mice show ACIII-
positive cilia but show no MCHR1-positive cilia. B, MCHR1
mCherry-tagged mice show colocalization of MCHR1 and
mCherry tag-positive cilia. Scale bars, 10 mm. Hoechst nu-
clei blue stain was used. Arrows indicate example cilia. N = 3
animals/genotype.

Received September 6, 2022; accepted January 29, 2023; First published
February 27, 2023.
The authors declare no competing financial interests.
Author contributions: K.M.B., S.E.E., and N.F.B. designed research; K.M.B.,

R.B., K.K.B., and N.F.B. performed research; K.R.J. and J.C.M. contributed
unpublished reagents/analytic tools; K.M.B., C.V., J.F.R., and N.F.B. analyzed
data; K.M.B., S.E.E., R.B., C.V., J.F.R., and N.F.B. wrote the paper.
This work was funded by National Institute of Diabetes and Digestive and

Kidney Diseases Grant R01-DK-114008 to N.F.B., American Heart Association
Fellowship Grant 18PRE34020122 to R.B., National Institutes of Health (NIH)
Grant F31-DC-019312 to K.R.J., and NIH Grant R21-DA-047623 to J.C.M.
Acknowledgment: We thank Lata Balakrishnan for critical review.
Correspondence should be addressed to Nicolas F. Berbari at nberbari@

iupui.edu.
https://doi.org/10.1523/ENEURO.0360-22.2023

Copyright © 2023 Brewer et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 13

March 2023, 10(3) ENEURO.0360-22.2023 eNeuro.org

mailto:nberbari@iupui.edu
mailto:nberbari@iupui.edu
https://doi.org/10.1523/ENEURO.0360-22.2023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Unless stated otherwise, mice were housed on a standard
12 h light/dark cycle with ad libitum food and water.

Feeding conditions
Fed mice were allowed ad libitum access to food,

fasted mice had no food overnight (;16 h), and Refed
mice were given 4 h of ad libitum access to food immedi-
ately after an overnight fast.

Diet-induced obesity
Mice were fed either a standard chow diet consisting of

13% fat, 58% carbohydrate, and 28.5% protein caloric
content (catalog #5001, LabDiet) or a calorie-rich, high-fat
diet (HFD) consisting of 60% fat, 20% carbohydrate, and
20% protein caloric content beginning at 8 weeks of age
(catalog #D12492, ResearchDiets). Mice were weighed
weekly before proceeding to tissue analysis after 11weeks
on these diets and the onset of obesity.

Circadian time point conditions
Mice were randomly assigned to light or dark cycle per-

fusion groups. One hour before the light cycle [zeitgeber
time 23 (ZT23)] and 4 h before the dark cycle (ZT8), mice
were anesthetized and perfused under their respective
dark/light conditions.

MCHR1 antagonist treatment
As previously described, mice were given an injection

of the MCHR1 antagonist GW803430 (GW; 3mg/kg, i.p.;
catalog #4242, Tocris Bioscience) or vehicle control for 7
d, 3 h after the start of the light cycle (Alhassen et al.,
2022). One week before the start of injections, mice were
singly housed. Body weights were measured on the first
day before injections to calculate the correct vehicle vol-
ume and dosage of GW treatment. MCHR1 antagonist
was made fresh daily at a concentration of 0.5mg/ml in 2
ml aliquots, (1mg of GW, 8 ml of acetic acid, 1.6 ml of

Shell
Male Female

A
C

III
M

C
H

R
1

M
er

ge

Length

A
ve

ra
ge

 M
C

H
R

1 
C

ili
ar

y 
In

te
ns

ity
 (A

U
)

M
C

H
R

1 
C

ili
a 

Le
ng

th
 (μ

m
)

A

0

5

10

15

20

0

ARC PVN Core Shell

ARC PVN Core Shell

2

4

6

8 Intensity

Male
Female
Male
Female

MCHR1 (ACIII Negative)

MCHR1|ACIII Colocalized

MCHR1 Cilia 
FrequencyB

* * * * * * * *

0

100

200

300

ARC PVN Core Shell

Figure 2. MCHR1 cilia localization is similar in adult male and female mice. A, Representative immunofluorescence images of neuro-
nal cilia (ACIII, green) and MCHR1 (red) in the Shell of males and females. Scale bars, 10 mm. Hoechst nuclei blue stain was used.
Arrows indicate example cilia. B, Mean MCHR1 cilia frequency per animal in the ARC, PVN, and the core and shell of the nucleus
accumbens for cilia that have only MCHR1 [MCHR1 (ACIII Negative)] and cilia that have both MCHR1 and ACIII (MCHR1|ACIII
Colocalized). Mean MCHR1 cilia length and intensity in MCHR1 (ACIII Negative) cilia or in MCHR1|ACIII colocalized cilia in the ARC,
PVN, and the core and shell (nested t test, p. 0.05 for all male vs female comparisons in each region). N=5 animals/group with an
average of 250 cilia per brain nuclei of each animal analyzed. *p , 0.05.
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water, 125 ml of 2% Tween 80, and 100 ml of 1N NaOH).
Mice were weighed on the morning of the last treat-
ment day (day 7) and perfused 60–90min after the last
injection.

Fixation and tissue processing
Mice were anesthetized with a 0.1 ml/10 g body weight

dose of 2.0% tribromoethanol (Sigma-Aldrich) and trans-
cardially perfused with PBS, followed by 4% paraformal-
dehyde in PBS (catalog #15710, Electron Microscopy

Sciences). Brains were postfixed in 4% paraformaldehyde
for 4 h at 4°C and then cryoprotected using 30% sucrose
in PBS for 16–24 h. Cryoprotected brains were embedded
in optimal cutting temperature compound (catalog #4585,
Thermo Fisher Scientific) and sectioned at 15 mm.

Immunofluorescence
Sections were washed with PBS for 5min, then perme-

abilized and blocked in a PBS solution containing 1%
BSA, 0.3% Triton X-100, 2% (v/v) donkey serum, and
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Figure 3. Acute feeding status alters MCHR1 length specifically in the PVN. A, MCH immunofluorescence staining (red) and inten-
sity measurement (Heat) significantly increased under fasted conditions in the lateral hypothalamus (Student’s t test, p=0.0024,
0.415 6 0.120 a.u.). B, Representative immunofluorescence images of neuronal cilia (ACIII, green) and MCHR1 (red) in the PVN of
ad libitum-fed (Fed) and fasted (Fast) animals. Scale bars, 10 mm. Hoechst nuclei blue stain was used. Arrows indicate example cilia.
C, Mean MCHR1 cilia frequency per animal in the ARC, PVN, and the core and shell of the nucleus accumbens for cilia that have
only MCHR1 [MCHR1 (ACIII Negative)] and cilia that have both MCHR1 and ACIII (MCHR1|ACIII Colocalized). Mean MCHR1 cilia
length and intensity in cilia with just MCHR1 (ACIII Negative) or in MCHR1|ACIII colocalized cilia. Significant changes in MCHR1|
ACIII colocalized cilia length were observed in the PVN (nested t test, p=0.020, 0.62 6 0.21 mm). N=5 animals/treatment group
with an average of 200 cilia/brain nucleus of each analyzed. *p, 0.05.
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0.02% sodium azide for 30min at room temperature.
Sections were incubated with primary antibodies in
blocking solution overnight at 4°C. Primary antibodies
include anti-MCHR1 (rabbit pAB; 1:250 dilution; catalog
#711649, Thermo Fisher Scientific), anti-adenylate cy-
clase 3 [ACIII; 1:1000 dilution; chicken polyclonal anti-
body (pAb); CPCA-ACIII, Encor], anti-mCherry (chicken
pAb; 1:1000 dilution; catalog NBP2-25158, Novus),
anti-MCH (1:200 dilution; rabbit mAb; catalog #274415,
Abcam). Sections were then washed with PBS before
incubating with secondary antibodies for 1 h at room

temperature. Secondary antibodies include donkey
conjugated Alexa Fluor 647 and 488 (1:1000; Thermo
Fisher Scientific) against appropriate species according
to the corresponding primary. All primary and second-
ary solutions were made in the blocking solution de-
scribed above. Slides were then washed in PBS and
stained with Hoechst nuclear stain (catalog #H3570,
Thermo Fisher Scientific) for 5min at room temperature.
Coverslips were mounted using SlowFade Diamond
Antifade Mountant (catalog #S36972, Thermo Fisher
Scientific).
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Figure 4. HFD-induced obesity does not influence MCHR1 cilia localization. A, High-fat diet-induced obese and chow-fed control
animal body weights (Student’s t test; p=0.008 at 2weeks and is ,0.0001 onward). B, Representative immunofluorescence images
of neuronal cilia (ACIII, green) and MCHR1 (red) in the Shell of control diet (Chow) and HFD-induced obese males. Scale bars,
10 mm. Hoechst nuclei blue stain was used. Arrows indicate example cilia. C, Mean MCHR1 cilia frequency per animal in the ARC,
PVN, and the core and shell of the nucleus accumbens for cilia that have only MCHR1 [MCHR1 (ACIII Negative)] and cilia that have
both MCHR1 and ACIII (MCHR1|ACIII Colocalized). Mean MCHR1 cilia length and intensity in cilia with just MCHR1 [MCHR1 (ACIII
Negative)] or in MCRH1|ACIII colocalized cilia (nested t test, p. 0.05). N=5 animals per treatment group with an average of 250
cilia/animal and nuclei analyzed. *p, 0.05.
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Mchr1 antibody validation
Brain sections from previously described Mchr1 knock-out

mice (Mchr1KO) and fluorescent reporter mice (Mchr1mCherry)
were used for immunofluorescence to confirm the fidelity of
the anti-MCHR1 antibody used throughout (Fig. 1A,B; Jasso
et al., 2021).

Confocal imaging
All images were acquired using a Leica SP8 confocal

microscope in resonant scanning mode using a 63�, nu-
merical aperture 1.4 objective. For all images collected,
16 bit image files were used for subsequent analysis.

Image analysis
Cilia analysis was performed as previously described

(Bansal et al., 2021). Briefly, sum projection images from
captured z-stacks were analyzed using the artificial intelli-
gence module, which had been trained to recognize cilia
in brain section images. As part of the GA3 recipe, objects
,1 mm in length were removed from the analysis. There
were four to five mice per experimental condition, with
four images captured per brain nucleus.

Statistical analysis
All statistical tests were performed using GraphPad

Prism. All statistically significant observations are noted in

the figures and specific tests used are named within the
legends.

Results
To understand whether cilia GPCRs dynamically local-

ize in vivo under physiological contexts associated with
receptor activity, we initially chose to assess the known
ciliary GPCR MCHR1. We assessed its ciliary localization
in conjunction with the broadly expressed CNS ciliary
membrane-associated ACIII (Bishop et al., 2007; Berbari
et al., 2008b; Hsiao et al., 2021; Kobayashi et al., 2021;
Alhassen et al., 2022). We confirmed our MCHR1 antibody
immunofluorescence specificity by observing the loss of
ciliary staining in aMchr1 knock-out allele mouse brain and
colocalization with a Mchr1-mCherry knock-in fusion allele
mouse (Fig. 1; Jasso et al., 2021). For our broader analysis
of cilia localization, we used our recently reported com-
puter-assisted approach for measuring cilia frequency,
length, and fluorescence intensity (Bansal et al., 2021). This
approach offers the advantages of being less biased and
having higher throughput.
As the MCH and MCHR1 signaling axis displays sexual

dimorphism, our initial analysis compared cilia frequency,
length, and fluorescence intensity in adult male and fe-
male mice (Messina et al., 2006; Santollo and Eckel,
2008). Surprisingly, we did not observe differences in cilia
frequency, length, or MCHR1 intensity in any of the brain
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regions assessed, including the hypothalamic arcuate
(ARC) and paraventricular nucleus (PVN), and the nucleus
accumbens (shell and core) between males and females
(Fig. 2). Interestingly, we did observe length differences
between MCHR1-only, (ACIII negative) positive cilia and
MCHR1|ACIII double-positive cilia, where MCHR1|ACIII
colocalized cilia were significantly longer (Fig. 2B). This
length difference between the two cilia populations was
observed throughout our data. As we did not observe dif-
ferences between males and females, we continued the
remaining studies using adult males.
MCHR1 function has been extensively implicated in

feeding behaviors, body weight, and energy homeostasis
(for recent review, see Al-Massadi et al., 2021). Its ligand,
MCH, is increased following acute fasting (Simon et al.,
2018). Upon a 16 h fast, we observed an increase in MCH

ligand immunostaining in the lateral hypothalamus, the
known site of MCH expression (Fig. 3A; Zamir et al., 1986).
We next assessed the impact of fasting on ciliary MCHR1 in
hypothalamic nuclei associated with this behavior, the ARC
and PVN, and the nucleus accumbens, a site of high
MCHR1 ciliary localization (Berbari et al., 2008a). We did
not observe changes in cilia frequency or MCHR1 intensity
(Fig. 3B,C). Surprisingly, we only observed significant fast-
ing-associated increases in MCHR1|ACIII colocalized cilia
length within the PVN (Fig. 3C). To determine whether body
weight and obesity can influence MCHR1 ciliary localiza-
tion, we assessed the brains of high-fat diet-induced obese
mice (Fig. 4A). Obesity did not influence cilia frequency,
length, or MCHR1 fluorescence intensity in the ARC, PVN,
or accumbens (Fig. 4B,C). MCHR1 signaling has also been
implicated in sleep/wake cycles (Blanco-Centurion et al.,
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2019). To determine whether MCHR1 cilia localization
changes with the light cycle, we assessed brains at ZT8
(light) and ZT23 (dark). We initially assessed the suprachias-
matic nucleus (SCN), the classic region involved in circa-
dian rhythms and where light cycle-associated cilia length
changes have recently been implicated (Hastings et al.,
2018; Tu et al., 2022). While we do not observe MCHR1-
positive cilia in the SCN, we did note changes in ACIII cilia
similar to those observed by Tu et al. (2022; Fig. 5A).
Staining for the MCH ligand at both ZT8 and ZT23 did not

show changes (Fig. 5B). Interestingly, we also observed
changes in MCHR1 cilia frequency in the ARC and PVN
during the light/dark cycle with more cilia being observed in
the dark (ZT23; Fig. 6A,B). In addition, MCHR1|ACIII colo-
calized cilia length in the shell of the accumbens appeared
shorter in the dark cycle (ZT23; Fig. 6B). In the ARC, the av-
erage MCHR1 fluorescence intensity was significantly re-
duced in both populations of cilia at ZT23 (Fig. 6B).
After assessing multiple physiological conditions where

MCHR1 function has been implicated, we next looked to
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see whether overt pharmacological antagonism could in-
fluence MCHR1 ciliary localization. Injection of the antago-
nist GW803430 for 7 d resulted in significant loss in body
weight (Fig. 7A; Alhassen et al., 2022). MCHR1 antagonism
increased the frequency of MCHR1|ACIII colocalized cilia
in the ARC and in the PVN (Fig. 7C). Antagonism also in-
creased ciliary length in the accumbens core and shell for
both cilia populations (Fig. 7C). Interestingly, in the ARC
cilia length increases were observed only in MCRH1 (ACIII
negative) cilia (Fig. 7C).
To determine whether these results are specific to

MCHR1 or perhaps applicable to multiple neuronal ciliary
GPCRs, we assessed the localization of NPY2R, another
GPCR known to localize to cilia (Loktev and Jackson, 2013).
We focused our analysis on the ARC as we did not observe
NPY2R cilia localization in other brain regions of interest in
males or females (Fig. 8). Within the ARC, we also did not
observe changes in NPY2R cilia between sexes, in HFD-in-
duced obesity or at different circadian times (Fig. 9). Similar
to MCH, acute fasting also increases the levels of the
NPY2R ligand NPY (Yasrebi et al., 2016). Thus, we sought
to assess both MCHR1 and NPY2R on fasting and refed
states (Fig. 10). We only observed significantly longer
MCHR1 (ACIII-negative) cilia lengths in the refed condi-
tion compared with the fasted (Fig. 10A,B). However,
we observed significant cilia length changes in NPY2R
(ACIII-negative) and NPY2R|ACIII colocalized cilia. NPY2R
cilia were significantly longer in both the ad libitum fed and
refed conditions compared with the fasted condition (Fig.
10C,D). These results demonstrate that dynamic localiza-
tion to cilia is dependent on properties of the individual re-
ceptor and the brain region of expression in vivo.

Discussion
Cilia are recognized as mediators of diverse signaling

pathways, yet many questions remain unanswered re-
garding how they coordinate signaling. In cell line and
heterologous expression systems in vitro, dynamic local-
ization of receptors to the cilia membrane has been re-
ported for a number of ciliary GPCRs, including MCHR1
(Ye et al., 2018). In vivo dynamic localization to the cilia
as a means of signaling control has been best described
for cilia-mediated hedgehog signaling during development
(Bangs and Anderson, 2017). We sought to determine
whether cilia broadly deploy dynamic GPCR localization in
vivo to mediate signaling. We chose a ciliary receptor asso-
ciated with several physiological states and phenotypes,
including sexual dimorphic expression, acute feeding be-
havior, energy homeostasis, and sleep (Al-Massadi et al.,
2021). MCHR1 also has the advantage of being the only
known receptor for MCH in mice (Diniz and Bittencourt,
2019). In contrast, many other ciliary GPCRs are within a
family of receptors for certain neuropeptides. For example,
the ciliary somatostatin receptor 3 (SSTR3) is one of five re-
ceptors (SSTR1-5) for the ligand somatostatin (Yamada et
al., 1992a, b, 1993).
Our initial assessment of MCHR1 focused on the hypo-

thalamus for a number of reasons. Ciliopathies are known
to have deficits in hypothalamic control of energy homeo-
stasis (Davenport et al., 2007; Sun et al., 2021; Wang et

al., 2021c). MCHR1 fails to localize properly in obese cili-
opathy models of Bardet–Biedl syndrome (BBS; Berbari
et al., 2008a). In addition, Mchr1 expression is observed
in several hypothalamic nuclei under baseline conditions
(Engle et al., 2018). MCHR1 signaling has also been exten-
sively implicated in feeding behavior, energy homeostasis,
and metabolism. Agonism or activation of the pathway is
associated with increases in food intake, and loss-of-func-
tion alleles or pharmacological antagonism associated with
weight loss (for recent review of MCH and MCHR1 signal-
ing, see Al-Massadi et al., 2021).
We chose an antibody staining approach combined

with a computer-assisted analysis as this combination
was the best way to detect endogenous ciliary MCHR1 in
an unbiased and high-throughput manner. It also allows
us to readily observe hundreds of cilia per animal (Bansal
et al., 2021; Jasso et al., 2021).
We were surprised to find that our analysis revealed that

MCHR1 ciliary localization remained largely fixed across
males and females, on fasting and diet-induced obesity,
with only subtle significant changes observed in cilia length.
We also observed that MCHR1|ACIII-colocalized cilia were
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significantly longer than MCHR1 only (ACIII negative)
cilia. Our observation that ACIII cilia length changes
within the SCN depending on the light or dark cycle as
recently reported in a preprint (Tu et al., 2022), assured
us that our analysis could detect broad-scale changes in
cilia lengths, frequency, and localization. It was interest-
ing that we also detected length decreases in MCHR1|
ACIII colocalized cilia in the shell of the nucleus accumbens
in the dark cycle (Becker-Krail et al., 2022). This suggests
the potential for cilia-mediated signaling changes broadly
in the brain based on light conditions.

Pharmacological MCHR1 antagonism demonstrated
the most substantial changes in both cilia length and in-
tensity across different brain regions, but this approach
may not be physiologically relevant. However, this result
is in line with what cilia have been proposed to do when
their GPCR-associated signaling system is saturated or
overwhelmed by changing their lengths and shedding
cilia-specific vesicles (Nager et al., 2017; Phua et al.,
2017). These phenomena have been directly observed for
cilia in BBS cell models (Nager et al., 2017). It remains to
be seen how common cilia length regulation and vesicular
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shedding is deployed as a means of cilia-mediated signal-
ing in vivo. It is possible that both are important proc-
esses, but that under normal physiological conditions
they remain challenging to detect in mammalian systems
in vivo with currently available tools.
To further explore the possibility that other cilia GPCRs

could be relatively stationary in vivo, we investigated
another hypothalamic ciliary GPCR under physiological
conditions in which it has been implicated: NPY2R and
feeding status (Loktev and Jackson, 2013). Interestingly,
for NPY2R, we observed significant changes in length for
both cilia populations with fasted cilia being shorter and
refed cilia being longer compared with ad libitum-fed ani-
mals. These data suggest that NPY2R cilia are more dy-
namic on acute changes in feeding when compared with
MCHR1 cilia. At the neuroanatomical level, our data reveal
that specific brain regions independently localize certain

receptors to their cilia. In other words, the MCHR1/MCH
signaling axis localization behaves differently dependent
on the anatomic context. This opens up the possibility
that ciliary GPCRs may be dynamic depending on what
tissue is being investigated. For example, MCHR1 is po-
tentially expressed in peripheral tissues, and its ciliary lo-
calization in these contexts is unclear (Balber et al., 2019).
Overall, these data further point to the potential that many
ciliary GPCRs may need to be assessed independently
and in tissues and cells of interest to learn how their sig-
naling is mediated in vivo.
At the receptor level, our data point to the potential for

specific G-protein coupling being important for dynamic
localization to cilia. MCHR1 is thought to be Gai coupled
while NPY2R is Gas coupled. However, coupling at the
cilia for most nonodorant ciliary GPCRs is undetermined
(Loktev and Jackson, 2013; Saito et al., 2013). Our data

ACIII NPY2RNPY2R MERGE

FE
D

FA
ST

R
EF

ED

B
MCHR1 (ACIII Negative)
MCHR1/ACIII Colocalized

MCHR1 Length

CA ACIII MCHR1 MERGE

FE
D

FA
ST

R
EF

ED

0

5

10

15

20

25

Fed Fast Refed

M
C

H
R

1 
Le

ng
th

 (μ
m

)

MCHR1 Intensity

A
ve

ra
ge

 M
C

H
R

1
C

ili
ar

y 
In

te
ns

ity
 (A

U
)

0

0.5

1.0

1.5

*

NPY2R (ACIII Negative)
NPY2R/ACIII Colocalized

NPY2R LengthD

N
PY

2R
  L

en
gt

h 
(μ

m
)

NPY2R Intensity

A
ve

ra
ge

 N
PY

2R
C

ili
ar

y 
In

te
ns

ity
 (A

U
)* **

**

Fed Fast Refed Fed Fast Refed Fed Fast Refed
0

5

10

15

20

25

1

2

3

4

0

Figure 10. NPY2R changes under different feeding conditions in the ARC. A, Representative immunofluorescence images of neuro-
nal cilia (ACIII, green) and MCHR1 (red) in the ARC of ad libitum-fed (Fed), overnight fasted (Fast), and 4 h postrefeeding after fast
(Refed) conditions. Scale bars, 10mm. Hoechst nuclei blue was used. Arrows indicate example cilia. B, Mean MCHR1 cilia length
and intensity in cilia that have only MCHR1 [MCHR1 (ACIII Negative)] and in cilia with both MCHR1 and ACIII (MCRH1|ACIII
Colocalized Cilia) in Fed, Fast, and Refed animals. Significant increase in MCHR1 (ACIII Negative) cilia length on refeeding (nested
one-way ANOVA: p=0.004, 0.654 6 0.201 mm). C, Representative immunofluorescence images of neuronal cilia (ACIII, green) and
NPY2R (white) in the ARC of Fed, Fast, and Refed conditions. D, Mean NPY2R cilia length and intensity in cilia with only NPY2R
[NPY2R (ACIII Negative)] or in cilia with both NPY2R and ACIII (NPY2R|ACIII Colocalized) in Fed, Fast, and Refed animals. NPY2R
(ACIII negative) cilia in the ARC significantly change length on Fed, Fast, and Refed conditions (nested one-way ANOVA, p, 0.001,
�2.47 6 0.29 mm; p, 0.00011.45 6 0.28 mm; p=0.0002, �1.026 0.25 mm, respectively). NPY2R|ACIII colocalized cilia are also sig-
nificantly shorter on fasting and remain slightly shorter in the Refed condition compared with Fed (nested t test, p, 0.0001, �1.80
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Research Article: New Research 11 of 13

March 2023, 10(3) ENEURO.0360-22.2023 eNeuro.org



also may reflect the inherent nature of some GPCRs
being more dynamic at membranes compared with
others (Schmidt et al., 2014). It is also possible that in
some cases the pool of receptors that is critical for sig-
naling is on the plasma membrane and not the ciliary
membrane, and thus cilia localization appears stable
for a given GPCR. Future studies will assess howG-protein
coupling and other pools of receptors may specifically in-
fluence ciliary GPCR localization. For example, Gas (e.g.,
NPY2R) ciliary receptors may be generally more dynamic
to the compartment compared with those that couple to
other Ga subunits (e.g., MCHR1).
Together our results demonstrate that dynamic local-

ization to the ciliary compartment may not apply to some
physiological conditions in vivo or be a common theme
across ciliary GPCRs. Our results also suggest that only
specific ciliary GPCRs use length control as a mechanism
to mediate signaling, as may be the case for NPY2R but
not MCHR1. Finally, our results also demonstrate that local-
ization across different brain regions and nuclei that all pos-
sess the same ciliary GPCR are dynamically regulated
differentially. For example, even on supraphysiological an-
tagonism of MCHR1, we did not observe the same changes
in cilia length and localization in all brain regions analyzed.
Ultimately, a comprehensive understanding of how cilia me-
diate GPCR signaling could provide therapeutic opportuni-
ties for cilia-receptor ligands in conditions like obesity.
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