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Abstract

Cells can be perturbed by various chemical and genetic treatments and the impact on gene 

expression and morphology can be measured via transcriptomic profiling and image-based assays, 

respectively. The patterns observed in these high-dimensional profile data can power a dozen 

applications in drug discovery and basic biology research, but both types of profiles are rarely 

available for large-scale experiments. Here, we provide a collection of four datasets with both 

gene expression and morphological profile data useful for developing and testing multi-modal 

methodologies. Roughly a thousand features are measured for each of the two data types, across 

more than 28,000 thousand chemical and genetic perturbations. We define biological problems 

that use the shared and complementary information in these two data modalities, provide baseline 

analysis and evaluation metrics for multi-omic applications, and make the data resource publicly 

available (http://broad.io/rosetta).

Introduction

Biological systems can be quantified in many different ways. For example, researchers can 

measure the morphology of a cell using microscopy and image analysis, or molecular details 

such as the levels of messenger RNA (mRNA) or protein in cells. Historically, biologists 

chose a single feature to measure for their cell samples, based on their prior knowledge 

or hypotheses. Now, “profiling” experiments capture a high-dimensional profile of features 

for each sample, and hundreds to thousands of samples can be quantified. This allows the 

discovery of unexpected behaviors of the cell system.

Profiling experiments carried out at large scale remain expensive, even for a single 

profiling modality. We observed that no public dataset exists providing both genetic and 

chemical perturbation of cells with two different kinds of profiling readouts. Such a dataset 

would enable multi-modal (also known as multi-omic) analyses and applications. Examples 
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include integrating the two data sources to better predict a compound’s activity in an 

assay 1, predicting the mechanism of action of a drug based on its profile similarity to 

well-understood drugs 2, or predicting a gene’s function based on its profile similarity to 

well-understood genes 3.

Observing a system from multiple perspectives is known to reveal patterns in data that may 

not be visible in individual perspectives. Machine learning methods have been explored 

in various fields to learn from multiple sources to make better inferences from data 4. 

In biology, the advancement of technologies for measuring multi-omics data has sparked 

research investigating the relationship and integration of different high-dimensional readouts 
5. For example, transcriptomics, proteomics, epigenomics and metabolomics data can be 

combined to predict the mechanisms of action (MoAs) of chemical compounds 6.

Here, we created a collection of gene expression and morphology datasets with the scale 

and annotations needed for machine learning research in multi-modal data analysis and 

integration. The gene expression data were obtained using the L1000 assay7 and the 

morphology datasets with Cell Painting8. This Resource provides two different, rich views 

on the cells by providing roughly a thousand mRNA levels and a thousand morphological 

features when samples of cells are perturbed by hundreds to thousands of different 

conditions, including chemical and genetic. Furthermore, we present a framework for 

thinking about the utility of multi-modal data by defining applications where the shared 

information, and the complementary information, across data types can be useful, using 

terminology understandable to those new to the biological domain. We demonstrate example 

applications within each group, uncover interesting biological relationships, and provide 

baseline methods, code, evaluation metrics, and benchmark results for each, as a foundation 

for future biologically oriented machine learning research.

Results

Gene expression and morphological profiles

All datasets were created at our institution (see Supplementary 1) and involved one of 

two types of “inputs”: chemical perturbations and genetic perturbations (Figure 1). There 

are also two types of high-dimensional outputs measured: gene expression profiles and 

morphological profiles, each with roughly 1000 features measured. For each of the datasets, 

in a single laboratory, cells are plated into two sets of identical plates, each plate gets treated 

with chemical (or genetic) perturbations identically, and then one set is used to measure gene 

expression and the other set to measure morphology.

We captured gene expression (GE) (mRNA profiles) using the L1000 assay 7. The levels 

of mRNA in the cell are often biologically meaningful - collectively, mRNA levels for a 

cell are known as its transcriptional state. The L1000 assay reports a sample’s mRNA levels 

for ~978 genes at high-throughput, from the bulk population of cells treated with a given 

perturbation. These “landmark” genes capture approximately 82% of the transcriptional 

variance for the entire genome7; the specific genes’ mRNAs that are measured can be 

different across datasets, though largely overlapping (see Methods). We note that “genes” 

are an input (individual genes are overexpressed as the perturbation in some datasets) and an 
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output (gene expression profiles are the measured mRNA levels for each landmark gene in 

the L1000 assay); this can cause confusion for researchers new to the domain.

We captured morphological profiles using Cell Painting (CP) 8. This microscopy assay 

captures fluorescence images of cells colored by six well-characterized fluorescent dyes 

to stain the actin cytoskeleton, Golgi apparatus, plasma membrane, nucleus, endoplasmic 

reticulum, mitochondria, nucleoli, and cytoplasmic RNA in five channels of high-resolution 

microscopy images. Images are processed using CellProfiler software 9 to extract thousands 

of features of each cell’s morphology such as shape, intensity and texture statistics, thus 

forming a high-dimensional profile for each single cell. The profiles are then aggregated 

(population-averaged) for all imaged single cells in each sample well.

For both data types, aggregation of all the replicate-level (equivalent to well-level) profiles 

of a perturbation is called a treatment-level profile. In our study, we used treatment-level 

profiles for each perturbation in all experiments but have provided replicate-level profiles 

for researchers interested in further data exploration. Therefore, in our experiments, each 

perturbation in each dataset has two corresponding vectors of measurements for each 

modality; one treatment-level profile for gene expression and one treatment-level profile for 

morphological measurements. Gene expression and morphological measurements are taken 

from two different sets of plates; there is therefore no direct, one-to-one correspondence 

between the two readouts at the replicate level. We also note that of the eight datasets 

provided (four datasets x two modalities), four have been the subject of previous research 

published by researchers at our Institute 3,10,11; here we complete the matrix by providing 

the missing data type for each pair, organizing them, and providing benchmarks.

Shared versus complementary information content

Cell morphology and gene expression are two very different kinds of measurements about 

a cell’s state, and their relationship is known to be complex. For example, a change in 

morphology can induce gene expression changes 12 and gene expression changes can 

induce a change in cell morphology 13,14. However, a strict relationship is not always the 

case; many drugs impact cells’ mRNA or morphology profile, but not both 10,15,16. For 

example, changes in protein stability or post-translational modifications can induce changes 

in morphology without changes in gene expression; the Rho-family small GTPases are one 

example where morphology changes on a timescale much too short to be explained by 

changes in mRNA 17. Furthermore, the two data types are collected at different timepoints, 

determined as optimal for each individually. Therefore, even if technical artifacts were 

non-existent, we do not expect a one-to-one map between these two modalities. We therefore 

hypothesize that the information in each data type consists of a shared subspace, a modality-

specific complementary subspace, and noise (Figure 1). Both subspaces can be exploited for 

biological applications.

Shared subspace across two modalities

The shared subspace between gene expression and cell morphology is beginning to be 

explored. For example, cross-modal autoencoders learned the shared latent space for 

single-cell RNA-seq and chromatin images in order to integrate and translate across 
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modalities 18. In another study, probabilistic canonical correlation analysis learned a shared 

structure in paired samples of histology images and bulk gene expression RNA-seq data, 

suggesting that shared latent variables form a composite phenotype between morphology 

and gene expression that can be useful 19. Many uncovered relationships will not be 

transferable from one experimental batch to another, particularly if great differences exist: 

for example, histology images differ in many ways from fluorescence microscopy images, 

yet some features, such as nuclear shape, might be consistent across different experimental 

techniques.

The existence of a shared subspace enables multiple applications. Most prominently, if 

sufficient shared information is present, one modality can be computationally predicted (i.e. 

inferred, estimated) using another, saving significant experimental resources. For example, 

one could predict the expression level of genes of interest given their morphological profiles 

from already-available images, even from patients whose samples are no longer available for 

mRNA testing. Or, one could generate images or morphological profiles from large libraries 

of mRNA profiles.

Another use of shared subspace is to identify relationships between specific features of 

the two types. For example, a morphological feature and a specific gene’s mRNA level 

may be tightly linked, which can yield clues as to the biological mechanisms underlying 

their relationship. As well, inspecting which genes can be well-predicted may shine light 

on general relationships between mRNA levels and morphology for different classes of 

genes20; enrichment analysis of these groups of genes could also lead to biological pattern 

discoveries. Researchers have used linear regression and enrichment analysis to explore the 

association between variations in cell morphology and transcriptomic data16.

Modality-specific, complementary subspaces

Each modality will likely have a modality-specific subspace containing information unique 

to that modality and unpredictable by the other. Although this property confounds 

applications requiring a shared subspace, it enables other applications because the fusion 

of two modalities should increase the overall information content, and therefore predictive 

power, of a profiling dataset.

Data modality fusion and integration techniques are an active area of research in machine 

learning 4 and could potentially yield a superior representation of samples for many different 

biological profiling tasks on datasets where multiple profiling modalities are available. For 

example, predicting assay activity might be more successful using information about the 

impact of that compound on cells’ mRNA levels and morphology, rather than either data 

source alone 1. Likewise, predicting the function of a gene based on similarities to other 

genes’ profiles might be more successful using both data types.

Application 1: Cross-modality predictions

As a baseline for finding the correspondence between gene expression and morphology 

and predicting one from the other, we modeled the relationship using a regression model 

in which the mRNA level of each landmark gene in the gene expression profile can be 

estimated as a function of all the morphological features in the Cell Painting profile, 

Haghighi et al. Page 4

Nat Methods. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yl = f Xcp + el; in which yl is a P-dimensional P , 1  vector of expression levels for the 

landmark gene l across all the P  perturbations in a dataset and Xxp is the P × F-dimensional 

P , F  whole morphological data matrix representing all F  morphological changes/features 

across all the P  perturbations. We use Lasso as a baseline linear model and multilayer 

perceptron (MLP) as a baseline nonlinear model for the regression problem.

Some datasets showed excellent accuracy in predicting some mRNA levels from 

morphology data (and vice versa), with MLP yielding superior results to Lasso (Figure 

2a and b). Machine learning methods that can improve upon these benchmarks would 

be very useful to the biomedical community. Two of the datasets (LUAD and LINCS) 

have a markedly higher performance than the other two (TAORF and CDRP-bio), which 

suggests a likely poorer data quality or poorer alignment of the modalities in the latter 

two. Given LUAD and LINCS are both using A549 cells, it is also possible that the 

transcription-morphology link is cell-line-dependent, and that it is stronger in A549 for some 

reason; however, it seems even more likely to us that the differences in performance relate 

to differences in technical quality of the data. Likewise, further preprocessing and denoising 

techniques such as batch effect corrections to improve alignment are another target for future 

machine learning research. In addition to alignment across modalities, alignment across 

different datasets is also necessary to translate the prediction model across different datasets. 

Application of a model trained on each of the highest performing datasets and tested on the 

other one (LUAD and LINCS) indicates poor translatability of the models across datasets 

(Extended Data Fig. 1). Improving model generalizability across datasets requires methods 

specifically designed to correct for technical variations and batch effects in the bulk level 

information of the data types presented in this resource.

The shared information in the two modalities can be used in other ways. We can identify 

the overlap in landmark genes that are highly predictable according to one or more datasets 

(Figure 2c); 59 landmark genes are well-predicted in at least three of the four datasets. For 

the LUAD dataset (which has the highest cross-modal predictability) we identified the gene 

families for highly predictable genes (Extended Data Table 2). Over-Representation analysis 

of LUAD’s highly predictable gene set (relative to the L1000 background gene set) reveals 

that many over-represented categories relate to components stained in the Cell Painting 

assay, such as DNA and actin (Extended Data Fig. 3).

Finally, we examined prediction scores for each category of image-based feature in the 

experiment, to aid in understanding which features underlie prediction of which genes’ 

mRNA levels. To do this, we first sorted Cell Painting features into four categories 

(intensity, texture, radial distribution, and shape) and the five fluorescence channels (DNA, 
RNA, ER, AGP, Mito), then calculated and displayed feature-group-specific prediction 

scores as a hierarchically-clustered heatmap of median (over k-folds) prediction scores 

(Figure 2d). In this view, genes with strong red columns are predicted using many of 

the morphological categories of features, indicating that the genes are associated with 

widespread morphological changes; several of these are cell cycle-related, which is known 

to impact morphology dramatically. Others are more selective, such as the cluster of genes 

including TXNRD1, SQSTM1, FAM20B, and MLLT11, whose mRNA levels are strongly 

predictable by mitochondrial texture features (marked with a star, Figure 2d). Several of 
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these genes have functional annotations relating to mitochondria, and cells that are predicted 

to have (and actually do have) high levels of these four genes’ mRNA all are associated with 

visible changes in the staining for mitochondria (Extended Data Fig. 4).

To more generally inspect if the GE-CP relationships observed in Figure 2d are consistent 

with the known biological functions of the L1000 landmark genes, we performed a 

Gene Ontology (GO) terms search analysis (see Online Methods). We wondered whether 

landmark genes that are highly predictable by morphological features in each specific Cell 

Painting channel are more likely to have Gene Ontology (GO) annotations related to that 

channel compared to the rest of CP channels; this was generally not the case (Extended 

Data Table 5; see Online Methods); this is consistent with most predictable genes showing 

signal across all categories of features rather than being strongly channel-specific (Figure 

2d). We also wondered whether landmark genes that are more predictable than other genes 

are more likely to have functions associated with the particular stains in the Cell Painting 

assay. Indeed, among the set of 59 highly predictable genes (in at least three of the four 

datasets) we saw an increased chance of annotations relating to the cellular components and 

organelles stained in the assay (Extended Data Table 6). That said, many highly predictable 

genes were associated with no such terms, indicating that the assay probes biological impact 

beyond the particular labeled components, or that the genes have unannotated functions.

Prediction can be run in the other direction as well, i.e. each morphological feature 

can also be estimated using the 978 landmark genes as yf = f Xge + el; in which yf is a 

P-dimensional P , 1  vector of measurements for feature f across all the P  perturbations 

in a dataset and Xge is the whole gene expression data matrix P , L  representing 

all L landmark genes measurements across all the P  perturbations. We find a large 

portion of morphological features to be highly predictable especially for the LUAD 

and LINCS datasets (Figure 3a). Grouping highly predictable morphological features 

according to all the datasets reveals that they fall mainly in the radial distribution and 

texture features categories across all the channels (Figure 3b). We also provide a Jupyter 

notebook for exploring the list of top connections between any gene or morphological 

feature of interest (https://github.com/carpenterlab/2021_Haghighi_submitted/blob/main/3-

exploreTheLink.ipynb). Users can input an L1000 landmark gene and get the list of 

top morphological features involved in the prediction of the input feature along with 

their importance score. Likewise, one can query a morphological feature to find the 

landmark genes whose mRNA levels are predictive. For example, the morphological feature 

“Cells_Texture_InfoMeas1_RNA_3_0” relies on the levels of many genes in its prediction, 

including several known to be involved in mRNA processing (Figure 3c).

Application 2: Integrating gene expression and morphology

Discerning how a compound works is a major bottleneck in drug discovery. The task 

is called mechanism of action (MoA) determination, and the goal is to determine the 

mechanism by which the drug impacts the biological system. Existing methods are often 

resource- and time-intensive, with a low success rate. As a result, few strategies have been 

tested systematically across a diverse set of drugs; most inherently only work on a subset 

of drug or target types, such that multiple methods are usually pursued simultaneously to 
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generate a hypothesis for further testing 22. One promising method to predict mechanisms 

of action is to collect a profile from cells and attempt to match it to a library of profiles 

gathered from other chemical perturbations: a match, or close similarity, can be helpful if 

the compound the query matches is already well-known. Likewise, a match to a genetic 

perturbation means that the gene, or another gene in the same pathway, is a possible target of 

the query compound 23.

Several studies have reported success predicting the mechanism of action of compounds 

using gene expression or cell morphology data individually 24–27 but none of these 

integrated the two data types to test for improved predictive ability in a supervised or 

unsupervised setting. We therefore provide here the first benchmark for this, using the two 

chemical perturbation datasets in our set, CDRP-bio and LINCS. The discovery that many 

genes could not be well-predicted based on morphology (and vice versa) in Application 

1 lends some support for the idea that the two modalities might carry complementary 

information.

In the unsupervised setting, we test how the compounds cluster together by their MoA class, 

in feature spaces of each modality alone, and in the integrated space of both modalities, 

using several state of the art modality integration methods28. Clustering of perturbations 

using each CP and GE modality alone shows CP outperforms GE in this MoA ground-truth 

retrieval task in both compound datasets. We observe that although most of the integration 

methods increase cluster retrieval performance in the integrated space compared to the GE 

space, only Regularized generalized canonical correlation analysis (RGCCA)29 improves the 

performance over the CP space alone (Figure 4a).

In the supervised setting, using logistic regression and multilayer perceptron (MLP) 

classifiers as the baseline models, we applied each for predicting MoA labels using each 

modality of data independently, using a standard k-fold (k=5) cross-validation on a filtered 

subset of compounds. CP profiles resulted in higher MoA prediction performance compared 

to GE profiles for each of the datasets (Figure 4b). Next, we performed the MoA prediction 

task on two integrated spaces: 1) trivial representation-level concatenation of profiles from 

the two modalities (shown as early fusion) and 2) representation-level concatenation of 

profiles from the two modalities in the RGCCA space (shown as RGCCA_EarlyFusion). 

We also performed decision-level integration of modalities for the MoA prediction task 

(shown as late fusion), i.e. class probabilities output by classifiers trained on each modality 

separately are averaged prior to the final MoA prediction.

All three integration strategies gave relatively comparable performance in predicting MoA 

across the two datasets and two model types, with small average improvements upon 

the performance of the better-performing modality (Figure 4b), highlighting the need for 

developing data fusion methods that better leverage the complementarity of the modalities.

Exploring MoA-class-specific F1-scores for the integrated modalities reveals high variation 

in class-specific prediction results (Figure 4c). As already seen more generally, the 

integration of modalities does not always increase the performance of the MoA prediction 

task over the higher performing modality alone for individual MoA categories.
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Discussion and Limitations

We provide the research community a collection of multi-modal profiling datasets with 

gene expression and morphology readouts, representing two cell types and two perturbation 

types (genetic and chemical). We define useful biological applications for this data in 

two categories: those using the shared information and those using modality-specific, 

complementary information. We provide the data, code, metrics, and benchmark results 

for one application in each category.

The results demonstrate that gene expression and morphology profiles contain useful 

overlapping and distinct information about cell state. We were pleased to find that many 

mRNAs are predictable by cell morphology and vice versa, under the conditions of these 

high-throughput assays. Similarly, we found that morphology captures information beyond 

that seen in an mRNA profile; that is, the two modalities contain unique information and 

we identified which compounds’ mechanisms are better captured by each. Although some 

scientists speculated that it is impossible for cells to show a morphological change without 

mRNA profiles changing, whether as a cause or consequence, we find this is not the 

case. We made a number of observations of new biology, such as which genes’ mRNA 

levels are predicted by which particular morphological features (and vice versa). Finally, we 

discovered that the Cell Painting assay information can predict the mRNA levels of genes 

not clearly linked to the stains in the assay, pointing to its ability to capture broad biological 

impact.

The results also demonstrate that these applications are challenging enough to provide 

room for improvement. For example, the variation in the performance for prediction tasks 

across different datasets shows the necessity of machine learning techniques to further 

filter and preprocess the profiles (e.g. to correct batch effects, including those resulting 

from the position of wells on a plate30) to improve performance. Such techniques might 

also sufficiently align the four datasets with each other, to explore generalized, dataset-

independent models. Nevertheless, we note that we do not expect anywhere close to 100% 

accuracy for either application. For prediction across the two modalities, we do not expect 

the modalities to be completely overlapping in their shared information. Furthermore, we 

note that ground truth in this prediction task is defined only by the available experimental 

gene expression and cell morphology data, which is subject to technical variation and 

error and therefore is not absolute truth. In the case of MoA prediction, the application 

is “notoriously challenging” and low percentage success rates are expected for any single 

assay; most commonly several strategies are used to determine the mechanism of action 31. 

In addition, the ground truth is based on imperfect human knowledge.

There are multiple additional limitations for the presented datasets, aside from their data 

quality as already noted. The number of gene perturbations captured in these datasets 

number a few hundred whereas there are roughly 21,000 genes in the genome and numerous 

variations within each, which could be overexpressed or knocked down. Likewise, a few 

thousand compounds are tested here but pharmaceutical companies often have collections 

of compounds numbering in the millions. The only limitation for expanding these datasets 

are the financial resources to carry out the experiments. In terms of limitations of the assays 
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themselves, the gene expression profiles are captured by the L1000 assay, which is thought 

to capture 82% of full transcriptome variation 7, and the Cell Painting assay includes only 

six stains, which is insufficient to capture the localization and morphological variation of all 

cellular components. Finally, the cell types are commonly used historical lines derived from 

two white patients, one male (A549) and one female (U2OS). Therefore, conclusions from 

this data may only hold true for the demographics or genomics of those persons and not 

broader groups. They were chosen because the lines are both well-suited for microscopy and 

they offer the advantage of connecting to extensive prior studies and datasets using them.

Despite these limitations, these datasets may be used to pursue many other applications of 

profiling in biology, as well as methods development. The complementary information used 

here for MoA prediction can be used for any profiling application; there are more than a 

dozen that can impact basic biology discovery and the development of novel therapeutics32. 

Each application can also be validated in different ways. For example, the prediction 

task might be extended to more complex systems, such as human tissue samples where 

appropriate stains have been used, although such samples are more difficult to procure, and 

assessing adjacent tissue slices may introduce variation not present in the cultured cell lines 

used in this study. In the future, multimodal profiles at the single-cell level may become 

widely available. In the presented datasets, single-cell information exists in one modality 

(images) but not in the other modality (mRNA). Therefore, the variations in one cannot be 

explained by the other, as we have a distribution in one space (images) and point estimates in 

the other space (mRNA). Although still very rare, small, and labor-intensive to create, data 

sets with both gene expression and morphology at single-cell resolution are beginning to 

become available via in situ RNA-seq methods and could accelerate the field of multi-modal 

biological data analysis.

Data Availability

Preprocessed profiles that are augmented with gene and compound annotation are available 

through the Registry of Open Data on AWS on a public S3 bucket at no cost and no need 

for registration. Documentation on the folder structure, dataset details and instructions for 

accessing the data are available at http://broad.io/rosetta. Source datasets are described and 

referenced in Supplementary 1.

Code Availability

Source code to reproduce and build upon the presented results is available at http://broad.io/

rosetta. We license the source code as BSD 3-Clause, and license the data, results, and 

figures as CC0 1.0.

Methods

Dataset preprocessing

We gathered four available datasets that had both Cell Painting morphological (CP) and 

L1000 gene expression (GE) profiles, preprocessed the data from different sources and in 

different formats in a unified .csv format, and made the data publicly available at amazon s3 

bucket: s3://cellpainting-gallery/cpg0003-rosetta/broad/workspace/preprocessed_data/
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The rows of each csv file are replicate-level (i..e well-level) profiles, augmented with 

metadata available for that well.

Cell Painting and L1000 Profiles

Single-cell morphological (CP) profiles were created using CellProfiler software and 

processed to form aggregated replicate profiles using the R cytominer package (https://

github.com/cytomining/cytominer).

We made the following three types of profiles available:

• Aggregated profiles, which are the average of single-cell profiles in each 

replicate well. (replicate_level_cp_augmented.csv.gz)

• Normalized profiles, which are the z-scored aggregated profiles, where the 

scores are calculated using the distribution of negative controls as the reference. 

(replicate_level_cp_normalized.csv.gz)

• Normalized variable-selected, which are normalized profiles with features 

selection applied. (replicate_level_cp_normalized_variable_selected.csv.gz)

For L1000, we use the previously processed 978 “landmark” genes as our input features 

The complete processing details are provided in 7. The L1000 landmark genes in the CDRP 

dataset are different from the landmark genes in the other datasets, with an overlap of n=785 

(80%). The CDRP dataset was acquired using the so-called “delta prime” probe set (n=977). 

Subsequent datasets (LUAD, TAORF, LINCS) were acquired using the so-called “epsilon” 

probe set (n=978)33.

The 20% of the delta prime landmark genes that are absent in epsilon can be inferred using 

the epsilon landmark genes 7.

To simplify our analysis, we did not perform this inference, and instead only used the 

landmark genes available for each dataset. When combining CDRP with other datasets, we 

used the intersection of the two probe sets.

Data processing for Analysis

We have used treatment-level profiles for both the gene expression (GE, using L1000) 

and morphology (CP, using Cell Painting) modalities for the analysis presented, although 

replicate-level profiles are provided and could be used instead in other formulations of the 

problem to create more advanced models.

Treatment-level profiles are the average of replicate-level profiles. For CP, replicate-level 

profiles are the average of single-cell measurements of cells from that replicate well. For 

GE, replicate-level profiles are simply the bulk gene expression profile for that replicate 

well.

We standardized replicate-level profiles per plate to have zero mean and unit variance before 

averaging them to form treatment-level profiles.
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Note that, aside from some image segmentation parameters in the CellProfiler pipeline 

which are adjusted for each cell type based on its baseline morphology, the computational 

pipeline for data processing and analysis were identical regardless of the cell type in the 

experiment.

Measuring quality of data points for subsequent analysis

We use treatment-level profiles for all the analysis that follows. In the rest of the text, 

unless indicated otherwise, “data points” refer to treatment-level profiles. The specific 

transformation of the treatment-level profiles (such as normalized_variable_selected) is 

clarified when necessary.

There are inherent differences in the biological design (type of perturbation, cell line 

used, and time point of exposure to perturbation) and experimental parameters (different 

instrumentation, reagent batches, and personnel running the experiments creating distinct 

technical artifacts such as batch effects) differences in the datasets. Consistency of profiles 

of a single treatment across different batches of experiment is considered a measure of data 

quality. We check this consistency as follows. After standardization of the replicate-level 

profiles per plate, we calculate the Pearson correlation coefficient between each pair of 

replicate-level profiles for the same perturbation. The distribution of these coefficients 

for each dataset and modality are illustrated in Supplementary Figure 1 shown as red 

curves. The corresponding blue curve to each red curve is the null distribution showing the 

correlation coefficient between pairs of profiles that belong to different perturbations. The 

non-zero dotted vertical line to the right shows the 90th percentile of the null distribution. 

We consider the perturbations that have an average replicate correlation more than the 90th 

percentile of the null distribution as high quality data points for subsequent analysis.

We note a source of systematic error present in all datasets that may affect replicability 

metrics: for nearly every treatment, all its replicates occur at the same well position on the 

plate (because replicates in such high-throughput experiments are created by replicating the 

entire, and exact same, plate layout, for logistical reasons). The location of the well on the 

plate can impact the cells in the well. For example, wells on the edge are more likely to 

dry slightly, impacting cell morphology. This effect – the impact of an experiment covariate 

on the readout of the assay – can inflate replicability quality metrics. In our experience, 

well-position effects tend to be more pronounced in Cell Painting than L1000, and therefore 

the observed differences in data quality – as reported in Supplementary 2 – can be a function 

of this batch effect. As we note in the discussion, correcting for batch effects could improve 

the prediction tasks discussed in this paper, and also make such comparisons of data quality 

more reliable.

Filtering data points

To remove noisy data points from the analysis, we used two filtering strategies for each 

shared subspace and data integration analysis. For cross-modality prediction experiments, 

we used the intersection of higher quality data points according to both modalities. For 

the analysis for data integration, we used data points that are higher quality (i.e. > 90th 

percentile of the null distribution, as defined above) in at least one of the modalities. 
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Definition of higher quality data points is given in the previous section. A comprehensive 

description of the data sizes in each modality, number of overlapping perturbations across 

both modalities, size of intersection and union sets of higher quality data points across both 

modalities are given in Supplementary 1 and highlights are summarized in Supplementary 

Table 1.

One of the chemical datasets (CDRP-BBBC047-Bray) has a subset of compounds that are 

known to be bioactive. We refer to this subset as CDRP-bio-BBBC036-Bray and report the 

details independently for this dataset in Supplementary 1 and 2. We only use CDRP-bio 

and not the full CDRP set for the analysis in this paper. We did so because we believe that 

the quality of CDRP is insufficient for either of these analyses presented given that very 

few data points remain after filtering for replicate reproducibility across both modalities (see 

Supplementary Figure 1).

Cross modality Predictions

For prediction of each single landmark gene using CP profiles or each single morphological 

feature using GE profiles, we used two regression models of :

CP to GE: yl = f Xcp + el; in which yl is a vector of expression levels for the landmark gene 

l across all the perturbations in a dataset and Xcp is the whole morphological data matrix 

where each row is a treatment-level Cell Painting profile. For this prediction direction, we 

have used the so-called “normalized variable-selected” treatment-level Cell Painting profiles, 

which results in 601 features for CDRP-bio dataset, 291 features for LUAD dataset, 63 

features for TA-ORF and 119 features for the LINCS dataset. The variable selection step 

removes features with near zero variance as well as reduces redundancy in the feature set 

(ensuring that no pair of features have a Pearson correlation coefficient > 0.9).

GE to CP: yl = f Xge + el; in which yf is a vector of morphological feature l across all the 

perturbations in a dataset and Xge is the whole gene expression data matrix where each row 

is a treatment-level L1000 profile. For this prediction direction, we have not performed any 

dimensionality reduction on the GE data.

For each prediction direction (CP to GE, GE to CP) and each baseline linear (Lasso) 

and nonlinear (MLP) model for this regression problem, we use the coefficient of 

determination (R2) and nested k-fold cross-validation over the data points for evaluating 

the prediction model performance. Therefore, for each landmark gene (for CP to GE) or 

each morphological feature (for GE to CP), we can form a distribution of k,  R2 values. 

We also shuffle the vector ylfor each gene l across all the data points and apply the same 

cross-validation procedure to form a null distribution for each gene. The same procedure on 

yf will result in the null distribution for each morphological feature. Model parameters are 

selected using grid-search and cross-validation on each training set for each of the k test 

folds.

In the Supplementary 4, the median prediction scores of each model for each landmark 

gene for each dataset and according to each model is presented. Distribution of MLP model 
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prediction scores for the 50 landmark genes with the highest median scores in each dataset is 

shown at Supplementary 3.

Percent Predictable

Percent predictable is defined as the percentage of landmark genes which have a median 

of R2predictability score more than a defined threshold. The threshold is based on the null 

distribution of predictability scores for each dataset. The dataset-specific null is formed 

using medians of single gene null distributions. We take the 99th percentile of this null 

distribution plus a 0.2 margin (t99tℎ + 0.2) as the threshold for calling a gene “predictable”. We 

reported the Percent Predictable values for each dataset in the table in Figure 2b.

Modality integration

For the analysis for MoA prediction, we used the data points that had high quality according 

to their replicate-level profiles (i.e. > 90th percentile of the null distribution; see above) in 

either modality. Note that in compound datasets, each perturbation is tested at multiple doses 

and therefore there are multiple data points corresponding to each compound. A data point 

here is a treatment-level profile corresponding to a dose of a compound.

The LINCS dataset has MoA annotations for 1401 overlapping compounds across two 

modalities. Every compound is tested at seven different doses, increasing the chances of 

detecting the expected behavior of the compound at one of them. Each compound can have 

multiple mechanisms, therefore we have multiple labels for a subset of compounds. The set 

of labels comprises 478 unique MoAs. There are 568 unique combinations of these labels 

present in the dataset. We start with the filtered union set, and filter it again to keep MoA 

classes which have at least 5 data points in their class. Because this process resulted in only 

one MoA category that was multi-label (i.e. composed of multiple MoAs), we removed this 

category to simplify the problem as being multi-class but single label i.e. we effectively used 

only compounds labeled with a single MoA. The filtered set is a set of 1655 data points 

across 521 compounds in 57 MoA categories.

The CDRP-bio dataset has MoA annotations for 1,327 out of 1,916 overlapping compounds 

across two modalities. After passing data points from three filters – union higher quality 

across modalities, available MoA labels, being in an MoA class which have at least five 

compounds in the set – we get 123 compounds in 16 MoA categories.

Unsupervised joint dimensionality reduction of modalities and MoA cluster retrieval

k-means clustering (k= number of MoA classes) was performed on each modality space and 

integrated spaces using representation-level concatenation of modalities (early fusion) and 

seven state of the art modality integration methods28. Jaccard Index (JI) between k-means 

clustering results and the MoA annotation labels were used as a measure of ground truth 

cluster retrieval for this unsupervised clustering task.

Supervised MoA Prediction

For the multi-class MoA classification problem, two logistic regression and multilayer 

perceptron (MLP) classifiers were used as baseline models; we apply each model for 
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predicting MoA labels using each modality of data independently as well as the baselines 

for integration of the two. We performed stratified nested k-fold cross-validation (k=5) 

to evaluate the classification performance using the F1-score metric. Note that all doses 

of a compound should be in the same fold in this data partitioning scheme. Model hyper-

parameters were optimized using grid search and cross-validation in each training fold.

Some MoAs have several tens of compounds whereas others have as few as 5, to address this 

imbalance in the data, for both logistic regression and MLP models, we oversampled data 

points in each class to match the size of the majority class in the training set. The k-fold 

cross-validation experiment results in k vector of multi-class predictions. We then calculate 

F1-score for each class independently and average class specific F1-scores within each fold 

will form k F1-scores shown in Figure 4b boxplots.

For representation level integration strategies, we simply concatenate CP and GE profiles in 

their original spaces (Early Fusion) or projected into RGCCA space (RGCCA_EarlyFusion) 

to integrate both modalities. On the other hand, Late fusion is at the decision level and 

averages predicted class probabilities (based on the output of classifiers trained on each 

modality separately) for making the MoA class decision for test compounds.

Gene Ontology (GO) terms search analysis

The goal of this analysis was to see if the found CP-GE link is consistent with the known 

functional characteristic of L1000 landmark genes under study in this work. We used 

DAVID34‘s Functional Annotation Tool (2021 Update) to form a table of GO annotation 

terms for 978 landmark genes in the LUAD, LINCS and TAORF datasets. For 921 DAVID 

IDs detected, GO categories of “GOTERM_BP_DIRECT”, “GOTERM_CC_DIRECT” and 

“GOTERM_MF_DIRECT” were selected and the Functional Annotations Table were used 

as the source file for the following search analysis.

For each landmark gene and each cell painting channel, we searched for all relevant 

keywords to that channel and formed channel specific annotation columns. On the other 

hand, mRNA level prediction of landmark genes using specific categories of morphological 

features were created for LUAD dataset (Figure 2d), we form channel specific gene 

expression prediction scores by rearrangement of these categories to cell paining channels 

and taking the maximum prediction score within each channel specific category of features. 

We then have access to channel specific GO functional annotations and channel specific 

prediction scores for each of the landmark genes. We discretize prediction scores into three 

categories of predictability; high(R2>0.8), medium and low(R2<0.1). Using Fisher’s exact 

test, we calculate Odds Ratio (OR) as a measure of association between a landmark gene 

being predictable and having channel-specific GO annotations. OR>1 indicates an increased 

chance of having an organelle annotation (using GO terms) for a highly predictable 

landmark gene.
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Extended Data

Extended Data Fig. 1. Generalizability of the prediction model across datasets
Prediction of each L1000 mRNA level by Cell Painting features in dataset A, using a model 

trained on dataset B. We have trained Lasso and MLP models on each of LUAD and 

LINCS datasets and checked the prediction results on the other dataset which was not used 

in model training. Distribution of R2 prediction scores for all landmark genes are shown. 

Comparison of the results here with Figure 2 indicates weakness of the prediction model in 

generalizability across datasets. This is an indication of dataset-specific technical variations 

(batch effects) that need exploration of experimental alignment techniques (batch-effect 

correction), which is an active area of research. We also observe that the model’s prediction 

power is stronger when the model is trained on the LINCS dataset and tested on the LUAD 

dataset. This is expected as the LUAD dataset is limited to a narrow set of genes associated 

with lung adenocarcinoma cancer; however, the LINCS dataset contains a wide variety of 

compounds with different mechanisms and known phenotypes. The y-axis is trimmed at 

−1 for clarity. Distributions are presented as boxplots, with center line being median, box 

limits being upper and lower quartiles and whiskers being 1.5× interquartile range; n=978 

landmark genes for each boxplot.
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Extended Data Fig. 2. Gene group names for top 100 predictable landmark genes in LUAD 
dataset
Top 100 predictable landmark genes by MLP model are shown along with their gene 

group names (based on HGNC Database41) for the LUAD dataset, finding a diverse array 

represented, though we note the perturbations in this experiment included only genes found 

mutated in lung cancers.
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Extended Data Fig. 3. Over-Representation Analysis (ORA) of highly predictable (top 100) 
landmark genes in LUAD dataset
Over-Representation Analysis of top 100 highly predictable landmark genes according to 

the MLP model applied on the LUAD dataset. ORA analysis was performed by WebGestalt 

analysis toolkit 42. Nineteen enriched categories (FDR<0.2) are labeled in the volcano plot.
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Extended Data Fig. 4. Visualization of cells in a cluster of landmark genes that are tightly 
correlated with RNA texture category of morphological features
For the cluster of landmark genes shown in the top heatmap, which is a partial snapshot 

of figure 2d, we have shown example cell images for perturbations that have high and low 

predicted values for each gene in that cluster. We have filtered perturbations to those that 

have low prediction errors prior to that selection. We can observe that cells that are predicted 

to have (and actually do have) high levels of these five genes’ mRNA all are associated 

with visible changes in the staining for mitochondria, even though only half of these genes 

already have functional annotations related to the mitochondria.
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Extended Data Fig. 5. Validation of the observed GE-CP relationship by GO-terms search 
analysis
Landmark genes highly predictable according to morphological features in each specific 

Cell Painting channel are more likely to have GO annotation related to that channel 

compared to the rest of CP channels. For each channel in the rows of the table, the first 

column shows the Odds Ratio (OR) derived from the Fisher’s exact test for associations 

between the landmark genes being highly predictable (R2>0.6) by CP features in a channel 

and having GO annotations for that channel. The second column shows the association 

between the same set of highly predictable genes and having GO annotation for any channel 

but not the target row channel. Higher values in the first column compared to the second 

column show that highly predictable genes according to features in a CP channel are more 

likely to have GO annotations for that channel compared to the rest of the channels. This 

pattern holds for DNA and ER channels but not for the rest of CP channels. The third 

and fourth columns show the same associations but for low-predictability genes (R2<0). 

Lower values in the third column compared to the fourth column show that non-predictable 

genes according to features in a CP channel are less likely to have GO annotations for that 

channel compared to the rest of the channels. This pattern holds for all CP channels except 

for RNA. The CP channel specific predictability map used for this analysis was derived 

from the result of the experiment and results presented partially in Figure 2d. As we can 

observe from the map, usually multiple categories of morphological features contribute to 

the predictability of a gene, which explains the lack of a simple relationship between a given 

channel’s predictability and GO term associations presented in this table.

Extended Data Fig. 6. Association between landmark gene predictability and having gene 
ontology annotations related to Cell-Painting stains
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Landmark genes that are predictable according to at least three of the four datasets (59 genes 

shown in Figure 2c) are more likely to have GO annotations related to any of the stains in 

the Cell Painting assay compared to a random subset of landmark genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multi-modal datasets overview.
Multi-modal genetic and chemical perturbation datasets are valuable for many applications. 

For each dataset, Cell Painting (CP) and Gene Expression (GE) L1000 assays were used 

to collect morphological and gene expression representations (profiles), respectively. The 

datasets are described in Supplementary 1. Credits: Chemical structure by GJ Owns, 

distributed under a CC0 3.0 license. DNA structure by Richard Wheeler, distributed under a 

CC-BY-SA 3.0.
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Figure 2. An application using the shared subspace: cross-modality predictions from CP to GE.
(a) Distribution of R2 prediction scores for all landmark genes for each Lasso and MLP 

model, grouped for each dataset. Many genes are well-predicted, especially using MLP. 

The random shuffle distributions – where the outputs are shuffled in each iteration– serve 

as negative controls. Negative R2 values indicate that the prediction is worse than simply 

computing the mean of the output, and therefore all R2 <0 can be considered equally 

bad (the model does not generalize at all). The y-axis is trimmed at −0.5 for clarity. 

Distributions are presented as boxplots, with center line being median, box limits being 

upper and lower quartiles and whiskers being 1.5× interquartile range; n=978 landmark 

genes (977 for CDRP-bio dataset). (b) The proportion of genes that are well-predicted 

(R2  >   t99tℎ + 0.2); see Online Methods) are reported as Percent Predictable for each dataset. 

(c) The overlap of genes predictable by the MLP model (R2  >   t99tℎ + 0.2)) are shown 

across the four datasets; 59 are well-predicted in at least three of the all four datasets. 

(d) Example of interpretable maps showing the connection between the expression of 

each landmark gene and the activation of each category of morphological features in the 

LUAD dataset using the MLP model: each point on the heatmap shows the predictive 

power of a group of morphological features (on the y-axis) for predicting expression 

level of a landmark gene (on the x-axis). “Predictive power” here means the R2 scores 
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generated by limiting the prediction to all the features in the y axis group. The cluster 

marked with a star is discussed in the main text and explored in Extended Data Fig. 

4. The heatmap is limited to 131 genes with R2 > 0.6 scores according to any of the 

morphological groups (on the y-axis). The complete version is provided in the GitHub 

repository as an xlsx file (https://github.com/carpenterlab/2021_Haghighi_submitted/blob/

main/results/SingleGenePred_cpCategoryMap/cat_scores_maps.xlsx) that can be loaded into 

Morpheus 21 or Python for further exploration.
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Figure 3. Cross-modality predictions from GE to CP.
(a) Distribution of R2 prediction scores for all morphological features using the MLP model 

(orange) along with the random shuffle – where the output is shuffled in each iteration – 

serve as negative controls (green), for each dataset.The y-axis is trimmed at −0.5 for clarity. 

Distributions are presented as boxplots, with center line being median, box limits being 

upper and lower quartiles and whiskers being 1.5× interquartile range; the number of points 

or number of CP features varies among datasets; n=1569 (TAORF), n=1570 (CDRP-bio), 

n=1670 (LINCS), n=1569 (LUAD). (b) Categories of features with the highest percentage 

of predictable CP features using GE profiles (median R2 score across all datasets is more 

than 0.6). The sizes of circles are proportional to the percentage of highly-predictable 

features in each category. The number of features in each category over the total number 

of morphological features in that category are also shown for each circle. (c) Example 

output of exploratory scripts available to researchers to see what are the most relevant 

genes to a given morphological feature of interest (and vice versa). The x-axis (relative 

coefficient magnitude) indicates the relative importance of each feature as the percentage 

of the strongest feature component (here it translates to the most important landmark gene) 

involved in the prediction of the morphological feature under exploration. The absolute 

value and sign of this metric corresponds to the level of importance and direction of 

the linear relationship respectively. A description of each morphological feature extracted 

by CellProfiler software is available at: https://github.com/carpenterlab/2016_bray_natprot/

wiki/What-do-Cell-Painting-features-mean%3F
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Figure 4. Utilizing Complementary Information: Data Integration for MoA cluster retrieval and 
class prediction in compound datasets.
An application using the complementary subspaces: integrating multimodal data for 

mechanism of action (MoA) unsupervised clustering retrieval (a) and supervised prediction 

(b): (a) Benchmarking of data integration methods on the task of clustering compounds 

by their MoA categories. Distribution of the Jaccard Indices (one per MOA class; higher 

is better) computed between the clusters identified by the different integration methods28 

and the ground-truth MoA clusters. Regularized Generalized Canonical Correlation Analysis 

(RGCCA) improves MoA retrieval for both CDRP-bio and LINCS datasets. Distributions 

are presented as boxplots, with the center line being median, box limits being upper 

and lower quartiles and whiskers being 1.5× interquartile range; n=16 (CDRP-bio), n=57 

(LINCS) (b) MoA classification of the two compound datasets (CDRP-bio and LINCS) 

using gene expression, morphology and their integration to predict the mechanism of action 

of compounds. Classification performance (weighted F1-score) for the multilayer perceptron 

(MLP) and Logistic Regression classifiers using each data modality alone, the two early 

and late fusion strategies explained in the main text, and the early fusion of modalities after 

application of RGCCA on the feature space of both modalities. Chance-level predictions 
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for each dataset are shown as a horizontal red line on each dataset plot. Distributions are 

presented as boxplots, with the center line being median, box limits being upper and lower 

quartiles and whiskers being 1.5× interquartile range; n=k=5. (c) Class-specific F1-scores 

are shown based on the MLP model for 16 MoA categories of CDRP-bio (left, where the 4 

out of 16 MoA categories that resulted in zero F1-scores after fusion are excluded) and for 

LINCS (right, where the 23 out of 57 MoA categories that resulted in zero F1-scores after 

fusion are excluded).
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