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ABSTRACT
Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound 
healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with 
increased invasion and metastasis, processes that require cancer cells to traverse through the extracel-
lular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in 
modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC 
MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by 
these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. 
Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of 
MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a 
marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. 
Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several 
molecules when comparing TNBC with high and low VEGF expression. We additionally characterized 
enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly 
identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 
fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly 
reduced key protein components of the ECM. These results further expand our understanding of the role 
of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.
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Introduction

Vascular endothelial growth factor-A (VEGF-A or VEGF) is 
a versatile dimeric glycoprotein that plays important roles in 
normal tissue function such as in wound-healing and embryonic 
development, and in pathologies such as diabetic and hypersen-
sitive retinopathy, rheumatoid arthritis, age-related macular 
degeneration, and cancer.1 Factors that regulate VEGF include 
hypoxia inducible factor-1α (HIF1-α), nuclear factor kappa-B 
(NF-kB), transforming growth factor (TFG-β), endothelin-1 
and mechanical stress.2,3 VEGF is a potent angiogenic and 
vascular permeability factor and its expression is tightly coupled 
to oxygenation due to the presence of several hypoxia response 
elements in its promoter region.4 In cancers, VEGF plays an 
important role in tumor angiogenesis, vascular permeability, 
tumor growth, and metastasis.1 VEGF has six main isoforms, 
VEGF111, VEGF121, VEGF145, VEGF165, VEGF189, and 
VEGF2065–7 that have distinct effects on tumor growth and 
progression.8 Of these, VEGF165 has been extensively studied 
as it is the most frequently expressed isoform in tissues.1

The role of VEGF signaling in cancer, beyond its role in 
angiogenesis, is rapidly evolving. VEGF promotes cancer 
cell proliferation, migration and invasiveness,9 promotes 

stemness,10,11 and promotes immune suppression.12 

Increased VEGF expression has been identified in several 
cancers,13 and it is associated with poor prognosis and 
increased metastasis in multiple cancers including triple 
negative breast cancer (TNBC).14–18 The VEGF targeted 
monoclonal antibody, bevacizumab, is approved in 
a range of solid tumor indications.19

Because of the role of VEGF in tumor angiogenesis as well 
as in invasion and metastasis, there is significant interest in 
understanding the role of VEGF in modifying the tumor 
extracellular matrix (ECM). Cancer cells have to navigate 
through the ECM on their metastatic journey20 and the estab-
lishment of neovasculature requires ECM remodeling.20,21 We 
previously identified increased matrigel degradation by VEGF 
overexpressing MCF-7 human breast cancer cells in an intact- 
cell perfusion system.9 In vivo magnetic resonance imaging 
(MRI) studies with VEGF overexpressing MCF-7 and MDA- 
MB-231 tumors, revealed a significant increase of vascular 
volume and permeability, changes in macromolecular trans-
port through the ECM, and increased metastasis.9

Studies investigating the effects of VEGF on the tumor 
ECM have primarily focused on characterizing changes in 
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the matrix metalloproteinases (MMPs) and other degradative 
enzymes.22,23 Effects of increased VEGF expression or VEGF 
targeting with bevacizumab on bone cartilage and osteoarthri-
tis have also been previously described.24 Here, we have 
directly characterized changes in key ECM components such 
as collagen 1 (Col1), fibronectin (FN1), and hyaluronan (HA), 
together with alterations in degradative enzymes and cancer 
associated fibroblast (CAF) markers, to understand how VEGF 
alters the ECM in a human TNBC xenograft overexpressing 
VEGF165. We independently confirmed degradative enzyme 
changes in human TNBC with high and low VEGF mRNA 
levels by analyzing data from The Cancer Genome Atlas 
Program. We additionally characterized enzymatic changes 
in VEGF overexpressing MDA-MB-231 cells, as well as in 
human prostate cancer PC-3 cells, and in estrogen receptor 
(ER) positive MCF-7 breast cancer cells engineered to over-
express VEGF. Several of the changes in MDA-MB-231 VEGF 
overexpressing tumors were also observed in the cells suggest-
ing that autocrine signaling mediated these changes. 
A significant increase of uPAR was observed with VEGF over-
expression in both MDA-MB-231 and PC-3 cells, but not in 
MCF-7 cells. These results expand our understanding of the 
role of VEGF in ECM remodeling and provide new insights 
into the role of VEGF in TNBC.

Materials and methods

Cells and tumors

MDA-MB-231, PC-3 and MCF-7 cancer cells were obtained 
from ATCC (Manassas, VA). Establishment of VEGF165 over-
expressing cancer cells was done as previously described9 and 
validated for VEGF expression by ELISA following manufac-
turer’s instruction (R&D, Minneapolis, MN)9,25 and by RT- 
PCR.

Two million MDA-MB-231 wild type (231_WT) or VEGF 
overexpressing (231_VEGF) cells were inoculated in the mam-
mary fat pad of 4–6 weeks old female severe combined immu-
nodeficient (SCID) mice. Tumors were excised once they 
reached a volume of ~300-500 mm3. Studies were performed 
with 5–10 tumors from each group. One half of each tumor 
was fixed in formalin for immunohistochemistry and the other 
half freeze-clamped for molecular analysis. 231_VEGF tumors 
were validated for VEGF expression by ELISA following man-
ufacturer’s instructions (R&D, Minneapolis, MN).9,25 Animal 
handling was conducted in accordance with the regulations 
outlined by the Institutional Animal Care and Use Committee 
of Johns Hopkins University.

Second harmonic generation (SHG) microscopy

SHG microscopy of hematoxylin and eosin (H&E) stained 
sections was performed as previously described.26 Briefly, 
tumors were paraffin-embedded and 5 μm thick H&E sections 
were used for SHG microscopy. Slides were analyzed using an 
Olympus Laser Scanning FV1000 MPE multiphoton micro-
scope (Olympus Corp., US headquarters–Center Valley, PA) 
with a 25Xw/ 1.05XLPLN MP lens. Excitation was achieved at 
860 nm and the second harmonic signal was detected at 

a wavelength of 430 nm. Col1 fiber parameters of percent 
fiber volume and inter-fiber distance were quantified, and 
Haralick texture features such as contrast and homogeneity 
were analyzed, using an in-house fiber analysis software writ-
ten in MATLAB 7.4.0 (The MathWorks, Natick, MA, USA) as 
previously described.26

Immunohistochemistry

Formalin-fixed, paraffin-embedded sections of tumors were 
deparaffinized followed by antigen retrieval. Antibodies 
used for immunohistochemistry (IHC) of targets-of- 
interest were: rat monoclonal CD31 antibody (Dianova, 
Hamburg, Germany) at 1:30 dilution, rabbit anti-Col1A1 
antibody cross-reactive with mouse and human Col1A1 
(OriGene, Rockville, MD, USA) at 1:70 dilution, mouse- 
monoclonal anti-FN1 antibody cross-reactive with mouse 
and human FN1 (Immunogen- Fusion proteinAg8016, 
Proteintech, Rosemont, IL, USA) at 1:100 dilution, and 
bovine nasal cartilage HABP (Millipore Sigma, Merck 
KGaA, Darmstadt, Germany) at 1:750 dilution. Slides 
were incubated overnight at 4°C. Following this, sections 
were incubated with horseradish peroxidase conjugated 
with anti-mouse or anti-rabbit IgG. For HABP, the 
VECTASTAIN ABC-AP Kit procedure was used. Finally, 
slides were stained with 3,3′-diaminobenzidine (DAB) and 
counterstained with hematoxylin.

High-resolution digital scans of the stained sections (five 
tumors per group, 1 section analyzed per tumor) were 
obtained using ScanScope (Aperio, Vista, CA). 
Quantification was done with the ImageScope software using 
the Positive Pixel Count V9 algorithm supplied by the manu-
facturer. The number of strongly positive or positive pixels 
normalized to the total number of pixels was obtained. 
Analyses were performed using the entire histological section, 
with entire viable and necrotic regions in the section mapped 
from adjacent H&E stained slides.

RT-PCR and immunoblotting

RNA isolation was done using Qiagen kit (Qiagen, Valencia, 
CA, USA). To obtain RNA, tissues were homogenized with 
RLT buffer and passed through a QIAshredder. cDNA was 
synthesized using an iScript cDNA synthesis kit (Bio-Rad, 
Hercules, CA, USA).

For quantitative real-time PCR (qRT-PCR), 1 μl of 1:10 
diluted cDNA was used. IQ SYBR Green Supermix and gene- 
specific primers in the iCycler RT-PCR detection system (Bio- 
Rad, Hercules, CA, USA) were used. For the ECM proteins, 
Col1A1, Col1A2, and FN1, and for fibroblast activation pro-
tein alpha (FAP-α), mouse ECM specific primers were 
designed. The house-keeping genes, hypoxanthine phosphor-
ibosyltransferase-1 (HPRT-1) and 18s ribosomal RNA (18s 
rRNA), were used as controls. The threshold cycle (ct) from 
these house-keeping genes was used to calculate the expression 
of human and mouse-specific genes. The change in threshold 
cycle (Δct) values between HPRT-1 for targets of human origin 
and 18s for mouse related targets, and the gene of interest was 
calculated for 231_WT and 231_VEGF samples. To obtain 
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ΔΔct and the fold mRNA expression, the average Δct of the 
231_WT samples was subtracted from the Δct values of the 
231_VEGF sample. Using the formula 2−ΔΔct, fold mRNA 
expression of individual samples was determined and plotted 
using GraphPad prism.

Protein isolation and immunoblotting was performed as 
previously described.27 Antibodies cross-reactive with mouse/ 
human ECM proteins and specific for human enzymes of 
interest included rabbit-polyclonal anti-Col1A1 antibody 
(1:1000; OriGene, Rockville, MD, USA), mouse monoclonal 
anti-FN1 antibody (1:2000 dilution; Proteintech, Rosemont, 
IL, USA), rabbit polyclonal anti-MMP-1 antibody (1:1000 
dilution; Neo BioLab, Woburn, MA, USA), rabbit polyclonal 
anti-MMP2 (1:1000 dilution; GeneTex, Inc., Irvine, CA, USA), 
rabbit polyclonal anti-MMP-14 antibody (1:1000 dilution; Neo 
BioLab, Woburn, MA, USA), mouse monoclonal anti-lysyl 
oxidase (LOX) antibody (1:1000 dilution; GeneTex, Inc., 
Irvine, CA, USA), mouse monoclonal anti-ADAMTS1 anti-
body (1:500 dilution; OriGene, Rockville, MD, USA), rabbit 
polyclonal anti-uPAR (1:1000 dilution; GeneTex, Inc., Irvine, 
CA, USA), mouse monoclonal anti-α-SMA antibody (1:2000; 
Novus Biologicals, Littleton, CO, USA), rabbit monoclonal 
antibody against neuropilin-1 (NRP-1) (1:1000, clone D62C6, 
Cell Signaling, Danvers, MA, USA, rabbit polyclone anti-FLT1 
(VEGFR1) antibody (1:1000, MyBioSource, San Diego, CA) 
and rabbit polyclonal anti-FAP-α antibody (1:1000, Ab207178, 
Abcam, Cambridge, UK). Horseradish peroxidase-conjugated 
secondary antibodies were used at 1:2000 dilution. Blots were 
visualized using the SuperSignal West Pico Chemiluminescent 
substrate kit (Thermo Scientific, Rockford, IL, USA). The 
reference band from the molecular weight marker was used 
to determine the location of the protein of interest. 
Autoradiographs were scanned, and densitometry of the 
band intensities of various proteins of interest were obtained 
using ImageJ software. The band intensity for each protein was 
normalized to the intensity of GAPDH protein used as 
a loading control. Values are represented as Mean ± 
Standard Error of the Mean (SEM) from five individual 
tumor samples for the in vivo studies and at least three biolo-
gical replicates for the cell studies.

Human breast cancer analysis

Publicly available TCGA data sets for breast cancer were 
retrieved from the TCGA Data portal (https://tcga-data.nci. 
nih.gov/tcga)28 using the open-access, open-source, web- 
based platform cBioPortal for Cancer genomics (cbioportal. 
org).29 Clinical identifiers were applied to select treatment 
naïve patient samples that were triple negative. Three stu-
dies, the Korean breast cancer cohort study (SMC-2018),30 

the breast invasive carcinoma TCGA study (TCGA-2015),31 

and the breast invasive carcinoma TCGA Firehose Legacy 
study (Firehose Legacy), with source data from the reposi-
tory at Broad Institute Genomic Data Analysis Center 
(GDAC), met our criteria. Based on curated RNA sequen-
cing data for a given study, we next applied genomic filters 
to group patient samples with high and low VEGFA mRNA 
expression based on the z-score of samples (log RNA Seq V2 
RSEM). Z-score values greater than 1.2-fold were grouped as 

VEGFA-high and values less than 1.2-fold were grouped as 
VEGFA-low. In the case of the TCGA study,30 RNA sequen-
cing data were provided as transcripts per million (TPM). 
For this study, TPM values for VEGA expression were 
divided into four quartiles using the tool available in 
cBioPortal web portal. Data from the highest and lowest 
quartile were analyzed as high and low VEGFA expressing 
tumors. Comparison analyses for MMP1, uPAR, LOX and 
α-SMA were performed for VEGF-high and VEGF-low data 
sets following the instructions in cBioportal.32 The 
cBioportal-derived expression data presented in this study 
are based on a frequently employed analysis technique called 
the RNA-seq by Expectation Maximization (RSEM). RSEM 
takes into account the transcript length and provides accep-
table and accurate results.33

Statistical analysis

Statistical analysis was performed using GraphPad Prism (San 
Diego, CA). P values ≤ .05 were considered significant. 
P values were based on a two-tailed t-test for the ELISA and 
mRNA analysis, and a one-tailed t-test for the IHC studies, 
based on the sample size. For the TCGA data sets, a Mann- 
Whitney test was performed, as the non-parametric Mann- 
Whitney test is most appropriate for large-scale RNA seq data. 
Additionally, the TCGA data sets were also evaluated with 
a two-tailed t-test.

Results

Validation of VEGF overexpression in cells and tumors 
and its effects on tumor vasculature

ELISA performed on supernatant derived from cells and 
protein isolated from tumor-derived samples showed 
a statistically significant increase of VEGF in 231_VEGF 
cells (Figure 1a) and 231_VEGF tumors (Figure 1b) com-
pared to wild-type cells and tumors. We used CD31 as 
a marker of endothelial cells to confirm the functional effects 
of VEGF on increasing tumor vasculature. As shown in the 
representative IHC images in Figure 1c,a higher number of 
CD31 immunostained pixels was detected in 231_VEGF 
tumors (right) compared to 231_WT tumors (left). These 
results summarized in Figure 1d identified a trend (P ≤ .07) 
of increased vessel density in VEGF overexpressing tumors. 
Growth curves for 231_WT and 231_VEGF tumors, fitted to 
a Gompertzian curve, are shown in Figure 1e. Tumor growth 
was significantly higher in 231_VEGF tumors compared to 
231_WT tumors. A significant difference between the aver-
age doubling time for 231_WT and 231_VEGF tumors was 
observed (P ≤ .05). The tumor doubling time (Td) was 
approximately 9 ± 1.32 d for 231_WT tumors compared to 
5.5 ± 0.28 d for 231_VEGF tumors, estimated for tumor 
volumes from 110 mm3 to 300 mm3 (values represent 
Mean ± S.E.M.). We additionally characterized VEGF 
mRNA as well as VEGF levels in cell supernatant and lysate 
by ELISA for PC-3 and MCF-7 cells overexpressing VEGF to 
confirm increased levels of VEGF in these cells as shown in 
Supplementary Figures 1a,b.
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VEGF overexpression reduced Col1, fibronectin, and 
hyaluronan

We next characterized Col1 fibers in tumor sections using 
SHG microscopy. Representative images of Col1 fibers 
obtained using SHG microscopy in Figure 2a from 
231_VEGF (right) and 231_WT tumors (left) show the signif-
icant decrease of Col1 fibers in VEGF overexpressing tumors. 
Compared to 231_WT tumors, percent fiber volume in 
231_VEGF tumors significantly decreased (Figure 2b) and 
interfiber distance significantly increased (Figure 2c). 
Haralick feature analysis identified a significant decrease in 
contrast (Figure 2d) and a significant increase in homogeneity 
(Figure 2e) with VEGF overexpression.

The significant decrease in Col1 fibers identified with SHG 
microscopy was further confirmed with IHC of Col1A1. 
Representative viable and necrotic areas of immunostained 
sections from 231_WT tumors in Figure 3a and 231_VEGF 
tumors in Figure 3b show decreased Col1A1 immunostaining 
in viable tumor regions of VEGF overexpressing tumors, but 
not in necrotic tumor regions. These data, summarized in 
Figure 3c,d, demonstrate the significant decrease of Col1A1 
with VEGF overexpression in viable tumor regions (Figure 3c), 
but not in necrotic tumor regions (Figure 3d). Along with 
Col1A1, a significant decrease of FN1 in viable tumor regions 
was detected with VEGF overexpression. Representative viable 
and necrotic areas of immunostained sections from 231_WT 
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tumors in Figure 4a and 231_VEGF tumors in Figure 4b show 
the decreased FN1 immunostaining in viable tumor regions of 
VEGF overexpressing tumors, but not in necrotic tumor 
regions. These data, summarized in Figure 4c,d, demonstrate 
the significant decrease of FN1 with VEGF overexpression in 
viable tumor regions (Figure 4c), but not in necrotic tumor 
regions with VEGF overexpression (Figure 4d).

Immunostaining of HA binding protein (HABP) was used 
to characterize changes in HA in VEGF overexpressing 

tumors. Representative viable and necrotic areas of HABP 
immunostained sections from 231_WT tumors in Figure 5a 
and 231_VEGF tumors in Figure 5b show decreased HABP 
immunostaining in viable tumor regions of VEGF overexpres-
sing tumors, and in necrotic tumor regions. These data, sum-
marized in Figure 5c,d, identified a trend (P ≤ .08) toward 
decreased HABP with VEGF overexpression in viable tumor 
regions (Figure 5c), and a significant decrease with VEGF 
overexpression in necrotic tumor regions (Figure 5d).
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Immunoblot analyses of tumor tissue and cells

Immunoblot analysis of tumors further confirmed a clear 
reduction of Col1A1 and FN1 protein with VEGF overexpres-
sion, as shown in Figure 6a and summarized in Supplementary 
Figure 2a.

Because ECM remodeling is frequently achieved by the 
action of various enzymes, we interrogated changes in 
MMP1, MMP2, MMP14, urokinase-type plasminogen activa-
tor receptor (uPAR), ADAM Metallopeptidase with 
Thrombospondin Type 1 Motif 1 (ADAMTS1), and LOX in 
VEGF overexpressing tumors. MMP1, uPAR and LOX clearly 
increased with VEGF overexpression as shown in Figures 6b-e 
and summarized in Supplemental Figures 2B-E. MMP2 and 
ADAMTS1 decreased with VEGF overexpression as shown in 

Figure 6c,d, and summarized in Supplementary Figures 2C 
and D. Unlike the other ECM degrading enzymes, we did not 
identify a clear change in MMP14 with VEGF overexpression 
(data not shown). Since CAFs play a major role in ECM 
synthesis, we also evaluated two well-established markers of 
CAFs, α-SMA and FAP-α. We identified a trend (P ≤ .08) of an 
increase of α-SMA, and a decrease of FAP-α in 231_VEGF 
tumors compared with 231_WT tumors (figure 6f, and 
Supplementary Figure 2 F). Multiple bands appearing in 
some immunoblots were either due to non-specific binding 
or due to protein phosphorylation.

We also characterized the same ECM remodeling enzymes 
in MDA-MB-231, PC-3 and MCF-7 VEGF overexpressing 
cells as shown in Figure 7. With the exception of ADAMTS1 

Figure 3. Col1A1 immunostaining. (a) Representative images of Col1A1 immunostained tumor sections from viable (left) and necrotic (right) regions of 231_WT tumors. 
(b) Representative images of Col1A1 immunostained tumor sections from viable (left) and necrotic (right) regions of 231_VEGF tumors. Quantification of Col1A1 
positive pixels normalized to the total pixel area of (c) viable tumor regions and (d) necrotic tumor regions from 231_WT (N = 5) and 231_VEGF (N = 5) tumors. Values 
represent Mean ± S.E.M. * P ≤ .05.
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that increased, MDA-MB-231 cells overexpressing VEGF 
showed changes similar to those observed in tumors for 
uPAR, MMP1, MMP2 and a trend toward increased LOX 
expression (P ≤ .09)(Figure 7a, Supplementary Figure 3A). 
Similar to MDA-MB-231 cells, PC-3 cells overexpressing 
VEFG showed an increase of uPAR, but ADAMTS1, LOX 
and MMP1 decreased or remained unchanged; MCF-7 cells 
did not exhibit any change in these enzymes with VEGF over-
expression (Figure 7b). To understand the autocrine mechan-
isms causing these changes, we characterized the VEGF 
binding receptors VEGFR1 and NRP-1 in these cells. The 
data presented in Figure 7c demonstrate that both MDA-MB 
-231, and PC-3, but not MCF-7, wild-type cells expressed high 
levels of NRP-1 supporting the possibility of autocrine 

signaling. Similar levels of NRP-1 were detected in MDA-MB 
-231 (Figure 7c, Supplementary Figure 3B) and PC-3 VEGF 
overexpressing cells (Figure 7c). NRP-1 was low in MCF-7 
VEGF overexpressing cells. VEGFR1 was not detected in 
wild type or VEGF overexpressing cells in all three cell lines 
(data not shown).

mRNA changes in human samples and xenografts

We mined the TCGA TARGET GTEx database to characterize 
mRNA changes in the degradative enzymes MMP1 
(Figure 8a), uPAR (Figure 8b) and LOX (Figure 8c), and the 
CAF marker α-SMA (Figure 8d), in treatment naïve TNBC 
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with high and low VEGF mRNA. Statistical analyses of the fold 
change were evaluated using the Mann-Whitney test and 
a 2-tailed t-test. Identical significant changes were identified 
with both tests. A significant increase of MMP1 mRNA in 2 of 
3 studies, LOX mRNA in 1 of 3 studies with a trend toward 
increased expression in a second study (P ≤ .08 in TCGA 
Firehose Legacy), uPAR mRNA in all 3 studies, and α-SMA 
mRNA in 1 of 3 studies with a trend toward increased expres-
sion in the TCGA Firehose Legacy study (P ≤ .06) were 
identified in the high VEGF mRNA group compared to the 

low VEGF group, consistent with the changes observed in the 
tumor xenograft studies.

We characterized mRNA of the ECM proteins and degra-
dative enzymes to understand transcriptional changes induced 
by VEGF overexpression in the xenografts. mRNA levels of 
Col1A1, Col1A2 and FN1 significantly decreased in 
231_VEGF tumors (Supplementary Figures 4A-C) consistent 
with the reduction identified with IHC and in the immuno-
blots. Also, consistent with the immunoblots, mRNA of 
MMP1 and uPAR significantly increased (Supplementary 
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Figures 4D-E), and mRNA of MMP2, ADAMTS1, and FAP-α 
significantly decreased (Supplemental Figures 4 F-H). We also 
confirmed a significant increase of VEGFA mRNA 
(Supplemental Figure 4I).

Discussion

Our studies identified a clear reduction of key ECM compo-
nents, Col1A1, FN1 and HA in MDA-MB-231 xenografts 
with VEGF overexpression. The patterns of Col1 fibers, iden-
tified by Haralick feature analysis, were also altered by VEGF 
overexpression. Increased expression of VEGF was con-
firmed directly in cells and tumors, as well as from the func-
tional changes of increased vascularity detected by the 
endothelial cell marker, CD31, and increased tumor growth. 
Changes in enzymes such as an increase of MMP1, uPAR, 
and LOX, and a decrease of MMP2 and ADAMTS1, together 
with an increase of CAFs, most likely contributed to the ECM 

changes in the VEGF overexpressing tumors. Increases in 
mRNA expression for various matrix degrading enzymes 
together with the increase in α-SMA mRNA in the xenografts 
were confirmed in the TCGA analysis of treatment naïve 
TNBC with high and low VEGFA data sets. Our purpose 
with the TCGA analysis was to determine if the protein 
expression changes identified in our tumor models were 
reflected in publicly available human data, although the 
probed genes in the TCGA data may not necessarily predict 
protein expression.

The autocrine and intracrine roles of VEGF34 were evident 
from the changes in enzymes observed in VEGF overexpres-
sing cancer cells. With the exception of ADAMTS1 that 
decreased in 231-VEGF tumors but increased in cells, the 
increase of uPAR, LOX, MMP1 and a decrease of MMP2 
observed in the tumors was also observed in 231_VEGF cells 
that suggested that the enzymatic changes driving the ECM 
changes occurred directly within the cancer cells.
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uPAR increased significantly in PC-3 prostate cancer cells 
overexpressing VEGF, and was consistently higher in the 
human TNBC data. MCF-7 breast cancer cells that are ER 
+ve and poorly invasive did not show any alterations of the 
degradative enzymes investigated.

The autocrine changes mediated by VEGF most likely 
occurred through binding of VEGF to NRP-1 that showed 
high expression in the MDA-MB-231 and PC-3 wild type 
and VEGF overexpressing cells, but not MCF-7 cells that was 
consistent with the absence of any alterations of the degrada-
tive enzymes investigated following VEGF overexpression. 
Previous observations of an increase of ECM degradation by 
VEGF overexpressing breast cancer cells9 are also consistent 

with enzyme changes occurring through autocrine signaling in 
the cells. Similar autocrine signaling mediated modulation of 
enzymes by VEGF was previously observed in A549 lung 
cancer cells,35 vascular smooth muscle cells,23 and 
chondrocytes.36 Both paracrine and autocrine signaling play 
a role in tumor microenvironment changes mediated by VEGF 
as demonstrated in a study where suppressing VEGF decreased 
metastasis via disrupting both the autocrine and paracrine 
signaling loops of VEGF.37

In MDA-MB-231 tumors, the three enzymes that increased 
with VEGF overexpression were MMP1, uPAR and LOX, 
while MMP2 and ADAMTS1 decreased. The increase of 
uPAR is consistent with the reduction of the ECM components 
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observed here since uPAR plays a role in generating plasmin 
and activating the MMPs. MMP1, or collagenase 1, is a matrix 
metalloproteinase that specifically degrades collagen 1. The 
increase of MMP1 can explain the reduction of Col1 fibers 
observed with VEGF overexpression, despite the increase of 
LOX the enzyme that plays a role in cross-linking Col1 fibers.38

The reduction of MMP2 and ADAMTS1 may have indir-
ectly contributed to ECM changes. MMP2 is a type IV collage-
nase that plays a role in releasing growth factors bound to the 
ECM and in degrading the basement membrane.39 ADAMTS1 

is part of a family of extracellular proteolytic enzymes known 
to have diverse functions related to ECM remodeling, angio-
genesis, cell migration and organogenesis. Dysregulation of 
these enzymes has been implicated in various diseases includ-
ing multiple cancers. In breast cancer, overexpression of 
ADAMTS1 was shown to promote tumor progression and to 
be upregulated in metastatic TNBC (reviewed in40). Under 
physiological conditions, ADAMTS1 has been shown to 
sequester VEGF165 thereby acting as an angiogenesis inhibi-
tor; binding of ADAMTS1 to VEGF165 disrupts the binding 
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and phosphorylation of VEGFR2 leading to the suppression of 
endothelial cell proliferation.41,42

In wound-healing, VEGF-mediated increases of collagen and 
FN1 have been frequently documented.43 During wound- 
healing, the increased vascular permeability induced by VEGF 
results in extravasation of proteins such as fibrin and FN1 which 
provides a temporary matrix to nourish fibroblasts, facilitate 
their motility, and induce them to deposit a more structured 
collagen stroma.44 Our data revealed that, unlike during wound 
repair, in our TNBC xenograft model, VEGFA overexpression 
resulted in a decrease of Col1A1 and FN1, despite an increase of 
the CAF marker α-SMA, indicating that VEGF-mediated 
changes in the ECM are reprogrammed in cancer. Although, 
to the best of our knowledge, a direct evaluation of ECM 
changes with VEGF overexpression has not been performed, 
changes in the tumor ECM observed with anti-VEGF treatments 
provide useful insights in understanding the changes observed.

Three major ECM proteins, Col1A1, FN1 and HA, signifi-
cantly decreased with VEGF overexpression. Collagen fibers 
are the most abundant structural protein in the ECM. TNBC, 
in particular, has a significantly increased deposition of col-
lagen as well as increased matrix stiffness compared with 
luminal breast cancer subtypes.45 Previous studies have iden-
tified an association between increased Col1 fibers and metas-
tasis in breast46 and prostate cancer.47 Here, SHG microscopy 
together with immunohistochemistry and molecular analysis 
clearly demonstrated that VEGF overexpression reduced Col1 
fibers, protein and mRNA. Hypoxia is a potent transcriptional 
regulator of VEGF. The changes in Col1 fibers with VEGF 
overexpression are consistent with earlier observations that 
hypoxic tumor regions exhibit fewer Col1 fibers.26

Similar to Col1, FN1 was reduced by VEGF overexpression. 
FN1 is a glycoprotein that is present in dimeric and multimeric 
form in the ECM. It binds through an RGD sequence to 
endothelial cells, and is frequently found localized with 
endothelial cells.48 Here, despite an increase of the endothelial 
cell marker, CD31, with VEGF overexpression, FN1, in viable 
tumor regions, significantly decreased. FN1 plays important 
roles in cell migration, growth, and differentiation.49 FN1 
interacts with Col1 in the tumor ECM during 
tumorigenesis.50 FN1 has been shown to contribute to tumor 
growth, progression, migration, and response to therapy 
(reviewed in51). In breast cancer, intracellular FN1 has been 
associated with increased metastasis.52 Treatment of a colon 
cancer xenograft with bevacizumab resulted in a significant 
increase of fibronectin,53 indirectly supporting our observation 
that increased VEGF reduces fibronectin.

Since Col1 and FN1 are associated with increased 
metastasis,46,52,54 their reduction with VEGF overexpression, 
which is also known to increase metastasis in these tumors,9 

was surprising. It is possible that a less dense ECM may be 
more conducive to metastasis, or that although VEGF over-
expression results in an ECM that is less permissive to metas-
tasis, increased vascularity, and invasiveness override this with 
the net outcome of an increase of metastasis.

In addition to Col1 and FN1, we observed a reduction of HA, 
a high-molecular weight, unbranched, nonsulfated glycosamino-
glycan that is an important structural component of various 
tissues including the tumor ECM. HA regulates adhesion, cell 

proliferation, EMT, gene expression, invasion, motility, signaling, 
metastasis, and morphogenesis55,56 by its ability to bind to various 
HA binding proteins collectively called hyaladherins.57,58 

Additionally, breakdown products of HA can stimulate 
angiogenesis.59 Although an increase of HA is frequently asso-
ciated with increased invasion,60 degradation of HA has also been 
observed in many pathologies including inflammation and 
cancer.61 Studies of colorectal cancer liver metastases treated 
with anti-VEGF therapy have identified an increase of HA and 
sulfated glycosaminoglycans and increased tumor stiffness after 
anti-VEGF treatment, although no significant changes in collagen 
were detected.62

The ECM changes observed here represent a net outcome of 
synthesis by CAFs and degradation by enzymes. CAFs are one 
of the most abundant stromal cell population in the tumor 
microenvironment, performing diverse functions such as 
synthesis and remodeling of the ECM, promoting migration, 
invasion, and metastasis, and affecting immune cell 
function.63,64 CAFs are a heterogeneous population of cells 
derived from multiple cellular sources.63 Here, α-SMA, which 
is expressed by most CAFs,65 increased with VEGF overexpres-
sion. These results are consistent with an earlier study in which 
α-SMA levels increased in VEGF overexpressing TNBC.8 

However, FAP-α, a marker of a subset of CAFs associated 
with immune suppression decreased.66 It is possible that differ-
ent CAF subsets may have different responses to VEGF, and 
that the ECM synthesis capabilities of subsets of CAFs may be 
different. In a murine intrahepatic cholangiocarcinoma model, 
blocking placental growth factor (PIGF)-α, a member of the 
VEGF family, impacted only one subset of CAFs that expressed 
low levels of Col1.67 Reduction of FAP-α expressing CAFs may 
have contributed to the changes in the ECM observed here.

Our data highlight the autocrine role of VEGF in increasing 
uPAR and other degradative enzymes and support the use of 
disrupting these autocrine or intracrine loops for treatment. 
A limitation of our study is that we used a single time point as 
a snap-shot to evaluate changes in the ECM, CAFs and 
enzymes in these tumors. The availability of noninvasive ima-
ging to image the ECM, CAFs, and enzymes will allow evalua-
tion of the spatial and temporal evolution of the 
reprogramming of the ECM and its causes that occurs with 
VEGF overexpression in tumors, compared to healing 
wounds.44 Such studies may provide additional insights into 
the role of VEGF in tumor progression and metastasis.
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