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ABSTRACT
Accumulating evidence suggested that both gut microbiome and sex play a critical role in the 
efficacy of immune checkpoint blockade therapy. Considering the reciprocal relationship between 
sex hormones and gut microbiome, the sex hormone-gut microbiome axis may participate in the 
regulation of the response to immune checkpoint inhibitors (ICIs). In this review, it was attempted 
to summarize the current knowledge about the influences of both sex and gut microbiome on the 
antitumor efficacy of ICIs and describe the interaction between sex hormones and gut microbiome. 
Accordingly, this review discussed the potential of enhancing the antitumor efficacy of ICIs 
through regulating the levels of sex hormones through manipulation of gut microbiome. 
Collectively, this review provided reliable evidence concerning the role of the sex hormone-gut 
microbiome axis in tumor immunotherapy.
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Introduction

Through unleashing of antitumor T cell activity, 
immune checkpoint inhibitors (ICIs) have 
achieved great success in diverse types of cancer. 
However, some cancer patients have not responded 
to ICIs, indicating the necessity of searching for the 
reasons for the low responsiveness to ICIs1. Among 
the multiple potential factors, certain gut micro-
biome signatures have been found to be associated 
with a higher response to ICIs2–4. Both gut 
microbes and bacterial-derived metabolites may 
contribute to the influences of gut microbiome on 
the outcomes after receiving ICIs; however, the 
underlying mechanisms have not yet been fully 
clarified5.

Emerging evidence indicated the existence of the 
sex hormone-gut microbiome axis. The sex-based 
differences in gut microbiome have been exten-
sively investigated. Changes in sex hormone levels 
induced by gonadectomy6, menstrual cycle and 
menopausal status7,8, or certain diseases (e.g., poly-
cystic ovary syndrome (PCOS))9 can alter the gut 
microbial composition. In turn, transfer of gut 
microbiota10 or treatment with antibiotics11 

resulted in significant changes in levels of sex hor-
mones. The interaction between sex hormones and 
gut microbiome, termed the sex hormone-gut 
microbiome axis here, plays a vital role in multiple 
diseases, such as PCOS9, cardiovascular disease12, 
mental disorders13, etc.

Clinical meta-analysis indicated that the magni-
tude of benefit derived from ICIs is largely sex- 
dependent14,15. Moreover, sex hormone receptors 
were recently identified to play an important role 
in the sex-based immune response to ICIs via reg-
ulating CD8+ T cell function16–19. Considering the 
existence of the sex hormone-gut microbiome axis, 
gut microbiome may affect the antitumor efficacy 
of ICIs by regulating the host’s sex hormone levels. 
The present study aimed to review recent advances 
in understanding the underlying mechanisms by 
which gut microbiome and sex hormones could 
affect the immune response to ICIs. In particular, 
the interaction mechanisms between sex hormones 
and gut microbiome were explored, and the possi-
bility of enhancing antitumor efficacy of ICIs via 
manipulating the sex hormone-gut microbiome 
axis was assessed.
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Gut microbiome could modulate the response 
to ICIs

The effects of gut microbiome on antitumor immu-
nity were first revealed in mice with disruption of 
gut mucosal integrity induced by total body irra-
diation or cyclophosphamide20,21. The transloca-
tion of certain gut microbes, such as Lactobacillus 
and Bifidobacterium, into secondary lymphoid 
organs triggered by gut mucosal disruption could 
promote the activation of CD4+ or CD8+ T cells 
and improve the antitumor outcomes. Meanwhile, 
it was demonstrated that gut microbiome was 
necessary for the efficacy of cytosine-phosphate- 
guanine (CpG)-oligonucleotide-based tumor 
immunotherapy22. Then, the essential role of gut 
microbiome in ICI immunotherapy was investi-
gated in anti-cytotoxic T-lymphocyte-associated 
protein 4 (anti-CTLA-4) or anti-programmed 
death-ligand 1 (anti-PD-L1) antibody-treated 
mice and the relevant bacterial species were identi-
fied by 16S ribosomal RNA sequencing23,24. It was 
found that the antitumor effects of CTLA-4 block-
ade depended on specific Bacteroides species24, 
while oral administration of Bifidobacterium facili-
tated anti-PD-L1 efficacy against melanoma4. 
These valuable findings from preclinical mouse 
models suggested a critical role of gut microbiome 
in cancer immunotherapy and inspired further 
investigation on human cancer patients. In 2018, 
three independent studies demonstrated that 
intestinal microbiome profoundly affected 
responses to anti-programmed cell death protein 
1 (anti-PD-1)/anti-PD-L1 immunotherapy in 
patients with melanoma, non-small cell lung can-
cer (NSCLC), and renal cell carcinoma2–4. 
However, no consensus microbial signals asso-
ciated with favorable response to ICIs were identi-
fied in these three studies, suggesting that function, 
rather than specific species, may better indicate the 
effects of intestinal microbiota25. Due to the limited 
concordance among different studies and the lack 
of understanding of the precise composition of 
a favorable gut microbiome, fecal microbiota trans-
plantation (FMT) exhibited to be a promising 
method to eliminate resistance to ICI 
immunotherapy26,27. Multiple clinical trials have 
assessed the feasibility of improving the efficacy 
and safety of ICIs through FMT28,29. Two clinical 

trials have concentrated on the use of FMT to 
improve ICI response in patients with melanoma 
(Identifiers: NCT03341143 and NCT04988841), 
and one trial for metastatic castration-resistant 
prostate cancer (Identifier: NCT04116775) has 
moved to a phase II trial.

The influences of gut microbiome on the antitumor 
efficacy of ICIs may be mediated by multiple mechan-
isms (Table 1), which have not yet been fully 
explored5. Both gut microbes and their metabolites 
may contribute to the effects of gut microbiome on 
the cancer immune response. For instance, bacterial 
immunostimulants, such as peptidoglycan30, 
polysaccharide24, exopolysaccharide31, and type 1 
fimbriae adhesion portion32, may enhance the anti-
tumor effects of ICIs through strengthening both 
innate immunity and T cell functions in mice. 
Bacteria penetrating the mucus and submucosal lym-
phoid organs21 or even the tumor sites33 may also 
stimulate the antitumor immune response in mice. 
Besides, a cross-molecular mimicry may exist between 
bacteria and tumor-associated antigens, leading to the 
induction of cross-reactive CD8+ T cell responses34. 
Inspired by the similarity of gut microbiota and 
tumor-derived antigens, a therapeutic vaccine has 
been developed using “oncomimic” peptides in con-
junction with anti-PD-1 for treatment of colorectal 
cancer (Identifier: NCT05350501).

In addition to the immunomodulatory microbial 
components, the effects of gut microbiome on the 
antitumor immune response to ICIs can be mediated 
by their metabolites. Short-chain fatty acids35–37, the 
major end-products of gut microbiota-derived meta-
bolites, and some short-chain fatty acid-producing 
bacterial species, such as Akkermansia muciniphila 3, 
Lachnospiraceae 38, and Lactobacillus 39, have been 
found to be associated with favorable response to 
ICIs in cancer patients. Particularly, butyrate could 
directly enhance the antitumor cytotoxic CD8+ T cell 
responses by promoting IL-12 signaling pathway and 
increase the efficacy of anti-PD-L1 therapy in mice40. 
Similarly, the purine metabolite inosine produced by 
certain bacteria, such as Bifidobacterium pseudolon-
gum and Akkermansia muciniphila, could improve 
response to ICIs in mouse models of cancer via acti-
vating anti-tumor T cells through adenosine A2A 
receptor41. Besides, inosine could serve as an alterna-
tive carbon source for CD8+ T cell function under 
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glucose restriction and relieve tumor-imposed meta-
bolic restrictions on T cells42. Supplementation with 
inosine enhanced the anti-tumor efficacy of ICIs in 
mice41,42. Another microbial metabolite correlated 
with efficacy of ICIs is trimethylamine oxide 
(TMAO)43. Choline or carnitine in the food can be 
transformed into the precursor trimethylamine by gut 
microbiome, which may be catalyzed to generate 
TMAO in the liver. Either intratumoral injection of 
TMAO or oral supplement with choline enhanced 
antitumor activity of anti-PD-1 in mice with triple- 
negative breast cancer43. Other gut microbiota- 
derived metabolites, such as anacardic acids44 and 
secondary bile acids45, may also affect the antitumor 
effects of ICIs. However, it is noteworthy that both 
TMAO and secondary bile acids may also promote 
carcinogenesis, especially in the colon46–48. In addi-
tion, higher plasma levels of TMAO and precursors 
may increase the risk of coronary heart disease49.

Some microbial metabolites may also decrease the 
antitumor efficacy of ICIs. For instance, the trypto-
phan released from degradation of dietary proteins 
can be converted into various metabolites by gut 
microbiome, such as indole, indole-related com-
pounds, and kynurenine. As a typical immunosup-
pressive tryptophan metabolite, a higher kynurenine/ 

tryptophan ratio has been found to be associated with 
a poor response to anti-PD-1 in NSCLC patients50. 
Moreover, the influences of microbial metabolites on 
anti-tumor immunity could be largely situation- 
dependent. For instance, high blood butyrate and 
propionate levels were reported to be associated with 
resistance to CTLA-4 blockade in patients with meta-
static melanoma, and oral administration of sodium 
butyrate diminished antitumor efficacy of anti-CTLA 
-4 in mice51. It could be attributed to the difference 
between anti-CTLA-4 and anti-PD-1/PD-L1, which 
needs to be validated in the future. In addition, con-
sidering the large pool size of gut microbiota-derived 
metabolites, the causal relationship for most of the 
metabolites should be further confirmed, although 
a strong correlation may be identified.

Of note, ICI immunotherapy can also alter the 
composition of the gut microbiome. It has been 
shown that there is a variation in the gut micro-
biome composition during anti-PD-1 immunother-
apy in patients with hepatocellular carcinoma38. The 
effects of ICIs on gut microbiome were also observed 
in an animal study24. Furthermore, our previous 
study indicated that anti-PD-L1 could significantly 
alter the composition of the gut microbiome and 
decrease the relative abundance of Lachnospiraceae 

Table 1. Possible mechanisms of the influences of gut microbiome on the antitumor efficacy of ICIs.
Effector 
component Effect Possible mechanism Model organism Ref.

Bacterial immunostimulants or bacterial antigens
Peptidoglycan Increase Expression of peptidoglycan hydrolase promotes the 

generation of muropeptides, which can act as 
adjuvants through NOD2 receptor.

Mouse B16-F10 melanoma treated with anti-PD-L1, MCA205 
fibrosarcoma treated with anti-PD-1, MC38 colorectal 
carcinoma treated with anti-CTLA-4.

30

Polysaccharide Increase B. fragilis polysaccharides trigger IL-12–dependent Th1 
immune responses.

Mouse MCA205 sarcomas treated with anti-CTLA-4. 24

Exopolysaccharide Increase Lactobacillus-derived exopolysaccharides induce CCR6 
+ CD8+ T cells.

Mouse CCL20-expressing tumor model treated with anti-PD-1 
and anti-CTLA-4 (Colon26 colon adenocarcinoma and 4T1 
mammary carcinoma).

31

Type 1 fimbriae 
adhesion 
portion

Increase Escherichia coli adhesion portion FimH induces TLR4- 
dependent DC maturation.

Mouse CT26 carcinoma treated with anti-PD-L1. 32

Gut bacterial 
antigens

Increase Molecular mimicry between bacteria and tumor- 
associated antigens may induce cross-reacting CD8+ 
T cell responses.

Clinical trials of “oncomimic” peptides in combination with 
anti-PD-1 for treatment of colorectal cancer 
(NCT05350501).

34

Bacterial metabolites
Butyrate Increase Boosting antitumor cytotoxic CD8+ T cell responses 

through IL-12 signaling pathway.
Mouse MC38 colon carcinoma treated with anti-PD-L1. 40

Butyrate and 
propionate

Decrease Inhibiting anti-CTLA-4-induced DC maturation and 
T cell priming.

Mouse MC38 and CT26 colon carcinoma and MCA101OVA 

fibrosarcoma treated with anti-CTLA-4.
51

Inosine Increase Activating anti-tumor T cells through adenosine A2A 

receptor; serving as an alternative carbon source for 
CD8+ T cells.

Mouse MC38 colon carcinoma treated with anti-CTLA-4 plus 
CpG, B16-F10 melanoma treated with anti-PD-L1.

41, 
42

Kynurenine Decrease Unknown (higher kynurenine/tryptophan ratio is 
associated with resistance to anti-PD-1 treatment).

NSCLC patients were treated with anti-PD-1 antibodies. 50

Trimethylamine 
oxide (TMAO)

Increase Induce tumor cell pyroptosis by activating the 
endoplasmic reticulum stress kinase PERK.

Mouse 66cl4 and 4T1 mammary carcinoma were treated with 
anti-PD-1.

43

Anacardic acids Increase Unknown (higher levels of anacardic acids in ICI 
responders).

Metastatic melanoma patients. 44
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in female mice while exerting no effect on male 
mice52. The underlying mechanisms of the impact 
of ICIs on gut microbiome have yet to be compre-
hensively clarified. The activation of T cells in the 
intestine could be associated with these effects24.

Sex-based differences in response to ICIs

Various factors have been found to be associated 
with antitumor response to immunotherapy, 
including tumor-cell-intrinsic features (e.g., PD- 
L1 expression, tumor-associated antigens, tumor 
burden, tumor mutational burden, mismatch 
repair deficiency, and epigenetic alterations), 
tumor immune microenvironment signatures 
(e.g., tumor-infiltration lymphocytes and the pre-
sence of immunosuppressive cells), and environ-
mental factors, such as diets and intake of 
antibiotics1,53–55. However, recognition of the 
importance of sex on ICI response is relatively 
recent. Sex-based differences in tumor incidence 
and mortality are evident for most types of cancer, 
in which male patients have higher incidence rates 
ranging from 1.26:1 to 4.86:156. These differences 
may be partially attributed to sex-based differences 
in the immune system. Generally, women have 
stronger innate and adaptive immunity, higher 
incidence rates of autoimmune diseases, better vac-
cine responses, and greater tolerability of adverse 
effects of vaccination57,58. Evidence from meta- 
analysis of clinical trials mainly indicated that 
men responded better to ICIs than women14,59–62. 
However, this trend has not always been con-
firmed. A trend of higher response rate in female 
patients compared with male patients with NSCLC 
was also reported63, which is contradictory to other 
studies14,60,61. In contrast, one meta-analysis 
included 23 randomized clinical trials (9322 men 
and 4399 women) demonstrated no statistically 
significant difference in response to ICI immu-
notherapy between the sexes64. Moreover, female 
patients with advanced lung cancer achieved 
a significantly greater benefit from the combined 
therapy of chemotherapy and anti-PD-1/PD-L1, 
whereas male patients responded better to anti- 
PD-1 alone15. Thus, addressing these concerns by 
meta-analysis pooling different clinical trials may 
not be adequate63. The relatively large fluctuation 
of levels of sex hormones among patients due to 

either physiological or pathological factors may 
partially account for the discrepancy. Besides, our 
previous studies on mice revealed that anti-PD-L1 
treatment could significantly affect male sex hor-
mone levels, further complicating our understand-
ing of the role of sex in tumor immunotherapy. 
Notwithstanding, significantly higher tumor muta-
tional burden, single-nucleotide variation neoanti-
gen load, and PD-L1 expression level could be 
found in male patients with melanoma63,65. In 
addition, studies showed that androgen depriva-
tion therapy could significantly enhance the anti-
tumor efficacy of ICIs in mice52,66. Although 
whether there is a sex-based difference in survival 
benefits from ICIs remains controversial, which 
may be addressed in future clinical studies covering 
more types of cancer other than melanoma and 
lung cancer, the effects of sex-relevant features on 
the antitumor immunotherapy deserve oncologists’ 
attention.

Many factors including hormones, genetic differ-
ences, and environmental factors are involved in the 
formation of sex disparities67,68. Although sex hor-
mones cannot account for all sex-based differences 
in cancer56, they play a critical role in anticancer 
immunity68. Sex hormone receptors are nearly 
expressed in all immune cells, which participate in 
the regulation of the expression levels of many 
immune-related genes68. In general, estrogen 
enhances both innate and adaptive immunity, while 
androgen suppresses immune cell activity58. 
However, most studies demonstrated that male 
patients tend to achieve greater survival benefits 
from ICI immunotherapy, which seems to be incon-
sistent with the effects of sex hormones. The sex-based 
immune features, such as tumor mutational burden 
and tumor infiltration of immune cells, may contri-
bute to the differences in the efficiency of immu-
notherapy between male and female patients63. On 
the other hand, our previous study showed that anti- 
PD-L1 could significantly downregulate the levels of 
sex hormones in male mice rather than in female 
mice, which enhanced the antitumor efficacy of anti- 
PD-L152. In contrast, Tulchiner et al. reported that 
anti-PD-1 immunotherapy significantly increased 
estradiol and luteinizing hormone (LH)/follicle- 
stimulating hormone (FSH) ratio in male patients 
with metastatic renal cell carcinoma from the begin-
ning of therapy to week 12 of follow-up, while it had 
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no influence on testosterone level in both sexes69. The 
potential effects of ICIs on the levels of sex hormones 
and in turn their impacts on the sex-based differences 
in the response to ICIs have not yet been fully 
explored and deserve further investigation.

Sex-based differences in gut microbiome

A growing body of evidence from both human and 
animal studies indicated the existence of sex-based 
differences in microbiota composition70–74. 
Generally, women tend to have a higher alpha diver-
sity. In a study of 1135 individuals from a population- 
based Netherlands cohort, women had a greater 
microbial diversity based on the values of the 
Shannon index6. Similarly, one study involving 551 
healthy Chinese participants also revealed that 
women had a significantly higher alpha diversity in 
the fecal microbiota as assessed by the observed num-
ber of operational taxonomic units and the values of 
the Shannon index75. In another study from Italy, 
a significant increase in the Chao1 index and 
Shannon index was found in the mucosa-associated 
microbiota of female participants sampled by sigmoid 
brush76. Besides, a significantly higher species rich-
ness estimated by the Chao1 index was also found in 
wild-type female mice compared to male mice73. 
Firmicutes and Bacteroidetes are two of the most 
primary bacteria identified in the gut of both humans 
and animals, and the ratio of Firmicutes to 
Bacteroidetes (F/B ratio) is a widely used marker for 
gut dysbiosis, which has been associated with 
a number of health status-related factors, such as 
hypertension77 and obesity78. The F/B ratio also 
tends to be higher in women. For instance, one recent 
study from Ukraine involving 2301 healthy partici-
pants revealed that the F/B ratio was significantly 
higher in women than in men79. A higher F/B ratio 
was also found in healthy post-menopausal women 
than in pre-menopausal women or their correspond-
ing age-matched men7. In addition, a lower abun-
dance of Bacteroidetes was identified in women from 
a cohort conducted in the United States80. Notably, 
the alpha diversity of gut microbiome has been 
reported to be strongly negatively correlated with 
the relative abundance of Bacteroidetes 81,82. The 
higher microbial alpha diversity in females may be 
attributed to their relatively lower abundance of 
Bacteroidetes. However, the F/B ratio significantly 

varies among individuals and is noticeably affected 
by geographical latitude82,83, and no significant effect 
of sex on the F/B ratio has been found in some 
studies, possibly due to the large geographic scale or 
limited sample size83,84. Besides, it is noteworthy that 
there are also sex-based differences in the gut micro-
biome in cancer patients85. Moreover, there are dis-
tinct changes in microbial alpha diversity and 
community composition between the sexes during 
the development of colorectal cancer85. These sex- 
based differences in gut microbiome have been sug-
gested to contribute to the sex-based disparity in liver 
carcinogenesis in mice48. The role of the sex-based 
differences in gut microbiome during cancer devel-
opment and progression deserves further assessment.

Although summarizing the sex-based differentially 
abundant bacterial taxa is a challenge due to the lack 
of consistency among studies, some sex hormones- 
associated bacteria have been identified86,87. For 
instance, total levels of urinary estrogen in men and 
postmenopausal women were significantly associated 
with fecal Clostridia 88. The ratio of urinary estrogen 
metabolites to parent estrogen (estrone and estradiol) 
was positively correlated with the relative abundance 
of Clostridiales in healthy postmenopausal women, 
while it was inversely associated with the genus 
Bacteroides 89. The abundance of Acinetobacter, 
Dorea, Ruminococcus, and Megamonas was signifi-
cantly positively correlated with serum testosterone 
levels in men, while the abundance of Slackia and 
Butyricimonas was negatively correlated with serum 
estradiol levels in women84. In addition, studies 
demonstrated that sex hormones play an essential 
role in shaping the host gut microbiome. Changes 
in levels of sex hormones induced by drug adminis-
tration (e.g., oral contraceptives)8, gonadectomy6, 
menstrual cycle, and menopausal status7,8, or certain 
diseases, such as polycystic ovary syndrome9, could 
alter the diversity or composition of gut microbiome. 
Animal studies further confirmed the effects of sex 
hormones on gut microbiome90–93.

Although the underlying mechanisms remain 
elusive, several potential pathways may be involved 
in the regulation of gut microbiome by sex hor-
mones. Firstly, bacteria that express β- 
glucuronidase enzyme can release free sex hor-
mone molecules from the conjugated metabolites 
that previously formed in the liver, which may 
result in the liberation of the glucuronic acid 
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group and produce energy for gut bacteria9. 
Secondly, as mentioned earlier, sex hormone 
receptors are widely expressed in immune cells68; 

thus, sex hormones may influence gut microbiome 
by regulating intestinal immune response. Knock- 
out of estrogen receptor β (ERβ) in female mice 
could result in significant changes in the composi-
tion of gut microbiome92. Besides, animal studies 
revealed substantial sex-based differences in IgA 
level71 and the expression levels of anti-microbial 
peptides94. These findings demonstrated that 
intestinal immunity might contribute to the regu-
lation of sex hormones on gut microbiome. More 
recently, Nuriel-Ohayon et al. reported that pro-
gesterone supplementation increases the abun-
dance of Bifidobacterium in mice and in vitro 95, 
indicating the favorable metabolism of sex hor-
mones by certain bacterial taxa may also alter gut 
microbial composition.

Gut microbiome could participate in regulation 
of sex hormone levels

The concept of “microgenderome” has been used 
to describe the bidirectional interaction between 
sex hormones and gut microbiome96. Sex-specific 
microbiome profiles that emerged after puberty 
contribute to the levels of sex hormones, which 
affect the development of autoimmune disease in 
the non-obese diabetic mouse model of type 1 
diabetes (T1D)10. Elevating testosterone levels by 
transferring gut microbiota from adult male mice 
to immature female mice reduced T1D incidence. 
Furthermore, only particular microbes, such as 
segmented filamentous bacteria and 
a proteobacterium isolated from male mice, have 
been correlated with serum testosterone concentra-
tion and colonization with these bacteria conferred 
the protection against T1D in male mice97. These 
findings indicate that some gut microbes can par-
ticipate in the regulation of the levels of sex hor-
mones and ultimately modify the host’s 
autoimmunity.

Several potential mechanisms may be involved 
in the regulation of the host’s levels of sex hor-
mones by gut microbiome (Figure 1). Firstly, gut 
microbes may participate in the metabolism of sex 
hormones in intestine through expressing certain 
enzymes. After glucuronidation mainly in the liver, 

the glucuronidated steroid sex hormones are 
excreted in urine or via biliary excretion to 
intestine98. These conjugated sex hormones are re- 
absorbed via enterohepatic circulation after decon-
jugation by β-glucuronidase from intestinal bac-
teria. It has been found that there is a noticeable 
free androgen in the intestine, which is 70-fold 
higher than that in the serum of young adult 
men98. Thus, gut microbiome may play an impor-
tant role in regulating circulating androgen or 
estrogen levels through deconjugation by β- 
glucuronidase in intestine98,99. Totally, 279 unique 
microbiome-encoded β-glucuronidase proteins 
clustered into six unique structural categories 
have been identified in the Human Microbiome 
Project database100, of which certain members 
within three classes could reactivate estrogens 
from their inactive glucuronide forms101. 
Similarly, bacterial β-glucosidases and sulfatases 
may also participate in the deconjugation of con-
jugated sex hormone metabolites in intestine87,102. 
Importantly, human fecal bacteria can carry out 
a variety of reductive, oxidative, and hydrolytic 
reactions of androgens and estrogens102. The typi-
cal steroid-metabolizing enzymes involved in bac-
terial metabolism of sex hormones include 
hydroxysteroid dehydrogenase (HSD) and steroid 
reductase103. For instance, Streptococcus mutans, 
which showed a higher abundance in the gut 
microbiome from steroid inhaler users in patients 
with irritable bowel syndrome104, has been iden-
tified with the potential of metabolizing proges-
terone and testosterone by expressing 5α- and 
5β-steroid reductases and 3α-, 17β-, and 20α- 
HSDs105. More recently, evidence supported the 
existence of bacterial enzymes (with a high 
sequence homology to human 1720 lyase) that 
would be responsible for the androgenic steroid 
biosynthesis in specific intestine microbiota spe-
cies, such as Ruminococcus gnavus, contributing 
to endocrine resistance in castration-resistant 
prostate cancer11.

Secondly, gut microbes may also directly affect 
gonadal function. Some mucus-degrading bacteria 
(e.g., A. muciniphila) are essential for the mainte-
nance of the protective function of the 
mucus106,107. Destruction of the intestinal mucosal 
barrier may facilitate translocation of gut bacteria 
from gut lumen into circulation, triggering 
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systemic inflammation that inhibits production of 
testosterone by Leydig cells108. In healthy men, 
low-dose endotoxin challenge produced an acute 
systemic inflammatory response, followed by 
a significant decline in plasma testosterone levels, 
without influencing LH or FSH109. Similarly, our 
previous findings revealed that anti-PD-L1 could 
significantly downregulate the testosterone levels 
in male mice without affecting LH or FSH levels, 
probably through inducing local or systemic 
inflammatory response52. Moreover, oral supple-
mentation with Lactobacillus could significantly 

reduce diethylhexyl phthalate-induced increase in 
the serum lipopolysaccharide level and recover the 
testosterone concentration in male mice110. All 
these evidences support that gut microbiome may 
participate in the regulation of the testis testoster-
one secretion via regulating inflammation. In addi-
tion, the microbiota-derived gut-brain mediators 
may influence gonadal hormone secretion through 
the gut-brain axis. In PCOS patients, oral adminis-
tration of probiotic Bifidobacterium lactis V9 sig-
nificantly promoted the secretion of gut-brain 
mediators, including ghrelin and peptide YY, 

a

c d

b

Figure 1. Potential mechanisms by which gut microbiome may participate in regulating the host’s sex hormone levels. (A) the 
glucuronidation of sex hormones catalyzed by uridine diphosphate-glucuronosyltransferase 2B (UGT2B) in the liver increases the 
water solubility, which promotes the excretion of the glucuronidated compounds via urine or bile to the small intestine. Part of the 
conjugated sex hormones are de-conjugated by β-glucuronidase from the commensal gut bacteria. After deconjugation, the free sex 
hormone molecules are reabsorbed via the portal system. (B) Certain bacterial enzymes, such as 3α-HSD, 17β-HSD, 20α-HSD, 5α- 
reductase, and 1720 lyase, may participate in the biosynthesis of steroid hormones in the intestine, whereas further investigation is 
required. (C) Some bacteria are important for the maintenance of the protective function of the mucus. Destruction of the intestinal 
barrier may facilitate the passage of gut bacteria into the systemic circulation and elicit a chronic state of inflammation, which may 
impair testicular function, including the testosterone production by Leydig cells. (D) Some gut microbes are involved in the 
metabolism of neuroactive compounds or regulation of the gut-brain mediator secretion, which may influence the activity of the 
central nervous system via the gut–brain axis. Gut microbiome may thus influence endogenous production of sex hormones via the 
hypothalamic–pituitary–gonadal axis.
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decreased the ratio of LH/FSH, and increased the 
levels of sex hormones, demonstrating the possible 
involvement of the gut-brain axis111. Collectively, 
gut microbiome may take part in regulation of the 
host’s sex hormone levels via a variety of pathways, 
in which the detailed mechanisms have not yet 
been fully explored.

Modulating levels of sex hormones via 
manipulation of gut microbiome to enhance 
antitumor efficacy of ICIs

Emerging evidence suggests that the sex hormone 
receptor signaling pathway is involved in modula-
tion of CD8+ T cell function. Androgen receptor 
(AR) signaling could promote the transition from 
stem cell-like CD8+ T cells to terminally 
exhausted CD8+ T cells in male mice, and it was 
correlated with tumor-infiltrating CD8+ T cell 
exhaustion in cancer patients16. ERβ augmented 
the downstream TCR signaling cascade, and the 
combined use of ERβ agonist and anti-PD-1 sub-
stantially increased tumor-infiltrating CD8+ 
T cells and sensitized various syngeneic tumors 
to ICI immunotherapy in mice18. In contrast, ERα 
could promote macrophage polarization toward 
an immune-suppressive state, leading to CD8+ 
T cell dysfunction and exhaustion19. Inhibition 
of ERα using the selective estrogen receptor sig-
nificantly increased the antitumor efficacy of ICIs 
in mouse models of melanoma19. Taken together, 
it is a feasible approach to improve the response to 
ICI therapy through regulating the sex hormone 
receptor signaling pathway.

To date, trials that investigated the potency of 
the possible combination of sex hormone interven-
tion and tumor immunotherapy mainly concen-
trated on treatment of prostate cancer and breast 
cancer112. For instance, the combination of enza-
lutamide and a cancer vaccine significantly 
improved the overall survival rate in the TRAMP 
mouse spontaneous prostate cancer model113. In 
the semi – hormone-dependent Myc-CaP mouse 
tumor model, combining CpG and surgical orch-
iectomy or abiraterone reduced tumor burden and 
more effectively delayed tumor relapse than either 
single treatment66. Guan et al. reported that the AR 
expressed on CD8+ T cells could repress IFN-γ 
expression level and mediate the resistance to ICI 

therapy17. Surgical orchiectomy plus enzalutamide 
with anti-PD-L1 antibodies led to significant tumor 
regression and increased the overall survival rate in 
either an androgen deprivation therapy plus anti- 
PD-1-resistant mouse prostate tumor model or an 
AR-negative mouse sarcoma tumor model17. 
Besides, multiple ongoing clinical trials are investi-
gating the efficiency of ICIs in combination with 
anti-estrogen therapy for breast cancer114. More 
recently, it was found that a combination of 17β- 
estradiol and anti-PD-L1 significantly inhibited 
MC38 colon tumor growth in male mice115. The 
findings mentioned above confirmed the feasibility 
of improvement of the efficacy of ICIs by modulat-
ing the levels of sex hormones. However, it is 
noteworthy that most existing trials have concen-
trated on improving the treatment of sex hormone- 
dependent cancer. It is essential to clarify whether 
the combination therapy is superior to ICI mono-
therapy for non-sex hormone-dependent cancer 
considering the potential side effects of sex hor-
mone therapy. Furthermore, some nonsteroidal 
AR antagonists, such as flutamide and enzaluta-
mide, have been shown to inhibit early-phase 
T cell activation and suppress the antitumor effi-
cacy of anti-PD-L1 in mice66.

Recently, Pernigoni et al. reported that the com-
mensal gut microbiome contributes to endocrine 
resistance in castration-resistant prostate cancer 
by providing an alternative source of androgens11. 
Importantly, ablation of the gut microbiome with 
a cocktail of broad-spectrum antibiotics delayed 
the emergence of castration resistance in both 
TRAMP-C1 allograft and the Ptenpc–/– prostate 
conditional mouse models11. These results pro-
vide a novel approach to regulate the levels of 
sex hormones via manipulation of gut micro-
biome, which may be appropriate for the adjuvant 
therapy of non-sex hormone-dependent cancer. 
Given the gut microbiome’s great volatility, 
manipulating gut microbiome’s function with 
antibiotics rather than maintaining a specific bac-
terial species composition is a more reliable 
approach. However, numerous clinical studies 
have shown a detrimental effect of broad- 
spectrum antibiotics on ICI therapy, while the 
underlying mechanisms have been poorly 
explored53. In contrast, our previous study 
showed that oral administration of colistin, 
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a narrow-spectrum antibiotic, could significantly 
downregulate the testosterone level in male mice 
and enhance the antitumor efficacy of anti-PD-L1 
antibodies52. These findings confirmed the feasi-
bility of improving the efficacy of antitumor 
immunotherapy by modulating levels of sex hor-
mones via manipulation of the gut microbiome 
with narrow-spectrum antibiotics (Figure 2). 
Other commonly used methods to modulate gut 
microbiome, including FMT, probiotics, and pre-
biotics have also been tested for improving anti-
tumor efficiency of ICI immunotherapy26,27,116– 

118, which can also affect the host’s levels of sex 
hormones10,111,119. However, it remains elusive 
whether sex hormones play a role in this process. 
Besides, additional studies are needed to clarify 
whether there is a synergistic effect of sex hor-
mones and other microbial metabolites on ICI 
therapy.

Conclusions

In conclusion, a growing body of evidence demon-
strated that the sex hormone-gut microbiome axis 
might be involved in regulating the antitumor effi-
cacy of ICIs (Figure 3). However, the underlying 
mechanisms have not yet been fully elucidated. 
Moreover, the potential effects of ICIs on the 
patient’s levels of sex hormones and the gut 

microbiome further complicate the role of the sex 
hormone-gut microbiome axis in ICI 

Figure 2. Modulating the levels of sex hormones via manipulating gut microbiome to facilitate antitumor efficacy of ICIs. Drugs, such 
as antibiotics, can alter the composition of gut microbiome and induce changes in the host’s sex hormone levels by interfering with 
their microbial metabolism in the intestine or regulating the endogenous production via the gut-brain axis or inflammation. Activation 
of AR or ERα signaling pathway may attenuate the antitumor efficacy of ICIs by inducing CD8+ T cell exhaustion, while ERβ may 
augment the downstream TCR signaling cascade and increase tumor-infiltrating CD8+ T cells. Thus, the antitumor efficacy of ICIs may 
be improved using drugs, such as antibiotics, to alter the gut microbiome to regulate the host’s levels of sex hormones. However, it is 
noteworthy that administration of broad-spectrum antibiotics may impair the antitumor efficacy of ICIs.

Figure 3. The role of the sex hormone-gut microbiome axis in 
tumor immunotherapy. Gut microbiome can influence the host’s 
levels of sex hormones through either metabolizing sex hor-
mones or regulating gonadal secretion. In turn, the sex hor-
mones can alter the gut microbiome by either serving as an 
energy source to support the growth of certain bacteria or 
regulating intestinal immune homeostasis. The interaction 
between sex hormones and gut microbiome constitutes the 
sex hormone-gut microbiome axis. Thus, the influences of gut 
microbiome and sex hormones on the patient’s response to ICIs 
can be simultaneously studied, although a growing body of 
evidence showed the effect of each of them on the antitumor 
efficacy of ICIs.
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immunotherapy. Further research is required to 
elucidate the underlying mechanisms of the gut 
microbiome-mediated regulation of levels of sex 
hormones and develop new methods to manipulate 
the levels of sex hormones via targeting gut micro-
biome. Besides, the importance of the sex hor-
mone-gut microbiome axis in tumor 
immunotherapy should be further evaluated con-
sidering the fact that several other gut microbial 
metabolites have also been found to be associated 
with the patient’s response to ICIs. Altogether, the 
sex hormone-gut microbiome axis provides 
a promising target for improving antitumor effi-
cacy of ICI immunotherapy.
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