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HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling 
LAMP1-containing late endosome during axonal injury
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ABSTRACT
HTT (huntingtin) is a 350-kDa protein of unknown function. While HTT moves bidirectionally 
within axons and HTT loss/reduction causes axonal transport defects, the identity of cargo- 
containing vesicles that HTT helps move remain elusive. Previously, we found an axonal 
retrogradely moving HTT-Rab7 vesicle complex; however, its biological relevance is unclear. 
Using Drosophila genetics, in vivo microscopy, membrane isolation and pharmacological inhibi-
tion, here we identified that adaptors Hip1 and Rilpl aid the retrograde motility of LAMP1- 
containing HTT-Rab7 late endosomes, not autophagosomes. Reduction of Syx17 and chloro-
quine- or bafilomycin A1-mediated pharmacological inhibition, but not reduction of Atg5, 
disrupted the in vivo motility of these vesicles. Further, because HTT-Rab7 vesicles colocalized 
with long-distance signaling components (BMP signaling: tkv-wit, injury: wnd) and move in 
a retrograde direction after Drosophila nerve crush, we propose that these vesicles likely traffic 
damage signals following axonal injury. Together, our findings support a previously unknown 
role for HTT in the retrograde movement of a Rab7-LAMP1-containing signaling late 
endosome.
Abbreviations: Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: auto-
phagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic 
protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; 
EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/ 
Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: 
immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: 
lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated 
protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/ 
bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 
interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neuro-
trophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear 
fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory 
to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 
1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: 
thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda
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Introduction

The Huntington disease (HD) protein, HTT (huntingtin), is 
ubiquitously expressed; however, its neuronal function 
remains unknown despite being essential for development 
[1]. Although more than 350 binding partners for HTT have 
been identified with functions across a wide-range of cellular 
processes including gene expression, metabolism, protein 
turnover, endocytosis, and trafficking [2–6], the molecular 
mechanisms by which HTT and its binding partners function 
remain elusive. Previously, we showed that HTT moves bi- 
directionally within axons by interacting with kinesin 1 and 
dynein [7], and htt can mediate the motility of several Rab- 
GTPase-containing vesicles, suggesting that htt can serve as
a scaffolding protein for vesicular trafficking. Reduction of htt 

disrupts the bi-directional movement of Rab3, Rab4, Rab11, 
Rab19, the retrograde motility of Rab7 and enhanced the 
anterograde motility of Rab2 [8–10]. Therefore, while it is 
likely that htt can differentially facilitate the axonal motility 
of Rab-GTPase-containing vesicles, the functional significance 
of these distinct HTT-Rab containing axonal complexes 
remain ambiguous.

Upon endocytic internalization into an early endosome 
(EE), proteins and lipids are sorted for recycling or degrada-
tion. Cargo destined to be degraded remain in an EE, which 
then mature to a late endosome (LE), marked by RAB7/Rab7 
[11,12]. In neurons, LEs are thought to be retrogradely moved
from distal regions of the axon to the cell body for either 
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lysosome-mediated degradation [13,14] and/or long-distance 
signaling [15,16]. Neurons are suggested to maintain a spatial 
gradient of LE/lysosome sub-populations, marked by Rab7 
and/or LAMP1/Lamp1, with highly degradative lysosomes 
being enriched near the cell body while pre-degradative LEs 
move from distal regions of the axons and dendrite to the cell 
body for degradation [14,17,18]. In parallel, ATG5/Atg5 
(autophagy related 5)-dependent phagophore (PG) expansion 
[19,20] forms a nascent autophagosome (AP) in distal axons, 
marked by Atg8/MAP1LC3/LC3 (Autophagy-related 8/micro-
tubule associated protein 1 light chain 3) [21,22]. An AP can 
form an amphisome through STX17/Syx17 (syntaxin 17)- 
dependent fusion [23,24] with an LE, which then are pro-
posed to retrogradely move to the cell body for degradation 
upon fusing with a lysosome to form an autolysosome (AL 
[14,25]). HTT has been proposed to be present in macroau-
tophagy/autophagy during cargo loading of an elongating PG 
[26] and during the transport of an AP [27]. However, since 
Atg8/LC3 is present in all autophagic compartments from the 
PG to the AL [28], this ambiguity creates a challenge in 
isolating HTT/htt during autophagy.

Following neuronal injury, retrograde movement is critical 
for damage signaling [29] and axonal regeneration [30]. In 
fact, an anterograde-to-retrograde conversion has been 
observed following rat sciatic nerve crush [31]. In response 
to axonal injury, retrogradely moving damage signals such as 
MAP3K12/DLK/wnd (mitogen-activated protein kinase 
kinase kinase 12/wallenda) and/or MAPK8/JNK (mitogen- 
activated protein kinase 8)-containing vesicles promote upre-
gulation of pro-regenerative genes essential for axon regen-
eration [29,32–34]. Interestingly, Rab7/RAB7 associates with 
syd/MAPK8IP3/JIP3 (sunday driver/mitogen-activated pro-
tein kinase 8 interacting protein 3)-containing endosomes 
that traffic MAPK/JNK [29,35] and with retrogradely moving 
MAP3K12/DLK-containing vesicles [36]. Although HTT was 
recently shown to be upregulated during mouse corticospinal 
motor neuron regeneration following spinal cord injury [37], 
and has been proposed to be an injury-response signaling hub 
in axotomized retinal ganglion cells [38], how HTT functions 
during axonal injury remains unknown.

Because Rab7 is present with LEs and during autophagy, 
here we test the hypothesis that the putative retrogradely 
moving HTT-Rab7 vesicle complex is a LE and/or is part of 
autophagy. We found that the retrograde motility of the 
HTT-Rab7 complex is aided by HTT or Rab7-associated 
proteins Hip1 (Huntingtin-interacting protein 1) and Rilpl 
(Rab interacting lysosomal protein like), and that this com-
plex is distinct from the bidirectionally-moving HTT-RAB4 
/Rab4 synaptic vesicle complex we previously isolated [10]. 
HTT-Rab7 vesicles are likely LAMP1/Lamp1-containing 
LEs, and not APs, since the motility of HTT-Rab7 vesicles 
were impaired by loss/reduction of LE-AP fusion mediated 
by mutant Syx17 as well as pharmacological inhibition 
(chloroquine or bafilomycin A1) of lysosome acidification 
and lysosome-AP fusion. Further, the retrogradely moving 
HTT-Rab7 vesicles colocalize with long-distance signaling 
components (the BMP [bone morphogenetic protein]-
receptors tkv [thickveins] and wit [wishful thinking]), 

axonal injury signals (wnd/MAP3K12/DLK), and move ret-
rogradely even after Drosophila nerve crush, in contrast to 
perturbed motility of synaptic vesicles. Taken together, our 
observations propose a previously unknown role for HTT 
in the retrograde movement of a Rab7-LAMP1-containing 
signaling LE, with a functional relevance during axonal 
injury

Results

The retrogradely moving HTT-Rab7 vesicle complex is 
aided by adaptor proteins Rilpl and Hip1

We previously found that adaptor proteins Rip11 (Rab11- 
interacting protein) and Hip1, but not milton, nuf (nuclear 
fallout), or nmo (nemo), likely aid the bi-directional motility 
of the HTT-Rab4 vesicle complex [10]. To identify adaptor 
proteins that aid the retrograde motility of the HTT-Rab7 
vesicle complex, we performed a candidate screen similar to 
what we have done previously [10]. Using the pGAL4-62B- 
SG26-1 driver, which expresses in a small population of motor 
neurons [39,40], we generated Drosophila larvae simulta-
neously expressing Rab7-GFP and HTT15Q-mRFP (non-
pathogenic form of human HTT) within larval axons and 
observed co-migrating retrogradely moving vesicles 
(Figure 1a). Colocalized trajectories (yellow) from merged 
kymographs revealed that 39% of vesicles containing HTT 
and Rab7 moved retrogradely while only 14% vesicles 
moved anterogradely (Figure 1b). Reduction of htt (htt-KO 
/+, Df(98E2);CG999075 [41], or htt-RNAi [7,9]) with Rab7- 
GFP or reduction of Rab7 (Rab7EY10675/+ or Rab7d1/+ [null 
allele [42]]) with HTT-mRFP disrupted Rab7 or HTT moti-
lity; significantly decreasing the retrograde populations of 
Rab7-GFP or HTT-mRFP vesicles (Fig. S1AB). Decreased 
retrograde motility corresponded to increased distribution of 
Rab7-GFP at neuromuscular junctions (NMJs) and decreased 
localization at cell bodies (Fig. S1 CD). Likewise, expression of 
a dominant negative form of Rab7 (Rab7T22N) also disrupted 
HTT motility (Fig. S1B). Western blot analysis showed that 
Rab7 protein levels in homozygous Rab7EY10675/Rab7EY10675 

flies were reduced to 28% of WT levels (Fig. S2A), similar to 
what was previously observed for the Rab7d1 null allele [42]. 
Further, reductions in either kinesin 1 (Khc8/+) or dynein 
(Dhc6-10/+) decreased both the anterograde and retrograde 
motility of either HTT-mRFP or Rab7-GFP-containing vesi-
cles (Fig. S1EF).

To screen for adaptor proteins that aid the motility of 
the HTT-Rab7 vesicle complex, we generated larvae expres-
sing Rab7-GFP or HTT-mRFP in the context of reductions 
in Rab-associated proteins nemo (nmoP1/+) [43,44], Rip11 
(Rip11KG02485/+) [45], or Rilpl (RilplEY06476/+) [46,47], Hip1 
(Hip1MB04365/+) [48–50] or milton (miltk04704/+). Although 
HTT moves bi-directionally within larval axons, Drosophila 
lacks HAP1, but milton shares a HAP1-like N-domain [51– 
53]. Reduction of Rilpl or Hip1 disrupted Rab7-GFP/HTT- 
mRFP motility causing Rab7 or HTT blockages, while
reductions in milton, nemo, or Rip11 did not (Figure 1c, 
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d, Fig. S1GH). Reduction of Hip1 significantly decreased 
both the anterograde and retrograde movement of Rab7- 
HTT-containing vesicles (Figure 1e), while reduction of 
Rilpl only decreased the retrograde movement of Rab7 or 
HTT-containing vesicles (Figure 1f). Biochemical analysis 
coupled with immunoprecipitation (IP) of mouse brains or 
iPSC-derived human neurons (iNeurons) showed that 
RAB7, HTT, HIP1, and motor proteins kinesin 1 and 
dynein were present on RAB7-containing or HTT- 
containing membranes (Figure 1G-i). Homogenized 
brains/neuron lysates were first fractionated and the PNS 
(post-nuclear supernatant), VF (vesicle fraction), SF (solu-
ble fraction), and P1 (heavy-membrane pellet) were isolated 
using sucrose-gradient centrifugation (Fig. S2B), and then 
HTT or RAB7 was immunoprecipitated from the VF. Both 
full length and fragmented HTT were seen in the RAB7-VF 
IP (Figure 1G). Likewise, RAB7 was seen in the HTT-VF 
IPs (Figure 1h,i). In addition, HIP1, KIF5C and DYNC1I1 
were also present in both the HTT-VF IPs (Figure 1i) and 
the RAB7-VF IP (Figure 1g). Interestingly, SYT1 (synapto-
tagmin 1) and SYP (synaptophysin) were not observed with 
the RAB7-VF IP, but LAMP1 was present (Figure 1g),
indicating that the HTT-RAB7 vesicle is likely distinct 

from the putative HTT-RAB4 synaptic vesicle complex we 
previously isolated [10].

The retrogradely moving HTT-Rab7 vesicle complex is 
likely a LAMP1/Lamp1-containing late endosome

Because RAB7/Rab7 is seen with retrogradely moving LEs 
[47], lysosomes [46], and APs [25], and HTT/htt is implicated 
during autophagy [26,27], we next tested the hypothesis that 
the HTT-Rab7 vesicle complex is either a LE, lysosome and/or 
an AP (Fig. S3A). Larvae simultaneously expressing either 
Rab7-GFP/HTT-mRFP, mCherry-Atg8a/HTT-eGFP, or 
LAMP1-GFP/HTT-mRFP showed retrogradely co-migrating 
Rab7-HTT, Atg8a-HTT or LAMP1-HTT containing vesicles 
(Figure 2a). Colocalized trajectories (yellow) revealed that 
25% of vesicles contained HTT and Rab7, 17% of vesicles 
contained HTT and Atg8a, and 22% of vesicles contained 
HTT and LAMP1 (Figure 2b). Furthermore, reduction of htt 
(htt-RNAi) or Rab7 (Rab7EY10675/+) with either mCherry- 
Atg8a or LAMP1-GFP disrupted Atg8a or LAMP1 motility 
(Figure 2c,d). While reduction of htt significantly decreased 
the retrograde movement of Atg8a-containing vesicles
(Figure 2e), reduction of Rab7 decreased both the anterograde 

Figure 1. The retrogradely moving HTT-Rab7 vesicle is aided by adaptor proteins Hip1 and Rilpl. (A) Schematic diagram of larval nervous system showing the brain 
and segmental nerves. Red box = imaged area (90 µm). Arrows depict location of the cell bodies (retrograde) and synapses (anterograde). Representative images and 
kymographs from simultaneous dual-color movies from larvae expressing both HTT-mRFP (red) and Rab7-GFP (green). Co-migrating tracks that contain HTT and Rab7 
are seen (yellow arrow). Note that green or red only tracks are also seen (arrowheads). Bar: 5 µm. (B) Quantification of the directional analysis of trajectories 
containing HTT and Rab7 (yellow). n = 10. (C-D) Representative images from movies and kymographs from larvae expressing either Rab7-GFP or HTT-mRFP alone, 
with a Hip1 reduction, or with a Rilpl reduction. Bar: 10 µm. (E-F) Directional analysis of Rab7-GFP or HTT-mRFP trajectories compared to Rab7-GFP or HTT-mRFP 
trajectories with a Hip1 or Rilpl reduction. n = 10. (G) Schematic diagram of homogenate fractionation into the perinuclear supernatant (PNS), vesicle fraction (VF), 
soluble fraction (SF), and heavy membrane pellet (P1) by ultra-centrifugation and sucrose gradient separation. Representative western blot of an immunoprecipita-
tion of RAB7-containing mouse VF, probed with HTT, DYNC1I1, KIF5C, DCTN1, HIP1, LAMP1, SYT1, and SYP. HTT, DYNC1I1, KIF5C, DCTN1, HIP1, and LAMP1 show 
presence in the RAB7 IP, while SYT1 and SYP do not. (H) Representative western blot of an immunoprecipitation of HTT-containing mouse VF, probed with RAB7, 
which shows presence in the HTT IP. (I) Representative western blot of an immunoprecipitation of HTT-containing human iNeuron VF, probed with HTT, DYNC1I1, 
KIF5C, HIP1, RAB7, LAMP1, and SYT1, which all show presence in the HTT IP. No bands are seen in the negative no antibody control (−crtl). n = 3. Statistical analysis 
was conducted using the two-sample two-sided Student’s t-test. Data represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001, ****p < 0.00001. 
Also see Fig. S1 and S2.
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and retrograde motility of Atg8a-containing vesicles 
(Figure 2f). Reduction of htt or Rab7 decreased both the 
anterograde and retrograde motility of LAMP1-containing 
vesicles (Figure 2e). Therefore, HTT and Rab7 are likely 
present together during autophagy and with lysosomes or LEs.

LEs can fuse with lysosomes [54], forming endolysosomes, 
which can converge onto the autophagic pathway upon AP- 
lysosome fusion to form ALs (Fig. S3A [23]). Since HTT and 
Rab7 co-migrated with Atg8a and LAMP1, the retrogradely 
moving HTT-Rab7 vesicle complex could be a LE, an AP, 
a lysosome, or all three. To isolate these specific compart-
ments, we focused on Atg5 and Syx17. Atg5 is a key protein 
involved in the assembly of an AP from a PG [19,55], and is 
a marker for early autophagic compartments (Fig. S3A), while 
Syx17 is a SNARE protein identified in Drosophila that aids 
LE-AP fusion to form amphisomes [23,24] and is a candidate 
marker for middle autophagic compartments (Fig. S3A). APs 
fuse with lysosomes to become ALs (Fig. S3A [23,56]). APs 
can also fuse with LEs to form amphisomes [57,58], which can
then fuse with lysosomes (Fig. S3A [23]). Interestingly, Syx17- 

dependent LE-AP fusion is thought to be required for the 
retrograde motility of APs within cultured dorsal root gang-
lion neurons [25]. We found that Atg5, Syx17, and LAMP1 
mark discrete compartments in larval axons that do not show 
colocalization with each other (Fig. S3BE). To further define 
the HTT-Rab7 retrogradely co-migrating vesicle, we gener-
ated larvae expressing either HTT-mRFP or Rab7-GFP in the 
context of Atg5 reductions (Atg5d04577/+ or Atg55cc5/+) or 
Syx17 reductions (Syx17f01971/+ or Syx17LL/+). Similar to 
what was seen previously in Atg55cc5 and Syx17LL null alleles 
[24,59], western blot analysis showed that Atg5 protein levels 
in Atg5d04577/+ flies were reduced to 64% and Syx17 protein 
levels were reduced to 81%= 34KD, 62%= 40KD in 
Syx17f01971/+ flies compared to WT levels (Fig. S2A). 
Further, Atg5d04577 mutant flies also showed an ataxic pheno-
type (Fig. S2C), similar to what was observed in null Atg55cc5 

mutant flies [59], while Syx17f01971 was previously verified by 
PCR [60,61]. Intriguingly, ref(2)P protein levels were signifi-
cantly increased in Atg5d04577/+, Syx17f01971/+ and
Rab7EY10675/Rab7EY10675 flies (Fig. S2D), similar to what was 

Figure 2. The HTT-Rab7 vesicle complex is likely a LAMP1/Lamp1-containing late endosome and/or autophagosome. (A) Arrows depict location of the cell bodies 
(retrograde) and synapses (anterograde). Representative images and kymographs from simultaneous dual-color movies from larvae co-expressing either HTT-mRFP 
and Rab7-GFP, HTT-eGFP and mCherry-Atg8a, HTT-mRFP and LAMP1-GFP. Co-migrating tracks that contain both red and green trajectories are seen (yellow arrow). 
X axis=distance (µm), Y axis=time (s). Bar: 5 µm. (B) Quantification of the average co-migratory trajectories reveal the percent co-migration between HTT-Rab7, HTT- 
LAMP1, and HTT-Atg8a. n = 6. (C-D) Representative images from movies and kymographs from larvae expressing mCherry-Atg8a or LAMP1-GFP alone, in the context 
of htt (htt-RNAi) or Rab7 (Rab7EY10675/+) reduction. Bar: 10 µm. (E-F) Directional analysis of mCherry-Atg8a or LAMP1-GFP trajectories alone compared to mCherry- 
Atg8a or LAMP1-GFP trajectories with a htt or Rab7 reduction. n = 10. Statistical significance was determined using the two-sample two-sided Student’s t-test. Data 
represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001. ****p < 0.00001. Also see Fig. S3.

1202 T. KRZYSTEK ET AL.



previously observed in Atg55cc5, Syx17LL, and Rab7d1 null 
mutants [24,42,59], indicating the disruption of degradation 
in these mutant lines. Reduction of Atg5 significantly 
decreased the bi-directional motility of Rab7-GFP-containing
vesicles (Figure 3a,c), however the motility of HTT-mRFP 

containing vesicles was unaffected (Figure 3b,c). 
Immunolocalization analysis showed that while Rab7 and 
Atg5 colocalized (Fig. S3CE), HTT and Atg5 did not (Fig. 
S3DE). Reduction of Syx17 disrupted the retrograde motility
of both HTT-mRFP or Rab7-GFP, with increased populations 

Figure 3. Disrupting autophagosome-late endosome fusion with mutant Syx17 impairs the motility of the HTT-Rab7 vesicle complex. (A-B) Arrows depict location of 
the cell bodies (retrograde) and synapses (anterograde). Representative images and kymographs from larvae expressing (A) Rab7-GFP or (B) HTT-mRFP alone, with 
a reduction of Atg5 (Atg5d04577/+ or Atg55cc5/+), or with a reduction of Syx17 (Syx17f01971/+ or Syx17LL/+). X axis=distance (µm), Y axis=time (s). Bar: 10 µm. (C-D) 
Directional analysis of (C) Rab7-GFP or (D) HTT-mRFP trajectories alone compared to Rab7-GFP or HTT-mRFP trajectories with Atg5 or Syx17 reductions. n = 10. (E) 
Representative images from larvae expressing HTT-mRFP alone or with a reduction of Syx17 (Syx17f01971/+) that have been immunostained for Rab7. Note the 
presence of colocalized puncta (yellow) in the merged overlay panels with larger accumulates with Syx17 reduction. Bar: 10 µm. (F) Quantification of colocalization 
(mander’s correlation) between HTT and Rab7 in larval axons in the context of Syx17 reduction compared to WT. n = 6. (G-H) Representative western blot of an 
immunoprecipitation of HTT-containing mouse VF (G) or an immunoprecipitation of RAB7-containing mouse VF (H), probed for HTT, RAB7, LAMP1, STX17, ATG5, and 
SYT1. Note that while RAB7, LAMP1, STX17, and SYT1 are present in the HTT IP, ATG5 is not. While HTT, LAMP1, and STX17 are present in the RAB7 IP, SYT1 and ATG5 
are not. No bands are seen in the negative no antibody control (−crtl). Statistical significance was determined using the two-sample two-sided Student’s t-test. Data 
represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001, ****p < 0.00001. Also see Fig. S2, S3, and S4.
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of stationary/stalled vesicles (Figure 3a–d), decreased popula-
tions of retrograde vesicles (Figure 3a–d), and an increased 
frequency of HTT-Rab7 colocalization (Figure 3e,f), but not 
HTT-Lamp1 colocalization (Fig. S4C). Note that both HTT 
and Rab7 colocalize with Syx17 (Fig. S3CDE). Reduction of 
htt increased the colocalization of Rab7-Syx17 (Fig. S4A) and 
reduction of Rab7 increased HTT-Syx17 colocalization (Fig. 
S4B), while the colocalization of Rab7-Lamp1 (Fig. S4A) and 
HTT-Lamp1 (Fig. S4B) were decreased. Further, STX17 (syn-
taxin 17) co-immunoprecipitated with HTT-containing vesi-
cles isolated from mouse brain tissue, but not with ATG5 in 
mice (Figure 3g). STX17 also co-immunoprecipitated with 
RAB7-containing vesicles (Figure 3h). Therefore, while the 
retrogradely moving HTT-RAB7/Rab7 vesicle is likely a LE, 
disruption of LE-AP fusion through Syx17 reduction/loss 
likely disrupts the fusion of the putative HTT-RAB7/Rab7 
LE with APs.

To further test the proposal that HTT-RAB7/Rab7- 
containing LEs fuse with APs, we next pharmacologically 
inhibited lysosome acidification and AP-lysosome fusion 
using chloroquine (CQ) or bafilomycin A1 (BAF1) [28,62– 
64]. Previous studies show that CQ or BAF1 treatment cause 
LAMP1 accumulations [65–71]. Indeed, we also found accu-
mulations of LAMP1 within Drosophila larval neurons expres-
sing LAMP1-GFP fed on food laced with CQ [72] or BAF1 
[22,70] for 24 h prior to in vivo imaging compared to buffer 
(Fig. S5A). Accumulations of Rab7 were also seen within CQ 
or BAF1 treated larvae expressing Rab7-GFP (Fig. S5A). 
However, CQ or BAF1 treatment had no effect on Syt1- 
containing synaptic vesicles in larvae expressing Syt1-eGFP 
(Fig. S5A). Further, larvae simultaneously expressing HTT- 
mRFP and Rab7-GFP treated with either CQ or BAF1 showed 
impaired motility of HTT-Rab7-containing vesicles (yellow 
trajectories, Figure 4a). CQ or BAF1 treatment significantly 
increased the co-migration of HTT-mRFP and Rab7-GFP 
(Figure 4b), but significantly decreased the retrograde motility 
of HTT-Rab7 vesicles (Figure 4c) compared to buffer-treated 
larvae. While impaired motility of HTT-Rab7 vesicles corre-
sponded to increased levels of colocalization between Rab7- 
GFP and HTT-mRFP at cell bodies (Figure 4d,e S5B), 
decreased colocalization was observed at NMJs (Fig. S5C), 
suggesting that perhaps CQ also disrupts endocytosis [73] 
and the packaging of Rab7 and HTT into LEs/lysosomes at 
NMJs. Furthermore, we found that HTT-Rab7 vesicles colo-
calized with Lamp1 in larval axons, which significantly 
increased upon treatment with CQ (Figure 4f,g). Taken 
together, these observations support the proposal that the 
retrogradely moving HTT-RAB7/Rab7 vesicle complex is 
likely a LAMP1/Lamp1-containing LE, that can fuse with an 
amphisome or an AP in a STX17/Syx17-dependent manner.

Evidence for a retrogradely moving HTT-Rab7 signaling 
late endosome during axonal injury

Rab7 has been implicated in facilitating the retrograde 
axonal movement of long-distance signaling components 
[12,16,36,74]. To examine whether the HTT-Rab7- 
containing LE co-migrates with long-distance signaling
components, we evaluated the retrograde BMP-signaling 

receptors tkv and wit [75–77]. We also examined 
phosphatidylinositol-3-phosphate (PtdIns3P) phospholi-
pids (FYVE), which are predominantly found within EEs, 
LEs, or lysosomes and perform key functions during sig-
naling and membrane trafficking [78–82]. Drosophila lar-
val axons expressing the type-I receptor tkv-eGFP showed 
strong colocalization (80%) with the type-II receptor wit, 
which are known to form a complex upon ligand binding 
(Fig. S2E). Simultaneous expression of HTT-mRFP and 
tkv-eGFP showed co-migrating HTT-tkv vesicles 
(Figure 5a), with 17% of vesicles containing both HTT 
and tkv (Figure 5b). Further, immunolocalization showed 
that 20–24% of HTT colocalized with tkv while 42–50% of 
Rab7 colocalized with tkv vesicles (Figure 5g,i). Reduction 
of htt (htt-RNAi) or reduction of Rab7 (Rab7EY10675/+) 
impaired the motility of tkv-eGFP (Figure 5c), while 
reduction of Rab7 significantly decreased only the retro-
grade motility of tkv-eGFP (Figure 5e), and reduction of 
htt significantly decreased both the anterograde and retro-
grade motility of tkv-eGFP (Figure 5f). Further in 
Drosophila larval axons simultaneously expressing HTT- 
mRFP and GFP-2xFYVE, which probes for PtdIns3Ps, 24% 
of vesicles showed co-migration (yellow trajectories, 
Figure 5a). Immunolocalization showed that 17–24% of 
HTT-2xFYVE or 2xFYVE-HTT vesicles were colocalized, 
while 43–58% of Rab7-2xFYVE or 2xFYVE-Rab7 vesicles 
were colocalized (Figure 5h,j, S2B). Moreover, reduction 
of htt or Rab7 with GFP-2xFYVE significantly impaired 
2xFYVE motility (Figure 5d), decreasing both the antero-
grade and retrograde movement of GFP-2xFYVE 
(Figure 5e,f). Intriguingly, treatment of larval axons with 
CQ increased the colocalization of HTT-Rab7 vesicles with 
tkv or 2xFYVE, suggesting that inhibition of lysosome 
acidification and/or AP-lysosome fusion (Figure 5g-j) per-
turbs the motility of the HTT-Rab7-tkv-wit-2xFYVE- 
containing vesicle complex. Taken together, these observa-
tions support the proposal that the retrogradely moving 
HTT-Rab7-containing LE is likely a long-distance signal-
ing endosome.

Work shows that Rab7 colocalizes with MAP3K12/DLK, 
a long-distance signaling component which is activated 
after axon injury to support axon regeneration and neuron 
survival [33,36]. Moreover, HTT is implicated in the repro-
gramming of the regenerative transcriptome following axo-
nal injury in mouse corticospinal neurons [37]. To test the 
hypothesis that the HTT-Rab7-containing LE moves retro-
gradely and can be activated by axonal injury, we first 
evaluated wallenda (wnd) a conserved MAPKKK, homolo-
gous to MAP3K12/DLK which functions as an upstream 
mediator of injury [30]. Larvae expressing either Rab7-GFP 
or HTT-mRFP in the context of endogenous wnd tagged 
with mCherry or GFP (wnd-mCherry or wnd-GFP [83,84]) 
showed wnd retrogradely co-migrating with HTT or Rab7- 
containing vesicles (Fig. S6E). Intriguingly, similar to what 
was observed with tkv (Figure 5a,g), treatment with CQ 
disrupted HTT-wnd or Rab7-wnd vesicle motility, suggest-
ing that wnd is also present with the HTT-Rab7-tkv-wit- 
containing vesicle.
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To directly test the hypothesis that the HTT-Rab7- 
containing LE moves retrogradely after axonal injury we 
crushed Drosophila larval nerves expressing GFP using the 
pucGAL4 driver ([30,85,86], Fig. S6B). In these larvae, puc 
(puckered) regulatory sequences control the expression of

GAL4, which will in turn express GFP after injury, and 
increased GFP expression will be seen in injured neuron 
cell bodies compared to non-injured neurons. Indeed, sig-
nificant increases in GFP were observed in motor neuron 
cell bodies 16–24 h after nerve crush compared to 0–12 h

Figure 4. CQ- and BAF1-mediated inhibition of lysosome acidification and lysosome-autophagosome fusion impairs the motility of HTT-Rab7 vesicles. (A) Schematic 
diagram of larval nervous system showing the brain and segmental nerves. Red box=imaged area (90 µm). Arrows depict location of the cell bodies (retrograde) and 
synapses (anterograde). Representative images and kymographs from simultaneous dual-color movies from larvae expressing both HTT-mRFP (red) and Rab7-GFP 
(green) that have been fed either buffer-, CQ-, or BAF1-laced food. Co-migrating tracks that contain HTT and Rab7 are seen (yellow arrow). X axis=distance (µm), 
Y axis=time (s). Bar: 5 µm. (B) Quantification of co-migratory (yellow) trajectories (%) between HTT and Rab7 in buffer-, CQ-, and BAF1-treated larvae. (C) 
Quantification of directional analysis of yellow (HTT and Rab7) trajectories (%) in buffer-, CQ-, and BAF1-treated larvae. (D) Schematic diagram of larval nervous 
system showing the brain and segmental nerves. Red box=imaged area. Representative images from simultaneous dual-color images of neuron cell bodies from 
larvae co-expressing HTT-mRFP (red) and Rab7-GFP (green) that have been fed either buffer-, CQ-, or BAF1-laced food. Colocalized puncta that contain HTT and Rab7 
are seen (yellow arrows). Bar: 2 µm. (E) Quantification of percent colocalization (mander’s) between HTT and Rab7%) in nerves of buffer-, CQ-, and BAF1-treated 
larvae. n = 10. (F) Representative images of segmental nerves from larvae expressing HTT-mRFP (red) that have been simultaneously immunostained with Lamp1 
(green) and Rab7 (blue) following treatment with either buffer or CQ. Note that the merged panel of buffer-treated larvae reveals heterogenous overlays containing 
either HTT-Rab7 (purple arrows), Rab7-Lamp1 (teal arrows), or HTT-Rab7-Lamp1 (white arrows), while the merged panel of CQ-treated larvae show more overlays 
containing HTT-Rab7-Lamp1 (white arrows) Bar: 10 µm. (G) Quantification of colocalization (mander’s) between HTT-Rab7, HTT-Lamp1, and Rab7-Lamp1%) in nerves 
of buffer-, CQ-, or BAF1-treated larvae. Data represented as overlaid histogram-dot plots (left) as well as proportional Venn diagrams (right). n = 6. Statistical 
significance was determined using the two-sample two-sided Student’s t-test. Data represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001, 
****p < 0.00001. Also see Fig. S5. .
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(Figure 6a-c, S6B). Next, larvae expressing HTT-mRFP or 
Rab7-GFP were imaged at three axonal segments (Figure 6d, 
S6A, far-proximal to crush site-red box, proximal to the 
crush site-blue box, distal to crush site-green box) 16 h

after nerve crush. As a control, larvae expressing Syt1- 
eGFP were imaged 16 h after nerve crush. Interestingly, 
while Syt1-eGFP vesicles were stalled/immobile in all three 
axonal segments imaged (far-proximal to crush site (red

Figure 5. The HTT-Rab7 vesicle complex co-transports with long-distance signaling components. (A) Arrows depict location of the cell bodies (retrograde) and 
synapses (anterograde). Representative images and kymographs from simultaneous dual-color movies from larvae co-expressing HTT-mRFP with either tkv-eGFP or 
GFP-2xfyve (PtdIns3ps). Co-migrating tracks that contain both red and green trajectories are seen (yellow arrow). X axis=distance (µm), Y axis=time (s). Bar: 5 µm. (B) 
Quantification of the average co-migratory trajectories reveal the percent co-migration (%) between HTT-tkv and HTT-2xfyve. n = 6. (C-D) Representative images from 
movies and kymographs from larvae expressing tkv-eGFP or GFP-2xfyve alone, in the context of htt reduction (htt-RNAi), or a genetic reduction of Rab7 (Rab7EY10675/ 
+). Bar: 10 µm. (E-F) Directional analysis of tkv-eGFP or GFP-2xfyve trajectories alone compared to tkv-eGFP or GFP-2xfyve trajectories with a htt or Rab7 reduction. n  
= 10. (G-H) Representative images of segmental nerves from larvae co-expressing HTT-mRFP (red) and either (G) tkv-eGFP (green) or (H) GFP-2xfyve (green) that have 
been immunostained with Rab7 (blue) following treatment with buffer or CQ. Note that the merged panel of buffer-treated larvae reveals heterogenous overlays 
containing either HTT-Rab7 (purple arrows), Rab7-tkv or Rab7-2xfyve (teal arrows), HTT-tkv or HTT-2xfyve (yellow arrows) or HTT-Rab7-tkv and HTT-Rab7-2xfyve 
(white arrows), while the merged panel of CQ-treated larvae show more overlays containing HTT-Rab7-tkv and HTT-Rab7-2xfyve (white arrows) Bar: 10 µm. (I-J) 
Quantification of colocalization (mander’s, %) between (I) HTT-Rab7, HTT-tkv, and tkv-Rab7 or (J) HTT-Rab7, HTT-2xfyve, and 2xfyve-Rab7 in nerves of buffer-, CQ-, 
and BAF1-treated larvae. Data represented as overlaid histogram-dot plots (left) as well as proportional Venn diagrams (right). n = 6. Statistical significance was 
determined using the two-sample two-sided Student’s t-test. Data represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001, ****p < 0.00001. Also 
see Fig. S2.
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Figure 6. Axonal injury encourages enhanced retrograde movement of HTT-vesicles: evidence for a HTT-Rab7 signaling late endosome. (A) Schematic diagram of 
larval nervous system showing the brain. Red box=imaged area. Representative images from simultaneous dual-color images of neuron cell bodies from larvae 
expressing UAS-eGFP under the pucGAL4E69 driver that have been immunostained with elav at 0, 12, 16, 18, or 24 h after being subjected to larval nerve crush in the 
presence of fly food laced with buffer or CQ. The presence of eGFP in motor neuron cell bodies corresponds to increased expression of puckered (puc). Bar: 2 µm. (B) 
Quantification of the intensity ratio of GFP:elav normalized to the uninjured-buffer condition at motor neuron cell bodies at t24 of uninjured and injured/crushed 
larvae in buffer- or CQ-laced fly food. n = 5. (C) Representative line plot of the GFP:elav intensity ratio at motor neuron cell bodies of larvae subjected to nerve crush 
in either buffer- or CQ-laced fly food at 0, 12, 16, 18, or 24 h. n = 5. (D) Schematic diagram of larval nervous system showing the brain and segmental nerves. Red 
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box), proximal to crush site (blue box), and distal to crush 
site (green box)), HTT-mRFP or Rab7-GFP vesicles showed 
motility at the far-proximal axonal segment to the crush site 
(red) and at the proximal crush site (blue box), but not at the 
distal axonal segment to the crush site (green box, 
Figure 6d). Quantification of the anterograde:retrograde 
flux ratio revealed a significant retrogradely biased motility 
for both HTT-mRFP or Rab7-GFP vesicles (Figure 6f). Note 
that an increase in Rab7 and HTT localization is seen in cell 
bodies after nerve crush compared to uninjured controls 
(Fig. S6D). Moreover, Drosophila larval axons simulta-
neously expressing HTT-mRFP or Rab7-GFP imaged 16 h 
after nerve crush also showed an increase in the retrogradely 
co-migrating HTT-Rab7 vesicle population proximal to the 
crush site (red box, Figure 6g,h), indicating that axonal 
injury does not perturb the retrograde motility of the HTT- 
Rab7 LE but rather stimulates its motility.

We next postulated that if the retrogradely moving 
HTT-Rab7 LE carries signaling components to the cell 
body after axonal injury then CQ treatment should disrupt 
this motility. Indeed, CQ treatment perturbed the retro-
grade motility of HTT-mRFP or Rab7-GFP containing vesi-
cles (Figure 6e, S5A), with significant decreases in pucGAL4- 
driven GFP expression in motor neuron cell bodies 16–24 h 
after nerve-crush (Figure 6a-c, Fig. S6C). Quantification 
analysis of the anterograde:retrograde flux ratio revealed 
a significant anterogradely biased motility for both HTT- 
mRFP or Rab7-GFP vesicles with CQ treatment after nerve 
crush (Figure 6e,f). Note that Rab7-GFP and HTT-mRFP 
localization to cell bodies was also decreased with CQ 
treatment after nerve crush (Fig. S6D). Further, larvae co- 
expressing HTT-mRFP and Rab7-GFP with CQ treatment 
showed decreased co-migrating retrograde populations with 
increased stalling and reversing populations (Figure 6g,h) 
after nerve crush. Additionally, biochemical analysis of 
HTT VF-IPs from human iNeurons revealed, in addition 
to RAB7, the presence of long-distance signaling compo-
nents BDNF (brain-derived neurotrophic factor), which 
promotes axonal regrowth after sciatic nerve crush [87], 
and MAPK8/JNK (Figure 6i), which is activated [88,89] 
and transported retrogradely following injury [29,32] to 
promote regeneration. Therefore, taken together, the retro-
gradely moving HTT-RAB7/Rab7-LAMP1-containing LE 
we isolated is likely a signaling endosome containing 
wnd/MAP3K12/DLK, BDNF, MAPK8/JNK, and/or the 
BMP-receptors tkv and wit which are carried to the cell 
body after axonal injury (Fig. S6F).

Discussion

Despite more than 350 binding partners for HTT identified 
across a wide-range of cellular processes, including trafficking, 
the molecular mechanisms by which HTT and its binding 
partners function remain elusive. Here we provide evidence 
for a retrogradely moving HTT-Rab7 vesicular complex using 
Drosophila genetics, in vivo imaging in Drosophila larval 
axons coupled with a custom particle tracking analysis and 
pharmacological inhibitors. Specifically, we found that the 
retrogradely moving HTT-RAB7/Rab7 vesicle is likely 
a LAMP1/Lamp1-containing LE that can traffic long- 
distance signaling components such as the BMP-receptors 
tkv and wit, neurotrophic factor BDNF and axonal damage 
response components wnd/MAP3K12/DLK and MAPK8/JNK 
following axonal injury. Taken together, our observations 
unravel a previously unknown role for HTT in the retrograde 
movement of a RAB7-LAMP1-containing signaling LE (Fig. 
S6F), which has functional relevance during axonal injury.

The biological relevance of the putative retrogradely 
moving HTT-RAB7-LAMP1-containing late endosome

Rab7 is an established LE marker [11]. Several studies also 
show that Rab7 has a substantial role in the maturation of APs 
and LEs, by aiding in their retrograde motility and by parti-
cipating in fusion with lysosomes [11,90–92]. Further, HTT 
facilitates the retrograde axonal movement of Atg8a/LC3- 
containing autophagic vesicles (Figure 2 [27]). However, 
Atg8a/LC3 is used as a marker for autophagy and this is 
problematic because Atg8a/LC3 is present in multiple auto-
phagy compartments from PGs to ALs [28] as well as during 
LE-AP fusion in distal axons [25]. Therefore, knowledge of 
the exact location of where HTT enters the autophagy path-
way is ambiguous. To overcome these issues, we probed HTT 
and Rab7 with markers specific for PGs, APs, amphisomes 
and lysosomes together with genetic mutants and pharmaco-
logical inhibitors to identify the cellular compartment where 
HTT and Rab7 merge. While HTT co-migrates with retro-
gradely moving Rab7-LAMP1 vesicles, reduction/loss of LE- 
AP fusion with mutant Syx17 or by pharmacological inhibi-
tion using CQ/BAF1 impaired the retrograde movement of 
axonal HTT-Rab7-LAMP1-containing vesicles. In contrast, 
reduction/loss of Atg5-dependent PG assembly to APs had 
no effect (Figure 3). Despite HTT being implicated as 
a molecular scaffold during induction and cargo loading of 
elongating PGs [93] through associations with ULK1 [26], the

box=imaged area (90 µm). Arrows depict location of the cell bodies (retrograde) and synapses (anterograde). Representative images and kymographs of movies from 
larvae expressing Syt1-eGFP, Rab7-GFP, or HTT-mRFP that have been either left uninjured or injured/crushed for 16 h prior to in vivo imaging. Injured larvae were 
imaged at the far-proximal to crush site (red), proximal to crush site (blue), and distal to crush site (green). X axis=distance (µm), Y axis=time (s). Bar: 5 µm. (E) 
Representative images and kymographs from movies of larvae expressing HTT-mRFP (red) or Rab7-GFP (green) that have been injured for 16 h in CQ-laced fly food 
prior to in vivo imaging at the far-proximal to crush site (red) or the proximal to crush site (blue). (F) Quantification of the avg. anterograde:retrograde flux ratio per 
larvae (AU) of HTT-mRFP or Rab7-GFP trajectories. A retrograde bias is depicted as less than zero (left on x-axis), while an anterograde bias is depicted as greater than 
zero (right on x-axis). n = 5. (G) Representative images and kymographs from simultaneous dual-color movies from larvae expressing HTT-mRFP (red) and Rab7-GFP 
(green) that have been either left uninjured, injured for 16 h in buffer-laced fly food, or injured for 16 h in CQ-laced fly food prior to in vivo imaging at the far- 
proximal to crush site (red). Co-migrating tracks that contain HTT and Rab7 are seen (yellow arrow). X-axis=distance (µm), Y-axis=time (s). Bar: 5 µm. (H) 
Quantification of directional analysis (%) of HTT-Rab7 (yellow) trajectories of uninjured larvae compared to buffer-treated injured larvae and/or CQ-treated injured 
larvae. n = 5. (I) Representative western blot of an immunoprecipitation of HTT-containing human iNeuron VF, probed with HTT, RAB7, BDNF, and MAPK8/JNK, which 
all show presence in the HTT VF-IP. No bands are seen in the negative no antibody control (−crtl). n = 3. Statistical significance was determined using the two-sample 
two-sided Student’s t-test. Data represented as mean±sem. ns=p > 0.01, *p < 0.01, **p < 0.001, ***p < 0.0001. Also see Fig. S5 and S6.
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lack of colocalization between HTT and Atg5 (Fig. S3) within 
axons and the failure to disrupt HTT motility with loss/ 
reduction of Atg5 (Figure 3) suggests that HTT likely has no 
role at the PG within axons. Therefore, our observations 
suggest that the only location that HTT and Rab7 can enter 
the autophagy pathway is when HTT-Rab7 containing LEs 
fuse with Atg8a/LC3-containing APs (Fig. S3A). It is also 
possible that the HTT-Rab7 LE also contains LAMP1/Lamp1 
since recent work shows that LAMP1 may not only mark 
degradative lysosomes [14]. Therefore, it is clear that Atg8a/ 
LC3 and LAMP1/Lamp1 cannot be used to conclusively label 
APs and lysosomes.

The presence of HTT with Rab7 in the endocytic path-
way is further supported by our finding that loss/reduction 
of Hip1, a membrane bound component of clathrin- 
mediated endocytosis and endosomal trafficking [50,94], 
disrupted the motility of both HTT and Rab7 (Figure 1, 
S1). Upon endocytic internalization, cargo marked to be 
degraded remains at EEs, which mature to LEs prior to 
long distance retrograde movement within axons to the 
cell body for lysosome-mediated degradation. In fact, phar-
macological inhibition of lysosome acidification and lyso-
some-AP-LE fusion fusion impaired the retrograde co- 
migration of the putative HTT-Rab7-LAMP1 vesicle com-
plex (Figure 4). Similar to work that HTT facilitates kinesin 
1 [95] and dynein-mediated axonal motility [96], and that 
HTT moves bidirectionally by interacting with kinesin 1 
and dynein [7], one potential model for HTT is to function 
as a molecular scaffold to coordinate dynein-mediated ret-
rograde movement of RAB7/Rab7-LAMP1/Lamp1- 
containing LEs. Furthermore, while the Rab7-interacting 
protein FYCO1 (FYVE And coiled-coil domain autophagy 
adaptor 1) could mediate kinesin 1-mediated movement of 
LEs [97], we observed that loss/reduction of Rilpl disrupted 
the retrograde movement of axonal HTT-Rab7 vesicles 
(Figure 1, S1). Indeed, RAB7-interacting/accessory proteins 
RILP [46,47], ORP1 L [98,99], and PLEKHM1 [100,101] 
were shown to function during dynein-mediated movement 
of LEs. Therefore, we propose that a retrogradely moving 
axonal HTT-RAB7/Rab7-LAMP1 LE exists in vivo and is 
likely involved in autophagy through LE-AP fusion 
(Fig. S3A).

A novel role for HTT during axonal injury

RAB7 is implicated in the retrograde trafficking of neuro-
trophin signaling receptors NGF (nerve growth factor)- 
activated TRKA [102,103], and BDNF-activated TRKB [12] 
within a LE, while a RAB7 mutant causing Charcot-Marie- 
Tooth disease showed dysregulated TRKA-NGF retrograde 
signaling resulting in axonal degeneration [15,104]. Work 
has shown that a majority of the retrograde TRKA signaling 
endosomes are ultra-structurally and molecularly defined 
multivesicular bodies [16]. HTT is also implicated in the 
retrograde trafficking of TRKB-BDNF signals [105,106], 
with defective TRKB signaling seen in HD [107,108]. In 
fact, we also found BDNF with HTT-associated vesicles

isolated from WT human iNeurons (Figure 6i), which was 
decreased in HD iNeurons (data not shown). Additionally, 
the BMP-receptors tkv and wit co-migrated with HTT and 
Rab7 (Figure 5, S2), with pathogenic HTT disrupting tkv- 
containing vesicle motility [109] causing synaptic growth 
defects [76]. Therefore, the putative retrogradely moving 
HTT-RAB7-LAMP1 containing endosome we isolated here 
likely traffics long distance signaling components such as 
NGF and BDNF (Fig. S6F).

Further, a role for Rab7 in mediating the retrograde 
transport of injury signals has also been proposed. In 
response to axonal injury, transcriptional reprogramming 
is thought to occur via several protective signaling path-
ways, such as the MAPK8/JNK pathway [110,111] and 
DLK [30,33,34,112,113]. DLK was shown to move retro-
gradely with Rab7-containing LEs following palmitoylation 
of DLK [36]. We also found the axonal damage response 
signal wnd co-migrating with HTT and Rab7 (Fig. S6E). 
Additionally, work has suggested that retrograde signaling 
following axonal injury is mediated by vesicle transport 
complexes, such as the syd/JIP3-containing endosome that 
carries phosphorylated- MAPK8/JNK to neuronal cell 
bodies [29,35] and mass spectrometry of isolated syd/JIP3- 
associated vesicles showed the presence of Rab7/RAB7 
[35]. Macrophage-derived NADPH oxidase 2 complexes 
were shown to incorporate into RAB7-positive endosomes 
after injury in dorsal root ganglion neurons, influencing 
PtdIns3K signaling to stimulate neurite outgrowth and 
axon regeneration after sciatic nerve lesion [114]. 
Moreover, the RAB7 mutant associated with Charcot- 
Marie-Tooth showed reduced protein synthesis in the 
axon with compromised axon integrity after initial axon 
outgrowth [115]. A non-canonical BMP-signaling pathway 
has been suggested to mediate retrograde injury signaling 
from spinal cord injury sites [116]. Additionally, HTT was 
recently proposed to influence the reprogramming tran-
scriptome after spinal cord injury with deletion of HTT 
attenuating regeneration of mouse corticospinal axons 
[37]. Further, loss/reduction of HTT displayed an altered 
proteomic profiling network in axotomized retinal gang-
lion cells, suggesting a role for HTT as an injury-response 
signaling hub [38]. Taken together, the HTT-RAB7/Rab7- 
containing signaling endosome we identified likely has an 
important role during axonal injury (Fig. S6F). Indeed, we 
found that the retrograde motility of the HTT-RAB7 
/Rab7-LAMP1 LE was not perturbed but stimulated in 
Drosophila larval nerve crush experiments, which activates 
retrograde injury signaling reported by puc, a MAPK8/ 
JNK-phosphatase, compared to uninjured larvae 
(Figure 6, S6). Therefore, our observations identify 
a previously unknown role for HTT during axonal injury: 
to facilitate the movement of retrograde signals, such as 
BMP-receptors (tkv and wit), MAPK8/JNK, BDNF and the 
canonical damage signal wnd/DLK within a RAB7/Rab7- 
LAMP1/Lamp1 signaling LE to the cell body for transcrip-
tional reprogramming of neurons. Future work will inves-
tigate a more direct mechanism by which HTT helps 
promote axonal regeneration following injury.
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Materials and methods

Drosophila genetics

Neuronal drivers Appl-GAL4 (pan neuronal) and pGAL4-62B- 
SG26-1 (8 motor neurons) were used for neuronal expression 
of transgenic lines [39,40,117]. For dual-color imaging, males 
from UAS-Rab7-GFP, UASp-YFP.rab7T22N, UAS-Syt1-eGFP, 
UAS-LAMP1-GFP, UAS-GFP-myc-2xFYVE, UAS-tkv-eGFP, 
MiMIC-wnd-mCherry, MiMIC-wnd-GFP, or UAS-mCherry- 
Atg8a (BDSC) were crossed to Appl-GAL4;T(2:3),CyO,TM6B, 
Tb/Pin88K virgin females. The chromosome carrying T(2:3), 
CyO,TM6B,Tb is referred to as B3 and carries the dominant 
markers, Hu, Tb and CyO. The larval Tb (Tubby) marker is 
used to select larvae of interest. Appl-GAL4/Y;UAS-/Cyo, 
TM6B males were then crossed with UAS-HTT15Q-mRFP 
(gift from Troy Littleton [118]), UAS-HTTex1-25Q-eGFP 
(gift from Norbert Perrimon [119]), or UAS-Rab7-GFP 
(BDSC) virgins. Additionally, UAS-Rab7-GFP males were 
crossed to pGAL4-62B SG26–1;T(2:3),CyO,TM6B,Tb/Pin88K 

virgin females and progeny that were pGAL4-62B-SG26-1/Y, 
CyO,TM6B,Tb/UAS-Rab7-GFP males were then crossed to 
UAS-HTT15Q-mRFP virgin females. For genetic interaction 
analysis, males from miltk04704/CyO [52,53], RilplEY06476 [120], 
Hip1MB04365 [121], Rip11KG02485/FM7c [122], nmoP1/TM6 
[44,123], Khc8/cyO (null allele [124]), Dhc6-10/TM6B (null 
allele [125]), Atg5d04577 (BDSC), Atg55cc5/FM7 (null allele 
[59], BDSC), Syx17f01971/TM6B (BDSC [60,61]), Syx17LL/ 
TM6 (null allele [24], a gift from Gábor Juhász) Rab7EY10675 

(BDSC [42]), Rab7d1/TM6 (null allele [42], a gift from Gábor 
Juhász), Df(98E2);CG9990 (htt-KO/+, [41], gift from Sheng 
Zhang), or UAS-htt-rnai [7] were crossed to Appl-GAL4;T 
(2:3),CyO,TM6B,Tb/Pin88K virgin females. Males were then 
crossed to UAS-HTT15Q-mRFP or UAS-Rab7-GFP. Note that 
Appl-GAL4 (× chromosome) and UAS-HTT15Q-mRFP (3rd 

chromosome) are on the same chromosomes as Atg5 (× 
chromosome), Syx17, or Rab7 (both on the 3rd chromosome) 
mutants. Western blot analysis showed that rab7 was reduced 
to 28% of WT levels in homozygous Rab7EY10675/Rab7EY10675 

and Atg5 was reduced to 64% of WT levels in heterozygous 
Atg5d04577/+ (Fig. S2A). Additionally, significant increases in 
ref(2)P protein levels were seen in homozygous Rab7EY10675/ 
Rab7EY10675, heterozygous Atg5d04577/+, heterozygous 
Syx17f01971/+, and the HTT lines htt-rnai and htt-KO/+ (Fig. 
S2D), similar to what was previously seen [24,26,42,59]. 
Rab7EY10675 showed an enhanced ectopic midline crossing 
phenotype [126]. Syx17f01971 showed an Atg8-rnai phenotype 
of small perinuclear dots [24]. Similar to Atg55cc5 [59], 
Atg5d04577 flies showed an ataxic phenotype (Fig. S2C). 
Progeny that were Appl-GAL4/Y;Cyo,TM6B males were then 
crossed to UAS-Rab7-GFP, UAS-LAMP1-GFP, UAS-GFP-myc 
-2xFYVE, UAS-tkv-eGFP, or UAS-mCherry-Atg8a, or UAS- 
HTT15Q-mRFP virgin females. Conversely, Rip11KG02485/ 
FM7c or UAS-htt-RNAi virgins were crossed to Appl-GAL4 
/Y;UAS-/Cyo,TM6b males. X/Y; +/+; pucGAL4E69/TM6B 
(BDSC) males were crossed with UAS-eGFP (BDSC) virgin 
females and female progeny were selected for larval nerve 
crush confirmation assays. UAS-Rab7-GFP, UAS-Syt1-eGFP, 
UAS-LAMP1-GFP, UAS-GFP-myc-2xFYVE, UAS-HTT15Q

-mRFP, or UAS-eGFP males were crossed to Appl-GAL4 or 
pGAL4-62B-SG26-1 virgin females. In all cases non-tubby 
female 3rd instar larvae were dissected for in vivo imaging or 
immunohistochemistry. Sibling tubby larvae were evaluated as 
controls. Reciprocal crossings were also done to confirm 
observations. A comprehensive list of Drosophila lines used 
for this study is organized in Table 1.

Human iPSC cultures
The following cell lines were obtained from the NIGMS Human 
Genetic Cell Repository at the Coriell Institute for Medical 
Research: iPSCs from WT (polyQ = 25, 26y, female) patients 
were purchased from the NIGMS Human Genetic Cell 
Repository at the Coriell Institute for Medical Research 
(GM23279*C) and iPSCs from WT (polyQ = 17, 48y, female) 
patients were purchased from the NINDS Human Cell 
Repository (ND38555).

Mouse brains
CBA/CaJ background mouse brains (gift from Matthew Xu- 
Friedman, The State University of New York at Buffalo) were 
dissected, halved, then stored on dry ice and used immediately 
or stored at −80°C for future use.

In vivo imaging and analysis of vesicle motility within 
whole-mount larval axons

Larvae were dissected and immediately imaged under physio-
logical conditions as previously detailed [9]. Non-tubby, 
female larvae were dissected and imaged under physiological 
conditions in dissection buffer. Motility was visualized in the 
red (568 nm), green (488 nm), or both channels (568/488 nm 
using a dual-view beam splitter attachment) within larval 
segmental nerves using a Nikon TE-2000 microscope 
(Nikon, Melville, NY, USA). From each larva, four sets of 
movies at an imaging window frame size of 90 μm at 150 
frames were taken from the mid-region of the larva at an 
exposure of 500 ms using a Cool Snap HQ cooled CCD 
camera (Photometrics, Tucson, AZ, USA) and the 
Metamorph imaging system (Molecular Devices, Sunnyvale, 
CA, USA). Kymographs were generated in Metamorph using 
the kymograph stack tool. From a total of 10 larvae a set of 40 
movies were imaged for each genotype at a spatial resolution 
of 0.126 μm/pixel. The four movies, each lasting a 1.25 min 
span a total time of 5 min. Because most of the vesicles take 
<1 min to move they will have moved out of the 90 μm 
imaging window by the end of the first movie since each 
time frame for each movie lasts 1.25 min. Movies were ana-
lyzed using a MATLAB-based particle tracker program as 
previously described [129]. Briefly, vesicle trajectories were 
analyzed to obtain the overall distribution of cargo popula-
tions (directional analysis) and individual vesicle movement 
behaviors (velocities, pause frequencies/durations, run 
lengths). Duration-weighted segmental velocity evaluates the 
average velocity behavior that vesicles exhibit per time spent 
moving. Individual vesicles were automatically categorized as 
either anterograde, retrograde, reversing, or stationary. 
Reversing refers to a vesicle that has at least one switch
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Table 1. Key resource table.

Resource Source Identifier

Antibodies and Dyes
Mouse anti-Rab7 Developmental Studies Hybridoma Bank Rab7 

RRID: AB_2722471
Rabbit anti-Lamp1 Abcam ab30687 

RRID: AB_775973
Mouse anti-RAB7 Santa Cruz Biotechnology sc -13,156 

RRID: AB_627385
Rat anti-Syx17 (Syntaxin 17) Laboratory of 

Gábor Juhász
[24]

Rabbit anti-ref(2)P Laboratory of 
Gábor Juhász

[127]

Rabbit anti-ATG5 (N-terminal) Sigma-Aldrich A0856 
RRID: AB_1078238

Rabbit anti-SYT1 Phosphosolutions 1975-STG 
RRID: AB_2492251

Mouse anti-SYP (SY38) ThermoFisher Scientific MAB5258 
RRID: AB_2313839

Mouse anti-DYNC1I1 (74.1) Abcam ab23905 
RRID: AB_2096669

Mouse anti-HIP1 (4B10) Novus biological NB300-203 
RRID: AB_10000880

Mouse anti-KIF5C Laboratory of 
Lawrence Goldstein

[128]

Mouse anti-elav Developmental Studies Hybridoma Bank Elav-9F8A9 
RRID: AB_528217

Mouse anti-wit (23C7) Developmental Studies Hybridoma Bank 23C7 anti-wit 
RRID: AB_528513

Mouse anti-BDNF #1 Developmental Studies Hybridoma Bank BDNF-#1 
RRID: AB_2617198

Mouse anti-BDNF #9 Developmental Studies Hybridoma Bank BDNF-#9 
RRID: AB_2617199

Rabbit anti-MAPK8/JNK Cell Signaling Technology 9252 
RRID: AB_2250373

Rabbit anti-phospho-MAPK8/JNK Cell Signaling Technology 9251 
RRID: AB_331659

Rabbit anti-ACTA1/Actin ThermoFisher Scientific MA5 -32,479 
RRID: AB_2809756

Mouse anti- TUBA4A (tubulin, alpha 4A) Abcam ab7291 
RRID: AB_2241126

Mouse anti-TUBB3 (tubulin, beta 3 class III) BioLegend 801,213 
RRID: AB_2728521

Mouse anti-HTT (1HU-4C8) EMD Millipore MAB2166 
RRID: AB_2123255

Rabbit anti-HTT (EP867Y) Abcam ab45169 
RRID: AB_733062

Mouse anti-RTN1 (MON160) Santa Cruz Biotechnology sc -23,880 
RRID: AB_672542

Mouse anti-Cyt-c-p (A-8) Santa Cruz Biotechnology sc -13,156 
RRID: AB_627385

Rabbit anti-DCTN1 (dynactin 1) Abcam ab96004 
RRID: AB_10677601

Anti-Mouse Alexa Fluor® 488 Invitrogen A11001 
RRID: AB_2534069

Anti-Mouse Alexa Fluor® 568 Invitrogen A11004 
RRID: AB_2534072

Anti-Mouse Alexa Fluor® 647 Invitrogen A21235 
RRID: AB_2535804

Anti-Rabbit Alexa Fluor® 488 Invitrogen A11008 
RRID: AB_143165

Anti-Rabbit Alexa Fluor® 568 Invitrogen A11011 
RRID: AB_143157

Anti-Rabbit Alexa Fluor® 647 Invitrogen A21244 
RRID: AB_141663

Anti-Mouse secondary antibody, HRP Invitrogen 32,430 
RRID: AB_1185566

Anti-Rabbit secondary antibody, HRP Invitrogen 32,460 
RRID: AB_1185567

Alexa Fluor® 594 Goat Anti-Horseradish Peroxidase Jackson Immuno 
Research Labs

123-585-021 
RRID: AB_2338966

Fluorescein (FITC) Goat Anti-Horseradish Peroxidase Jackson Immuno 
Research Labs

123-095-021 
RRID: AB_2314647

Biological Samples
Mouse brain tissue (CBA/CaJ background) Laboratory of 

Matthew Xu-Friedman
N/A

Experimental Models: Human Cell Lines
GM23279, polyQ=25, 26y, female NIGMS Repository (Coriell Institute for Medical Research -Camden, 

NJ)
GM23279*C

ND38555, polyQ=17, 48y, female NINDS Repository 
(Coriell Institute for Medical Research -Camden, NJ)

ND3855 
RRID: CVCL_Y822

(Continued )
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Table 1. (Continued). 

Resource Source Identifier

Chemicals, Peptides, and Recombinant Proteins
Chloroquine (CQ) Cayman Chemical 14,194 

PubChem: 
24,278,090

Bafilomycin-A1 (BAF1) Cayman Chemical 11,038 
PubChem: 6,436,223

Rapamycin (RM) Cayman Chemical 13,346 
PubChem: 5,284,616

Paclitaxel Millipore Sigma 58-055-65MG 
PubChem: 36,314

Corning Matrigel ThermoFisher Scientific CB40230A 
RRID: N/A

Advanced DMEM/F12 Invitrogen 12,634,028 
RRID: N/A

Essential 8 media Invitrogen A1517001 
RRID: N/A

Neurobasal media Invitrogen 21,103,049 
RRID: N/A

PSC neural induction media Invitrogen A1647801 
RRID: N/A

B27 supplement media Invitrogen 17,504-044 
RRID: N/A

Protease inhibitor cocktail Pierce PIA32965 
RRID: N/A

Phosphatase inhibitor Pierce PI88667 
RRID: N/A

Protein A/G Magnetic Beads Pierce PI88802 
RRID: N/A

Vecta Shield Mounting Medium Vector Laboratories NC9265087 
RRID: N/A

Experimental Models: D. melanogaster Organisms/Strains
P{Appl-GAL4.G1a}1, y1 w* Bloomington Drosophila Stock Center BDSC: 32,040; 

FlyBase: 
FBst0032040

Appl-Gal4; T(2,3), CyO, TM6B,Ttb1/Pin88k Laboratory of 
Lawrence Goldstein

[117]

pGal4-62B SG26–1; T(2,3), CyO, TM6B, Tb1/Pin88k Laboratory of 
Lawrence Goldstein

[40]

w*; P{UAS-Rab7-GFP}3 Bloomington Drosophila Stock Center BDSC: 42,706; 
FlyBase: 

FBst0042706
Df(98E2); CG9990/TM3 (htt-KO/+) Laboratory of 

Norbert Perrimon
[41]

pUAST-HTT15Q-mRFP (UAS-HTT-mRFP) Laboratory of 
Troy Littleton

[118]

y1 w67c23; P{EPgy2}Rab7EY10675 Bloomington Drosophila Stock Center BDSC: 20,630; 
FlyBase: 

FBst0020630
UAS-htt-rnai (htt = Drosophila htt) Laboratory of 

Lawrence Goldstein
[7]

y1 P{EPgy2}RilplEY06476 w67c23 Bloomington Drosophila Stock Center BDSC: 16,726; 
FlyBase: 

FBst0016726
y1 w67c23; P{lacW}miltk04704 /cyO Bloomington Drosophila Stock Center BDSC: 10,553; 

FlyBase: 
FBst0010553

w1118; Mi{ET1Hip1MB04365 Bloomington Drosophila Stock Center BDSC: 24,809; 
FlyBase: 

FBst0024809
y1 w*; P{lacW}nmoP1/TM3, Sb1 Bloomington Drosophila Stock Center BDSC: 27,897; 

FlyBase: 
FBst0027897

w1118; Mi{ET1}nufMB09772 Bloomington Drosophila Stock Center BDSC: 27,803; 
FlyBase: 

FBst0027803
y1 P{SUPor-P}Rip11KG02485 /FM7c, sn+ Bloomington Drosophila Stock Center BDSC: 13,742; 

FlyBase: 
FBst0013742

b1 pr1 Khc8 /CyO Bloomington Drosophila Stock Center BDSC: 1607; 
FlyBase: 

FBst0001607
mwh1 Dhc64C6-10 h1 st1 pp es /TM6B,Tb1 Bloomington Drosophila Stock Center BDSC: 8747; 

FlyBase: 
FBst0008747

(Continued )
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event between anterograde and retrograde motility. Both 
anterograde or retrogradely moving mitochondria show 
a net movement in the respective direction without pausing 
or reversing.

Simultaneous dual-view in vivo imaging
A narrow single-band GFP/DsRED (488/568 nm) filter cas-
sette was added to the Cool Snap HQ camera. Movies were 
taken in dual-view mode using the split view software in 
Metamorph at 150 frames from the mid-region of the larva 
at an exposure of 500 ms to simultaneously image RFP and 
GFP tagged vesicles. The Cool Snap HQ camera dual-view

mode was aligned using Metamorph software (Split-View 
settings) before each imaging session. Movies were split by 
wavelength and each kymograph for each split movie was 
created, merged and analyzed for co-migration. Trajectories 
of vesicles with colocalized tracks were identified from kymo-
graphs using Metamorph software. For each fluorescence 
channel, a kymograph was generated using Metamorph as 
previously done [10]. Briefly, after selecting the first channel, 
all frames within the time-lapse image sequence of this chan-
nel were added together to produce a summed image. Then 
a polyline was generated on an axon. After generation of the 
polyline, the kymograph was created using Metamorph

Table 1. (Continued). 

Resource Source Identifier

w*; P{UAS-Syt1.eGFP}3 Bloomington Drosophila Stock Center BDSC: 6926; 
FlyBase: 

FBst0006926
w*; P{UAS-GFP-LAMP}2; P{nSyb-GAL4.S}3/T(2;3)TSTL, CyO: TM6B, Tb1 Bloomington Drosophila Stock Center BDSC: 42,714; 

FlyBase: 
FBst0042714

w*; P{UAS-GFP-myc-2xFYVE}2 Bloomington Drosophila Stock Center BDSC: 42,712; 
FlyBase: 

FBst0042712
w1118; PBac{WH}Syx17f01971 /TM6B, Tb1 Bloomington Drosophila Stock Center BDSC: 18,495; 

FlyBase: 
FBst0018495

w1118 P{XP}Atg5d04577 CG1677d04577 lncRNA:CR44357d04577; l(3)** /TM6B, 
Tb1

Bloomington Drosophila Stock Center BDSC: 19,206; 
FlyBase: 

FBst0019206
w*; P{UAS-tkv-eGFP.D}3 Bloomington Drosophila Stock Center BDSC: 51,653; 

FlyBase: 
FBst0051653

y1 w1118; P{UASp-mCherry-Atg8a}2; dr1 /TM3, Ser1 Bloomington Drosophila Stock Center BDSC: 37,750; 
FlyBase: 

FBst0037750
pUAST-HTTex1-25Q-eGFP (UAS-HTT-eGFP) Laboratory of 

Norbert Perrimon
[119]

P{UAS-eGFP}8, w1118 Bloomington Drosophila Stock Center BDSC: 5428; 
FlyBase: 

FBst0005428
w*; P{GAL4E69}pucGAL4E69/TM3, Sb1 Ser1 Bloomington Drosophila Stock Center BDSC: 6762; 

FlyBase: 
FBst0006762

y1 w*; Mi{PT-mCh.2}wndMI00494-mCh.2/TM6B, Tb1 Bloomington Drosophila Stock Center BDSC: 39,657; 
FlyBase: 

FBst0039657
y1 w*; Mi{PT-GFSTF.2}wndMI00494-GFSTF.2/TM6B, Tb1 Bloomington Drosophila Stock Center BDSC: 39,656; 

FlyBase: 
FBst0039656

Atg55cc5/FM7i, P{ActGFP}JMR3 Bloomington Drosophila Stock Center BDSC: 91,419 
FlyBase: 

FBst0091419 
[59]

Syx17LL/TM6 Laboratory of 
Gábor Juhász

[24]

Rab7d1/TM6 Laboratory of 
Gábor Juhász

[42]

y1 w*; P{UASp-YFP.Rab7T22N}06 Bloomington Drosophila Stock Center BDSC: 9778 
FlyBase: 

FBst0009778
Software/Algorithms
MATLAB-based particle tracking program Laboratory of Danuser Yang et. al., 2005
ImageJ Schneider et. al., 2012 

https://imagej.net/
RRID: SCR_003070

Metamorph/Metavue Imaging Software Molecular Devices, Sunnyvale, CA, USA RRID: SCR_002368
Minitab18 https://www.minitab.com/en-us/ RRID: SCR_014483
Microsoft Excel https://www.microsoft.com/en-gb/ RRID: SCR_016137
RStudio http://www.rstudio.com/ RRID:SCR_000432
OriginLab/OriginPro https://www.originlab.com/ RRID: SCR_014212
BioRender http://biorender.com RRID:SCR_018361

AUTOPHAGY 1213

https://imagej.net/
https://www.minitab.com/en-us/
https://www.microsoft.com/en-gb/
http://www.rstudio.com/
https://www.originlab.com/
http://biorender.com


software. The polyline was then copied from one fluorescent 
channel to the other and used to create a kymograph for the 
other fluorescent channel. To identify vesicles with colocalized 
signals from both channels, the kymographs were colored in 
red and green, respectively, and combined into a single RGB 
kymograph. Non-stationary vesicles with colocalized signals 
were identified and counted by their yellow color in the 
combined kymograph. Note that to differentiate meaningful 
colocalization we evaluated the colocalization of the entire 
trajectory of a moving particle during the entire time frame 
of the movie. Therefore, only particles containing the same 
trajectory in both the red and green channels would show 
colocalization in yellow when merged and spurious colocali-
zation observed in one-time frame would be avoided. The 
total number of colocalized full trajectories for 20 kymographs 
across five larvae was counted for each genotype. Pearson’s 
and Mander’s coefficients were obtained using Coloc2 in 
ImageJ. Briefly, kymographs from Drosophila larval segmental 
nerves expressing two fluorophores were separated into red 
and green channels using Metamorph and analyzed using 
Coloc2 in ImageJ.

Immunohistochemistry of larval axons for quantification of 
accumulations or colocalization
3rd instar larvae were dissected and fixed in 8% paraformal-
dehyde, washed with PBT (phosphate buffered saline [PBS; 
0.15 M NaCl and 10 mM Na2HPO4, pH 7.5] supplemented 
with 0.1% Tween-20 [Pierce, 28,352]) and incubated over-
night with antibodies against Atg5 (1:100; Sigma-Aldrich, 
A0856), Syx17 (1:100; gift from Gábor Juhász, Eötvös Loránd 
University & Eötvös Loránd Research Network), Lamp1 (1:100; 
Abcam, ab30687), Syt1 (1:100; Phosphosolutions, 1975-STG), 
elav (1:100; DSHB [Developmental Studies Hybridoma Bank], 
elav-9F8A9), p-MAPK8/JNK (1:500; Cell Signaling 
Technology,), wit (1:100; DSHB, 23C7 anti-wit), and/or 
Rab7 (1:100; DHSB, Rab7). Larvae were incubated in second-
ary antibodies (1:100; Alexa Fluor 568 anti-mouse [Invitrogen, 
A11004], Alexa Fluor 488 anti-mouse [Invitrogen, A11001], 
Alexa Fluor 647 anti-mouse [Invitrogen, A21235], Alexa Fluor 
568 anti-rabbit [Invitrogen, A11011], Alexa Fluor anti-rabbit 
488 [Invitrogen, A11008], and/or Alexa Fluor 647 anti-rabbit 
[Invitrogen, A21244]), and mounted using Vectashield 
mounting medium (Vector Laboratories, NC9265087). 
Images of segmental nerves were collected using a Nikon 
Eclipse TE 2000 U microscope at 40X using the 40X objective 
or 90X using the 60X objective with 1.5X gain (Nikon, 
Melville, NY, USA) alongside the FITC (488 nm), TxRED 
(568 nm), both FITC/TxRED (568/488 nm using a dual-view 
beam splitter attachment) and/or Cy5 (647 nm) filters. 
Quantitative analysis on axonal blockages was carried out by 
collecting six confocal optical images from middle segmental 
larval nerves. For each genotype, at least six confocal optical 
images across five larvae were imaged and the number of 
axonal blockages was measured using NIH ImageJ software 
as previously done [7,117]. Quantitative analysis on colocali-
zation of compartments in larval nerves reported with simul-
taneous dual-view imaging was carried out by collecting six 
confocal optical images from middle segmental larval nerves.

For each genotype, at least six confocal optical images across 
five larvae were imaged. The total number of colocalized 
particles in larval nerves from six confocal images across five 
larvae was counted for each genotype. Mander’s and Pearson’s 
coefficients were obtained using Coloc2 in image J. Fixed 
imaged of larval nerves taken at 90X using the FITC, 
TxRED, and Cy5 filters were merged into a single RGB 
image to analyze colocalization noted as triple colocalization 
(white puncta) or double colocalization (yellow, magenta, or 
cyan puncta)/

Larval feeding
For chemical feeding experiments, 3rd instar larvae expres-
sing UAS-HTT15Q-mRFP, UAS-rab7-GFP, UAS-LAMP1- 
GFP, UAS-Syt1-eGFP, UAS-GFP-myc-2xFYVE, or UAS- 
eGFP were grown with fly flood (24 g agar, 22 g yeast, 
164 g cornmeal, 12 g soy flour, and 200 mL molasses, and 
5 L H2O) containing buffer (0.01% DMSO,), 3 mg/mL 
chloroquine (Cayman Chemical, 14,194) dissolved in buf-
fer/0.01% DMSO, 0.3 mg/mL bafilomycin A1 (Cayman 
Chemical, 11,038) dissolved in buffer (0.01% DMSO), 1.0  
µg/mL rapamycin (Cayman Chemical, 13,346) dissolved in 
buffer/0.01% DMSO, or 10 µm paclitaxel (Millipore Sigma, 
58-055-65 MG [130]) dissolved in buffer/0.01% DMSO for 
12, 16, 18, or 24 h. Larvae were dissected and imaged for 
in vivo motility, described above. Alternatively, larvae were 
dissected for immunohistochemistry, described above. For 
dual-view imaging, larvae simultaneously expressing UAS- 
HTT15Q-mRFP with either UAS-Rab7-GFP, UAS-LAMP1- 
GFP, UAS-tkv-eGFP, or UAS-GFP-myc-2xFYVE were sub-
jected to either fly food feeding condition and dissected and 
imaged for dual-view imaging, described above. 
Alternatively, larvae were dissected for immunohistochem-
istry, described above.

Larval nerve crush
Larval nerve crush was performed as done [30]. Larvae were 
anesthetized with CO2 gas for 1 min prior to pinching larval 
segmental nerves through the ventral cuticle for 5 s with 
Dumont #5 Inox forceps (Fine Science Tools, 11,252–20). 
Successful injury events were recorded by posterior paralysis 
of larvae with actively moving mouthpieces. Observational 
recording of successful injury was confirmed by Phase- 
contrast imaging and HRP-staining (HRP-FITC [Jackson 
Immuno Research Labs, 123-095-021] or HRP-TxRED 
[Jackson Immuno Research Labs, 123-585-021] at 1:50) of 
nerve crush site of dissected larvae as well as through report-
ing of increased GFP at motor neuron cell bodies in larvae 
expressing pucGAL4E69; UAS-eGFP, which was validated by 
p-MAPK8/JNK (Cell Signaling Technology, 9251) immunos-
taining of neuron cell bodies (data not shown). For incuba-
tions, larvae were either immediately dissected for t0 results, 
or transferred to fresh fly-food plates containing either Buffer/ 
0.01% DMSO, 10 µm paclitaxel dissolved in Buffer/0.01% 
DMSO, or 3 mg/mL CQ dissolved in Buffer/0.01% DMSO. 
These larvae were further incubated for 12, 16, 18, or 24 h at 
29ºC prior to dissection for immunohistochemistry or in vivo 
imaging as described above.

1214 T. KRZYSTEK ET AL.



Drosophila geotaxis assay

Negative geotaxis assays were performed as previously done 
[59,131,132]. WT and Atg5d04577 flies were reared for 4  
weeks at 25°C and 60% humidity. 20 healthy flies (10 
males and 10 females) were then selected and transferred 
into a negative geotaxis cylinder. Flies were at rest for 5  
min after transfer and then tapped to induce negative 
geotaxis. Fly movements were captured by images taken 3 
s post-induction. Fly climbing speed and distance traveled 
after negative geotaxis induction were calculated using 
ImageJ and analyzed.

Human iPSC neuronal differentiation
Human iPSCs were grown and expanded on corning matrigel 
(Thermofisher Scientific, CB40230A) using E8 iPSC media 
(Invitrogen, A1517001) as previously done [10]. 
Pluripotency was analyzed using an antibody against OCT- 
3/4 (1:200; SCBT [Santa Cruz Biotechnology], sc-5279) and 
Hoechst (Thermofisher Scientific, PI62249) was used as 
a nuclear staining as detailed below. After 4 passages iPSCs 
were differentiated into NPCs (neuronal precursors) using 
PSC neural induction media (Invitrogen, A1647801) and pub-
lished protocols (publication #MAN0008031). NPCs were 
identified using an antibody against Nestin (1:200; SCBT, sc 
-23,927) and then differentiated into mature iNeurons using 
neurobasal media supplemented with 1× B27 (Invitrogen, 
17,504–044) and 2 mM glutamine (ThermoFisher Scientific, 
25,030,081). Differentiated neurons, identified using antibo-
dies against MAP2 (1:100, BD Biosciences, BDB556326), 
TUBB3 (1:100; Biolegend, 801,201) and SYP (1:100, EMD 
Millipore, MAB5258) exhibited an extensive neurite network 
after 21 days at which time they were used for biochemical 
experiments as previously done [10].

Preparation of protein extracts from fly brains, mouse 
brains, and human iNeurons
Mouse or fly brains were homogenized in homogenization 
buffer (10 mM HEPES, pH 7.4, 100 mM K acetate, 150 mM 
sucrose, 5 mM EGTA, 3 mM Mg acetate, 1 mM DTT) con-
taining a cocktail of protease inhibitors (Pierce, PIA32965) 
and phosphatase inhibitors (Pierce, PI88667) with 5 mM 
EDTA. Neuronal extracts from Fly brains were centrifuged 
at 1000 g for 15 min and the supernatant (PNS) was used as 
detailed below for western blotting. Mouse brain extracts were 
then centrifuged at 1000 g for 15 min at 4°C. The PNS was 
then used for sucrose gradient fractionation analysis as 
detailed below or for western blotting. iNeurons were manu-
ally removed from 6-well or 12-well plates using ice-cold 
homogenization buffer (10 mM HEPES, pH 7.4, 100 mM K 
acetate, 150 mM sucrose, 5 mM EGTA, 3 mM Mg acetate, 1  
mM DTT) containing a cocktail of protease inhibitors (Pierce, 
PIA32965) and 5 mM EDTA, blended for 30 s on ice using 
a motorized pestle, and then quickly snap-frozen in liquid 
nitrogen. Neuronal extracts were then centrifuged at 1000 g 
for 15 min and the supernatant (PNS) was used for sucrose 
gradient fractionation analysis as detailed below or for wes-
tern blotting.

Sucrose gradient fractionations
PNS samples human iNeuron extracts or mouse brains were 
further fractionated into soluble fractions (SF), heavy mem-
brane pellet (P1), and vesicle fractions (VF) by sucrose gra-
dient ultra-centrifugations using lysis buffer (4 mM HEPES, 
320 mM sucrose, pH 7.4) containing a phosphatase inhibitor 
(Pierce, PI88667) and protease inhibitor cocktail (Pierce, 
PIA32965) as previously done [10,133,134]. Briefly, 300 ul of 
PNS was combined with 300 ul 62% sucrose and layered onto 
a sucrose gradient (35% and 8% sucrose) and centrifuged at 
50,000 g for 90 min. The VF (35/8 layer), SF, and P1 were 
removed and used in western blot analysis. 100 ul of lysis 
buffer was used to dissolve P1.

Co-immunoprecipitation analysis
1000 ug of total protein from the mouse VF or the iNeuron 
VF were incubated with a mouse monoclonal antibody to 
RAB7 (1:1000, SCBT, sc -13,156) or a mouse monoclonal 
antibody to HTT (1:500, EMD Millipore, MAB2166) over-
night at 4°C. Protein homogenates were then incubated with 
protein A/G magnetic beads (Pierce, PI88802) with rotation 
for 90 min and eluted with elution buffer (0.1 M glycine, pH 
2.0). Eluents were then analyzed by western blot analysis as 
detailed below. Alternatively, Co-IP was performed on protein 
homogenates using the crosslinking co-immunoprecipitation 
kit (Pierce, 26,147) with 0.25 mM DSS (Pierce, 21,655) for 30  
min before incubating antibody-bound magnetic beads 
with VFs.

SDS-PAGE and western blot analysis
Fly brains, mouse brains, or human iNeuron fractions were 
separated by SDS-PAGE. Samples were denatured in NuPage 
LDS sample buffer (Invitrogen, NP008) with 4 mM β- 
mercaptoethanol (Sigma-Aldrich, M6250) and run on 4–12% 
Bis-Tris gels (Invitrogen, NP0322BOX) which were then 
transferred to nitrocellulose membranes (Cytiva, 10,119– 
996). Blots were blocked using TBST (tris buffered saline 
[TBS; 150 mM NaCl and 20 mM Tris-base, pH = 7.5] supple-
mented with 0.1% Tween-20 [Pierce, 28,352]) with 5% BSA 
(Lampire, 50-413-345) for 60 min at 25°C and incubated with 
primary antibodies: SYT1 (1:1000; Phosphosolutions, 1975- 
STG), ref(2)P (1:500; gift from Gábor Juhász, Eötvös Loránd 
University & Eötvös Loránd Research Network), RAB7 
(1:1000; SCBT, sc -13,156), Rab7 (1:100; DSHB, Rab7), 
Syx17 (1:500; gift from Gábor Juhász, Eötvös Loránd 
University & Eötvös Loránd Research Network), ATG5 
(1:1000; Sigma-Aldrich, A0856), Lamp1 (1:1000; Abcam, 
ab30687), RTN1 (1:1000; SCBT, sc -23,880), SYP (1:1000, 
Thermofisher Scientific, MAB5258), Cyt-c-p (1:1000; SCBT, 
sc -13,156), HIP1 (1:1000, Novus biological, NB300–203), 
DCTN1 (1:500; Abcam, ab96004), KIF5C (1:500; gift from 
Lawrence Goldstein, University of California, San Diego), 
DYNC1I1 (1:1000, Abcam, ab23905), ACTA1/Actin (1:1000; 
ThermoFisher Scientific, MA5– 32,479), TUBA4A (1:2000, 
Abcam, ab7291), MAPK8/JNK (1:1000, Cell Signaling 
Technology, 9252), BDNF #1 (1:250; DSHB, BDNF-#1), 
BDNF #9 (1:250; DSHB, BDNF-#9), HTT rabbit polyclonal 
(1:1000, Abcam, ab45169), and HTT mouse monoclonal 
(1:1000; EMD Millipore, MAB2166) for 16 h at 4°C. Blots
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were then incubated with appropriate secondary HRP- 
conjugated anti-mouse (1:1000; ThermoFisher Scientific, 
32,430) or anti-rabbit (1:1000; ThermoFisher Scientific, 
32,460) secondary antibodies and imaged using a ChemiDoc 
MP imaging system (Bio-Rad Laboratories, Hercules, CA, 
USA) with ECL (Pierce, PI32106) or diluted West Femto 
(1:5 in TBS [detailed above]; Pierce, 34,095). Images from 3 
blots were quantified using ImageJ.

Statistical analysis
The statistical analysis used for each experiment is indicated 
in each figure legend. First power and sample size (n) calcula-
tions were performed on Minitab18 for each experimental 
paradigm: comparing 2 means from 2 samples, with two- 
sided equality to identify the sample size that corresponds to 
a power of 0.9 with α = 0.01.For each experiment, a stringent 
significance threshold of p < 0.01 (99% confidence) was used 
as detailed in [9]. Based on the power analysis, quantifications 
were performed across 5, 6, or 10 larvae. The n-value refers to 
the number of larvae or the number of immunoblots from 3 
independent experiments. Individual data points for each 
analysis were averaged for each n and compared.

To select the appropriate statistical test, data distributions 
for each transport dynamic analyzed were first checked for 
normality using the nortest package of R: the Lilliefors test 
and Anderson – Darling test as previously detailed [9,40,129]. 
Statistical significance of normal distributions was calculated 
by one-way ANOVA/post-hoc analysis to reduce Type I error, 
followed by two-sample two-tailed Student’s t-tests to test to 
compare individual groups in Excel and Minitab18. Statistical 
analysis reported in figures report results from Student’s 
t-tests, as results from ANOVA/post-hoc and Student’s 
t-tests were consistent. Statistical significance of normal dis-
tributions was calculated by a two-sample two-tailed Student’s 
t-test and/or ANOVA while the non-normal segmental velo-
city distributions were compared using the non-parametric 
Wilcoxon – Mann–Whitney rank sum test in Excel and 
Minitab18. Unless otherwise specified, the data compared 
was found to be normally distributed. For in vivo motility 
quantifications, each larva (total of 4 movies, > 500 vesicles) 
were pooled, then the averaged before performing statistical 
analysis. Therefore, statistical analysis was performed on glo-
bal quantifications from each larva rather than individual 
vesicle dynamics (n = 10 larvae, 4 movies per larvae). 
Overlaid dot plots were constructed for all figures using 
OriginLab/OriginPro to represent mean±SEM and biological 
models were generated in BioRender.
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