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Abstract

Genome-wide association studies (GWAS) have mapped over 90% of disease- or trait-associated 

variants within the non-coding genome, like cis-regulatory elements (CREs). Non-coding single 

nucleotide polymorphisms (SNPs) are genomic variants that can change how DNA-binding 

regulatory proteins, like transcription factors (TFs), interact with the genome and regulate gene 

expression. NKX2-5 is a TF essential for proper heart development, and mutations affecting its 

function have been associated with congenital heart diseases (CHDs). However, establishing a 

causal mechanism between non-coding genomic variants and human disease remains challenging. 

To address this challenge, we identified 8,475 SNPs predicted to alter NKX2-5 DNA-binding 

using a position weight matrix (PWM)-based predictive model. Five variants were prioritized for 

in vitro validation; four of them are associated with traits and diseases that impact cardiovascular 

health. The impact of these variants on NKX2-5 binding was evaluated with electrophoretic 

mobility shift assay (EMSA) using purified recombinant NKX2-5 homeodomain. Binding curves 

were constructed to determine changes in binding between variant and reference alleles. Variants 

rs7350789, rs7719885, rs747334, and rs3892630 increased binding affinity, whereas rs61216514 

decreased binding by NKX2-5 when compared to the reference genome. Our findings suggest that 

differential TF-DNA binding affinity can be key in establishing a causal mechanism of pathogenic 

variants.
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2. Introduction

Genome-wide association studies (GWAS) have revealed that over 90% of disease/trait-

associated variants occur within the non-coding genome.1–5 Non-coding DNA comprises 

98% of the human genome and includes regions like cis-regulatory elements (CREs), 

such as promoters and enhancers, that are essential for regulating gene expression.6–11 

Non-coding single nucleotide polymorphisms (SNPs) within CREs can alter the function of 

regulatory DNA-binding proteins, like transcription factors (TFs).12–14 TFs bind to specific 

DNA sequences within CREs and recruit chromatin remodelers and the transcriptional 

machinery to regulate gene expression.15–19 Non-coding SNPs can alter the binding affinity 

between a TF and its binding site, potentially leading to dysregulation of gene expression 

and crucial biological processes.20,21

NKX2-5 is a conserved homeodomain-containing TF from the NK-2 family that regulates 

heart development.22–28 NKX2-5 binds to its cognate site (5’- TTAAGTG -3’) to regulate 

cardiac genes needed for cardiomyocyte differentiation and cardiac morphogenesis, like 

the atrial natriuretic factor (ANF).29–33 Previous work has proven mutations within the 

NKX2-5 DNA-binding domain (DBD), a homeodomain, can alter its regulatory function, 

leading to cardiovascular diseases like congenital heart diseases (CHDs).34–37 However, 

most variants associated with cardiovascular disease are non-coding and occur in CREs 

that can function as cardiac TF binding sites (TFBS).38–42 Non-coding SNPs can affect 

TF-DNA binding affinity resulting in the loss of TFBS or the creation of a new TFBS in 

the genome40,43,44. Previous work has shown that coronary artery disease (CAD)-associated 

SNPs have disrupted the binding of tissue-specific TFs like STAT1, MEF2, and KLF2.45–47

In this work, we evaluated the potential of disease-associated variants to alter the 

binding affinity of the cardiac TF NKX2-5 homeodomain. Using SNP2TFBS48, a position 

weight matrix (PWM)-based predictive model, we identified five variants associated with 

cardiovascular-related traits predicted to impact NKX2-5 binding. Through electrophoretic 

mobility shift assays (EMSA), we observed differential NKX2-5 binding activity between 

the reference and alternate genomic sequences. Binding curves were constructed to derive 

apparent dissociation constants (Kd
app) and determine changes in NKX2-5 binding. We found 

that three out of five predictions were consistent with in vitro observations, whereas the 

other two variants in vitro experiments contradicted the in silico prediction. Our results show 
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that non-coding cardiovascular trait-associated SNPs change NKX2-5 DNA binding affinity. 

This suggests that disruption or creation of TFBS throughout the genome can be a plausible 

causal mechanism behind cardiovascular diseases like CADs and CHDs.

3. Materials and Methods

3.1 Identification of Non-coding Variants

Non-coding SNPs predicted to alter NKX2-5-DNA binding affinity were identified using 

SNP2TFBS, a position weight matrix (PWM)-based predictive model.48 SNP2TFBS uses 

variants from the 1000 Genomes Project49 to create an alternate allele genome. It then 

uses PWM models from the JASPAR Core 2014 vertebrates50 to perform whole genome 

scanning and extract overlapping SNPs that create, disrupt, or change TFBS scores. Using 

SNP2TFBS, we used an NKX2-5 PWM (MA0063.2) to score variants predicted to alter 

NKX2-5 binding that and intersected with SNPs in the GWAS catalog3. Filtered variants 

were scored using the SNP2TFBS, and the top five variants with the largest predicted change 

in binding were selected for in vitro validation.

3.2 NKX2-5 cloning and expression

The NKX2-5 homeodomain (HD) gene (Asp16 to Leu96) on the pDONR221 vector 

(DNASU plasmid repository, HsCD00039790) was cloned in pET-51(+) expression vector 

(Millipore Sigma) containing an N-terminal Strep•Tag II® and a C-terminal 10x His•Tag® 

through Gibson Cloning and used to transform BL21 DE3 E. coli strain (Millipore Sigma). 

Glycerol stock of transformed bacteria was cultivated in 50 mL Luria Broth (Sigma-Aldrich) 

for 16 h at 37°C. Following this period, 10 mL of initial bacterial culture was transferred to 

500 mL of Terrific Broth (Sigma-Aldrich) in a 2 L Erlenmeyer flask and grown at 37°C, 130 

rpm until the optical density at 600 nm (OD600) reached 0.5. Once the OD600 reached 0.5, 

the bacterial culture was induced with 1 mM IPTG for 20 h at 20°C and shaking at 130 rpm. 

The bacterial pellet was collected by centrifugation (2,800 × g, 5 min, 4 °C), the supernatant 

was discarded, and the pellet was stored at −80°C overnight.

3.3 Protein purification

NKX2-5 HD was purified from lysed bacterial cells through Ni-NTA affinity 

chromatography. Cell pellets were resuspended in 40 mL column buffer (500 mM NaCl, 

20 mM Tris-HCl pH 8.0, 0.2% Tween-20, 30 mM imidazole, and EDTA-free protease 

inhibitor). In addition, 4 mL 5 M NaCl was added to resuspended cells and sonicated in four 

30-second cycles at 40% amplitude (QSONICA, Part No. Q125). The column was prepared 

with 2 mL Ni-NTA Agarose Resin (Qiagen) and equilibrated with 10 column volumes of 

column buffer. The lysate was centrifuged (2,800 × g, 30 min, 4°C), and the supernatant 

was loaded into the Ni-NTA affinity chromatography column. Column resin resuspended 

with the supernatant cell extract for 1 h at 4°C with orbital shaking. The supernatant was 

passed through the column three times. The column was washed with 20 mL of column 

buffer thrice, with increasing imidazole concentration (30, 50, and 100 mM) in each wash. 

The protein was eluted with 1.8 mL of elution buffer (500 mM NaCl, 20 mM Tris-HCl pH 

8.0, 0.2% Tween-20, 500 mM imidazole) six times.
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NKX2-5 HD purity was evaluated with SDS-PAGE using 15 well Mini-PROTEAN TGX 

Precast Protein Gels® (Bio-Rad). Samples were prepared with 4X loading buffer containing 

β-mercaptoethanol (BME) for a total volume of 20 μL (5μL 4x loading buffer: 15 μL 

sample) and heated at 95°C for 5 min. 15 μL were loaded onto the gel for a 1.5 h run at 100 

V at room temperature. The gel was stained using ProtoStain™ Blue Colloidal Coomassie 

G-250 stain (National Diagnostics).

For the Western Blot analysis, contents from the SDS-PAGE gel were transferred to a PVDF 

membrane using the Bio-Rad Turbo Transfer System protocol in a Trans-Blot® Turbo™ for 

3 min at 25 V. Membranes were blocked using 5% milk in 1X TBST buffer for 1 h in orbital 

shaking and incubated overnight with 1:10,000 dilution of Anti-His mouse monoclonal 

antibody (Novus Biologicals, AD1.1.10). The SDS-PAGE and Western Blot Analysis results 

were imaged using Azure Sapphire Biomolecular Imager (Azure Biosystems).

3.4 Electrophoretic Mobility Shift Assay

NKX2-5 HD binding was evaluated using 40 bp sequences centered on the SNP and 

an additional 20 bp sequence for IRDye® 700 fluorophore conjugation(Integrated DNA 

Technologies). All sequences were ordered in IDT and are available in Supplementary 

Table 2. Reference and alternate oligonucleotides were labeled with the IR-700 fluorophore 

through a primer extension reaction. Binding reactions were performed in binding buffer 

(50 mM NaCl, 10 mM Tris-HCl (pH 8.0), and 10% glycerol) and 5 nM fluorescently 

labeled dsDNA. Binding reactions were incubated for 30 min at 30°C, then 30 min at room 

temperature before. The 6% polyacrylamide gel in 0.5x TBE (89 mM Tris, 89 mM boric 

acid, 2 mM EDTA, pH 8.4) was pre-runned at 85 V for 15 min, loaded at 30 V, and resolved 

at 75 V for 1.5 h at 4°C. Gels were imaged with Azure® Sapphire Bio-molecular Imager at 

658 nm/710 nm excitation and emission.

3.5 Binding Affinity

Apparent Kd was determined by first quantifying the fluorescence signal in each DNA 

band using ImageJ.51 Background intensities obtained from blank regions of the gel were 

subtracted from the band intensities. The fraction of bound DNA was determined using 

Equation 1. The fraction of bound DNA was plotted versus the concentration of the NKX2-5 

homeodomain. Binding curves, Kd
app, and Bmax were obtained by “one-site specific binding” 

non-linear regression using Prism software. Equation 1.

Binding Affinity from the integrated density of bound and unbound bands.

Fractionbound = bound
(bound + unbound)

4. Results and Discussion

4.1 Identification of Non-Coding Disease-Associated SNPs

Using SNP2TFBS, a PWM-based predictive model, we identified 8,475 SNPs predicted to 

change NKX2-5 binding out of the >84 million SNPs cataloged from the 1000 Genomes 

project (Supplementary File 1).49 The genomic coordinates of the predicted variants were 
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intersected with disease or quantitative trait-associated SNPs from the GWAS catalog, 

resulting in 30 variants (Figure 1, Supplementary File 2). The output of the SNP2TFBS 

includes a ΔPWM score that predicts if the TF-DNA binding will increase or decrease based 

on a positive or negative score, respectively. ΔPWM scores were sorted by magnitude, and 

the five variants with the largest predicted impact on NKX2-5 DNA binding were chosen 

for in vitro validation, including two variants with a predicted increase in binding and three 

variants with decreased binding (Table 1). The selected SNPs are associated with traits and 

diseases that impact cardiovascular phenotypes (e.g., hemoglobin and cholesterol levels, red 

blood cell traits, and systolic blood pressure).

4.2 Expression and Purification of NKX2-5 Homeodomain

Recombinant NKX2-5 homeodomain with an N-terminal Strep•Tag® and a C-terminal 

10x His•Tag® was cloned in an expression vector and produced using an IPTG-inducible 

bacterial system. After overexpression of NKX2-5 homeodomain, bacteria were lysed and 

centrifuged to obtain soluble fractions and purified using Ni-NTA affinity chromatography 

and eluted with an imidazole gradient. The NKX2-5 homeodomain was successfully purified 

as determined by SDS-PAGE and Western Blot (Figure 2A; Supplementary Figure 1). 

The DNA-binding activity of the purified NKX2-5 homeodomain was determined through 

EMSA using a known binding site within the ANF promoter (Figure 2B–C; Supplementary 

Figure 2).

4.3 Non-coding mutations alter NKX2-5 binding

We tested the five variants with the largest predicted change in binding using 40 bp genomic 

sequences centered at the SNP. Oligonucleotides were synthesized with an additional 20 

bp constant region that served to add the IR700 fluorophore via primer extension. Changes 

in DNA binding affinity between the reference and the alternate allele were determined 

through EMSA. Purified NKX2-5 homeodomain was equilibrated with reference and variant 

sequences at seven different protein concentrations. Differential TF-DNA binding was 

observed for the five predicted variants (Supplementary Figure 3). The impact of the five 

variants on binding affinity was quantified by generating binding curves and calculating the 

Kd
app values (Figure 3). Three out of the five tested variants agreed with our computational 

prediction (Supplementary Table 1). Variants rs7350789 and rs3892630 were precited 

by SNP2TFBS to increase binding affinity and were successfully validated by EMSA. 

Changes in Kd
app for rs3892630 resulted in a 2.3-fold decrease, while rs7350789 could not 

be quantified due to low binding affinity in the reference sequence. SNP2TFBS predicted 

variant rs61216514 to decrease in binding affinity and was successfully validated by EMSA, 

resulting in a 1.3-fold change increase of its Kd
app However, the two variants that did not 

follow the prediction (rs7719885 and rs747334) still demonstrated differential DNA binding. 

SNP2TFBS predicted variants rs7719885 and rs747334 would decrease binding affinity. 

Both increased, resulting in a Kd
app 1.3- and 1.8-fold change decrease, respectively. The 

predictions were made using a PWM model generated from chromatin immunoprecipitation 

sequencing (ChIP-seq) data which has cellular factors (e.g., other TFs or co-factors) not 

present in our in vitro biochemical assay like an EMSA. Additional DNA-binding specificity 

models generated by in vitro experiments or alternate computational approaches will be 
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tested in the future. However, all five variants significantly altered NKX2-5 DNA binding 

affinities as determined by changes in their Kd
app values.

5. Conclusion

We conclude that non-coding GWAS variants can alter NKX2-5 affinity for its genomic 

binding sites. Non-coding SNPs associated with cardiovascular traits altered the NKX2-5-

DNA complex formation, which is essential for proper heart development. Changes in 

the biophysical properties of gene regulation, like TF-DNA binding, are key factors 

to consider when determining the causal mechanism of genetic variants behind human 

diseases. Pathogenic SNPs within the NKX2-5 binding sites are potential regulatory targets 

for healthy cardiovascular development and function. Future work should address some of 

the limitations of in vitro biochemical assays, which do not consider cellular factors such as 

chromatin accessibility, TF cellular localization, and TF binding partners that are present in 

vivo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Identified 30 disease-associated non-coding SNPs impacting NKX2-5 DNA-

binding

• Human NKX2-5 homeodomain was successfully cloned, expressed, and 

purified

• In silico NKX2-5 binding predictions of GWAS SNPs were evaluated through 

EMSA

• Four cardiovascular GWAS SNPs showed differential NKX2-5 binding 

affinity
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Figure 1: 
Identification of disease/trait-associated non-coding SNPs affecting NKX2-5 binding. 

Predicted SNPs from the 1000 Genomes Project were intersected with disease-associated 

variants from the GWAS catalog.
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Figure 2: 
Expression and purification of functional NKX2-5 homeodomain. A) SDS-PAGE (left) 

and Western blot (right) of purified NKX2-5 homeodomain after Ni-NTA affinity 

chromatography. B) Electrophoretic mobility shift assay (EMSA) of known binding site 

within the ANF promoter. C) Binding curve analysis of NKX2-5 homeodomain. Data points 

represent the average value of triplicate measurements and error bars the standard error.
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Figure 3: 
NKX2-5 binding to reference (ref) and variant (alt) sequences determined through EMSA. 

(top left) Representative EMSA gel used for binding curve analysis for rs6121514. Binding 

experiments were performed in triplicates. Binding curves show average X (bound fraction) 

and error bars are standard error. Parameters of the non-linear regressions are reported in 

Supplementary Table 1.
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Table 1:

Non-coding SNPs prioritized for in vitro validation.

rsID Mutation ΔPWM Score Predicted Binding 
Impact Associated Disease or Trait

rs7350789 G → A 258 Increase
Serum metabolite levels, High density lipoprotein cholesterol 

levels, Postprandial triglyceride response, Total cholesterol levels, 
Phosphatidylethanolamine levels

rs61216514 G → A −232 Decrease Mean corpuscular hemoglobin

rs7719885 A → G −212 Decrease Systolic blood pressure

rs747334 A → G −187 Decrease Fibroblast growth factor basic levels

rs3892630 C → T 146 Increase Red blood cell traits
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