Table 2.
Features and coefficients determined by the model using the multivariate adaptive regression splines (MARS) algorithm.
| No. | Feature | Coefficient |
|---|---|---|
| 1 | (Intercept) | 1.09 |
| 2 | h(Cell_Size-2) | -0.32 |
| 3 | h(2-Cell_Size) | -0.75 |
| 4 | h(Cell_Size-3) | 0.33 |
| 5 | h(Bare_Nuclei-2) | -0.37 |
| 6 | h(Bare_Nuclei-3) | 0.42 |
| 7 | h(Thickness-5)×h(Cell_Size-2) | 0.01 |
| 8 | h(5-Thickness)×h(Cell_Size-2) | 0.02 |
| 9 | h(Cell_Size-3)×h(2-Bare_Nuclei) | 0.99 |
| 10 | h(3-Cell_Size)×h(2-Bare_Nuclei) | -0.17 |
| 11 | h(Cell_Size-2)×h(2-Bare_Nuclei) | -0.83 |
| 12 | h(2-Epithelial_Size)×h(Bare_Nuclei-2) | 0.21 |
h(Variable – Constant) are hinge functions representing knots the multivariate adaptive regression splines model identified to better fit the data. The results of the functions are the maximum of 0 and the difference between the variable and constant values. For instance, suppose Cell_Size is 3, then h(Cell_Size-2)=Max(0, 3-2)=1.