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Abstract

Silicosis is an irreversible and progressive fibrotic lung disease caused by massive

inhalation of crystalline silica dust at workplaces, affecting millions of industrial

workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a

potential silicosis treatment due to its inhibitory effects on key signaling pathways

that promote silica-induced pulmonary fibrosis. However, chronic and frequent use

of the oral NTB formulation clinically approved for treating other fibrotic lung dis-

eases often results in significant side effects. To this end, we engineered a

nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific

physicochemical properties to enhance drug retention in the lung for localized

treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a

wet-milling procedure in presence of Pluronic F127 to endow the formulation with

nonadhesive surface coatings to minimize interactions with therapy-inactivating

delivery barriers in the lung. We found that NTB-NS, following intratracheal

administration, provided robust anti-fibrotic effects and mechanical lung function

recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB

dose given with a triple dosing frequency failed to do so. Importantly, several key

pathological phenotypes were fully normalized by NTB-NS without displaying notable

local or systemic adverse effects. Overall, NTB-NS may open a new avenue for

localized treatment of silicosis and potentially other fibrotic lung diseases.
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1 | INTRODUCTION

Silicosis is an occupational lung disease caused by continuous inhala-

tion of crystalline silica microparticles, which affects construction,

mining, and industry workers.1–3 It is estimated that more than 2 mil-

lion U.S. workers are under continuous exposure to silica at work-

places.3,4 Silica microparticles, upon deposition in the alveolar sacs,

induce pro-inflammatory response, progressive fibrosis, and irrevers-

ible granuloma formation in the lung parenchyma, thereby gradually

compromising the pulmonary function.1,5 As a result, this devastating

disease presents high incapacitation rates3 while there is no cure

other than lung transplantation, a procedure with limited availability

due to lack of suitable donor organs.1,6

The oral formulation of a tyrosine kinase inhibitor, nintedanib

(NTB; OFEV®), is clinically used for treating other fibrotic lung dis-

eases, including idiopathic pulmonary fibrosis (IPF) and chronic inter-

stitial lung disease, to mitigate lung function decline and the risk of

pulmonary exacerbation.7 NTB is also under a phase II clinical trial to

evaluate its therapeutic benefits in patients with occupational pneu-

moconiosis (NCT0461014). NTB acts by blocking the fibroblast

growth factor receptor-1 and the platelet-derived growth factor

receptor, thus disrupting downstream signaling cascades that promote

proliferation of fibroblasts/myofibroblasts and collagen deposition.7–9

In addition, NTB inhibits Src pathway in silica-activated macrophages

in vitro9 and in lung fibrosis in vivo10 and, in turn, thwarts the expres-

sion of fibrogenic mediators, such as transforming growth factor

(TGF)-β.10 To this end, NTB may pose a potential therapeutic option

for treating patients with silicosis and/or provide a bridge to future

lung transplant.

However, it is important to note that a significant fraction, or

even a majority, of orally administered drugs are lost by the first pass

effect and the drug amount absorbed into the systemic circulation is

shared by different organs.11,12 It has been demonstrated that only

one-thousandth of orally administered NTB is found in mouse lungs.13

Furthermore, a more recent pharmacokinetic study revealed that only

a small fraction of the orally administered yet lung-partitioned NTB

reached epithelial airway surface, the therapeutically relevant com-

partment within the silicotic lungs.12 Thus, a very large and frequent

oral NTB dosage is likely required to achieve an effective therapeutic

window in the lung, leading to systemic safety concerns and economic

burden. Indeed, oral NTB treatment is often associated with gastroin-

testinal adverse events, which results in discontinuation of its uses

among IPF patients.7,14,15

We thus sought to develop a NTB formulation that could be

administered locally via inhalation to provide a clinically relevant drug

concentration in the lung, while minimizing the dose and systemic

drug exposure, as well as potential adverse events.11,12 Specifically,

we engineered a nanocrystal-based nanosuspension (NS) formulation

of NTB (NTB-NS), surface-stabilized with adsorptive nonadhesive

polymer coatings, and evaluated its therapeutic efficacy in a mouse

model of silicosis, following direct administration into the lungs via

intratracheal instillation.

2 | RESULTS AND DISCUSSION

2.1 | Formulation and characterization of NTB-NS

NTB in a free-base form presents low aqueous solubility, which

reduces its bioavailability in the physiological lung environment.11

Thus, we sought to develop a formulation that could be stably dis-

persed in aqueous solutions to be directly administered into the lung.

Specifically, we engineered a nanocrystal-based NS formulation of

NTB (i.e., NTB-NS) by varying the variables to yield particles with non-

adhesive surface coatings and nanoscale dimensions to potentially

minimize mucus entrapment and macrophage uptake, following

inhaled administration.16–21 The ability to do so increases the thera-

peutically available drug concentration in the lung.22–24 We tested

concentration ranges of poloxamer 407 (i.e., Pluronic F127) and NTB

(Figure S1A-B), where F127 endows the formulation with nonadhe-

sive surface coating via physical adsorption,25,26 and determined a for-

mulation prepared at 1% F127 and 45 mg/mL NTB to be our lead

formulation. The NTB-NS exhibited polygonal structure (Figure S1C)

and hydrodynamic diameters of 333.3 ± 9.5 nm with polydispersity

indices of 0.21 ± 0.02 (Table 1, Figure 1a). We also found that approx-

imately 90% of the initial NTB amount was loaded into the final NS

formulation (Table 1, Figure 1a), which was markedly greater than

encapsulation efficiencies of NTB enabled by other commonly used

delivery platforms, such as liposomes (34%) and polymeric nanoparti-

cles (5%).27

We then confirmed via transmission electron microscopy that the

size and morphology of NTB-NS were retained after being aerosolized

via a vibrating mesh nebulizer (Figure 1b), a clinically used inhalation

device. X-ray diffraction analysis revealed that NTB-NS existed as

crystalline solids with refraction angles (2θ scale) of 6.22�, 8.88�,

TABLE 1 Physicochemical characterization of NTB-NS

Hydrodynamic
diameter
(Z-Ave) [nm]

Polydispersity
index

ζ-potential
[mV]

Encapsulation
efficiency [%]

333.3 ± 9.5 0.21 ± 0.02 8.1 ± 0.5 89.5 ± 2.2

Note: Data represents mean ± SD (n = 3 independent samples).

Abbreviation: NTB-NS, nanosuspension formulation of nintedanib.
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12.04�, 17.42�, 20�, and 23.16� (Figure 1c). Unlike in water, hydrody-

namic diameters of NTB-NS slightly increased immediately upon incu-

bation in bronchoalveolar lavage fluid (BALF) at 37�C but the particle

size remained unchanged at least up to 12 hours (Figure 1d), under-

scoring excellent colloidal stability in a physiologically relevant lung

environment. Of note, NTB-NS was prepared using aseptic technique,

autoclaved utensils, and sterile-filtered solutions inside a laminar flow

hood to avoid bacterial contamination, etc., and the sterility was con-

firmed by the absence of microbial colonies following a 1-week inocu-

lation on tryptic soy agar plates (Figure S1D). For long-term storage as

a powder form, NTB-NS was lyophilized in presence or absence of a

disaccharide-based lyoprotectant, and subsequently, the lyophilized

NTB-NS was rehydrated for physicochemical characterization. We

found that lyophilization in 3% sucrose did not perturb the particle

size whereas significant aggregation was observed when NTB-NS was

lyophilized in 3% trehalose or without any lyoprotectant (Figure S2).

2.2 | In vivo safety of locally administered NTB-NS
in the lungs of healthy animals

To evaluate preclinical safety, we dosed healthy C57BL/6 mice

with NTB-NS via intratracheal instillation28 to ensure reliable

dose-response assessment, since a fraction of nebulized drugs is

deposited in the oropharynx during the transit to the deeper

lung.29 We selected NTB-NS doses to be tested by benchmarking

prior studies demonstrating that oral administration of 100 mg/kg

NTB rendered approximately 2.5 μg of the drug available in mouse

lungs,13,30 which roughly correspond to a local dose of 0.1 mg/kg

NTB. We thus treated animals in different groups at three incre-

menting doses of 0.01 (i.e., 10-fold lower), 0.1, and 1 (i.e., 10-fold

higher) mg/kg. Control mice were identically treated with

the vehicle used for NTB-NS preparation and administration (i.e.,

ultrapure water).

We first confirmed that body temperature (Figure S3A) and

weight (Figure S3B) were unchanged 24 hours after the administra-

tion regardless of the NTB-NS dose, suggesting that there was no sig-

nificant acute systemic toxicity. We then harvested BALF from

individual animals to analyze cellularity for local safety assessment.

The differences in the total number of leukocytes and percentage of

neutrophils (Figure 2a) were not significant between animals that

received vehicle (i.e., ultrapure water) and those that received differ-

ent doses of NTB-NS. We also harvested lung tissues for histological

analysis and found that the percentage of neutrophils in the lung

parenchyma was not elevated by intratracheal NTB-NS instillation

(Figure 2b,c). This observation suggests that local administration of

NTB-NS does not elicit acute adverse events in the healthy mouse

lungs, presumably attributed to its preparation in an aseptic condition

and to the use of the materials generally regarded as safe only (i.e.,

F127) for preparing the formulation.31

F IGURE 1 Physicochemical properties of NTB-NS are preserved after nebulization or in a physiologically relevant lung environment.
(a) Hydrodynamic diameters of NTB-NS. (b) Representative transmission electron micrographs of NTB-NS before (left) and after (right)
aerosolization via a nebulizer. Scale bars = 500 nm. (c) X-ray diffraction crystallography of NTB-NS. (d) Colloidal stability of NTB-NS in water
(gray circles) and in mouse BALF (black squares). Data represents mean ± SD (n = 3 independent samples). NTB-NS, nanosuspension formulation
of nintedanib
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2.3 | In vivo therapeutic efficacy of locally
administered NTB-NS in the lungs of silicotic animals

We next investigated whether intratracheally administered NTB-NS

could attenuate the progression of silica-induced fibrosis in vivo.

Treatments were commenced 15 days after the induction of silicosis

by a single intratracheal instillation of silica at a dose of 800 mg/kg.

We have previously demonstrated that pulmonary fibrosis is estab-

lished at this time point and stably retained at least up to 30 days

post-instillation.28 Specifically, we treated silicotic animals with NTB-

NS via intratracheal administration at a dose of 0.1 or 1 mg/kg every

72 hours up to six overall doses, while animals in a separate group

received daily oral doses of NTB Esylate (NTB-Esy) at 100 mg/kg for

18 days (Figure S4). Of note, daily oral treatments with NTB at

100 mg/kg was previously shown to significantly reduce the fibrotic

score in the lungs of silicotic animals, but the model was established

with a markedly lower silica dose (2.5 mg/mouse)8 compared to our

study where individual animals were intratracheally instilled with an

8-fold greater silica dose (i.e., 20 mg/mouse).

After completing the treatment regimens, lung tissues were har-

vested for histopathological analysis where the fibrosis in the lung

parenchyma (i.e., alveolar septa) was evaluated as an initial efficacy

readout. We found that intratracheal NTB-NS given at 0.1 or 1 mg/kg

NTB dose, unlike 100 mg/kg oral NTB-Esy, significantly reduced the

area of collagen deposition compared to the untreated silicotic ani-

mals (silicosis-vehicle group) (P < 0.01 or P < 0.001, respectively)

(Figure 3a,b). Encouragingly, the higher NTB-NS dose (i.e., 1 mg/kg)

near-normalized the silica-induced collagen deposition in the alveolar

septa (Figure 3b). We next took a closer look at granuloma areas,

which are small inflammatory nodules widely observed in the lungs of

silicotic patients, particularly those with accelerated silicosis due to

very heavy silica exposure.1,32–36 Based on our blinded histological

analysis (Figure 3c), untreated animals and animals that received oral

NTB-Esy (100 mg/kg, daily) or low-dose intratracheal NTB-NS

(0.1 mg/kg, every 72 hours) similarly exhibited over 30% granuloma

area on average (Figure 3d), suggesting that these treatments were

unable to alleviate the granuloma burden. In contrast, the area occu-

pied by granuloma was markedly reduced (�10% on average) in the

lungs of animals that received higher intratracheal doses (i.e., 1 mg/kg)

of NTB-NS, resulting in statistically significant differences in compari-

son to both the untreated (P < 0.001) and the oral dosage (P < 0.05)

groups (Figure 3d). We also found that intratracheal NTB-NS given at

1 mg/kg roughly halved the collagen fiber deposition within the gran-

uloma on average in comparison to other groups (Figure 3e). The

F IGURE 2 Intratracheally administered NTB-NS does not induce undesired pro-inflammatory response in the lungs of healthy mice. (a) Total
leukocyte counts and percentage of neutrophils in BALF. (b) Percentage of neutrophils in lung parenchyma. Bars represent mean ± SD (n = 4
mice per group). The differences are not statistically significant as indicated (ns; one-way ANOVA followed by a Tukey post hoc test).
(c) Representative histological images of lung parenchyma. Scale bars = 200 μm. NTB-NS, nanosuspension formulation of nintedanib
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differences were statistically significant compared to all other groups,

including untreated animals (P < 0.001) and animals treated with

either oral NTB-Esy (P < 0.001) or low-dose intratracheal NTB-NS

(0.1 mg/kg) (P < 0.01) (Figure 3e).

To further evaluate the anti-fibrotic effect of locally administered

NTB-NS, we quantified the level of a key pro-fibrotic mediator,

TGF-β1, in the whole lung homogenates. Upregulation of TGF-β1,

induced by phagocytic uptake of inhaled crystalline silica

microparticles, plays a critical role in the formation of silicotic granu-

loma5,9,34,37 and has been validated by post-mortem examinations of

lung tissues from individuals with silicosis.34 We excluded 0.1 mg/kg

intratracheal NTB-NS dose here given its limited anti-fibrotic effect

observed in the earlier study (Figure 3). We found that intratracheal

NTB-NS administered at 1 mg/kg every third day, but not the daily

oral doses of NTB-Esy at 100 mg/kg, significantly reduced the mRNA

transcript level of TGF-β1 in the lung tissues (P < 0.05, Figure 4).

Remarkably, the level was comparable to the homeostatic TGF-β1

transcript level observed in the lungs of healthy animals (Figure 4).

The finding here agrees with the previous in vitro observations with

primary human fibroblast that NTB intervenes with TGF-β signaling

and/or with associated pro-fibrotic events, including myofibroblast

differentiation and collagen deposition.8,38,39

F IGURE 3 Intratracheally
administered NTB-NS provides
significant anti-fibrotic effect in
the lungs of silicotic mice.
Silicotic mice received either
daily oral dose of NTB-Esy
(100 mg/kg) or intratracheal
NTB-NS at two different NTB
doses of 0.1 or 1 mg/kg every

72 hours. (a) Representative
histological images and
(b) quantification of collagen
deposition in alveolar septa of
the lung parenchyma (n = 6 mice
per group except 0.1 mg/kg
NTB-NS group). Scale
bars = 100 μm.
(c) Representative histological
images of lung parenchyma
demonstrating the therapeutic
effects of NTB on granuloma
area (top: Scale bars = 2 mm)
and on collagen deposition in
granuloma (bottom: Scale
bars = 200 μm). Lung slices were
stained with Masson's trichrome
to visualize collagen deposition
(blue). Quantification of
(d) fractional area occupied by
granulomas in the lung tissue and
of (e) collagen deposition in
granulomas (n = 6 mice per
group except 0.1 mg/kg NTB-NS
group). Bars represent mean
± SD. The differences are
statistically significant as
indicated (*P < 0.05, **P < 0.01,
***P < 0.001; one-way ANOVA
followed by a Tukey post hoc
test). NTB-Esy, nintedanib
esylate; NTB-NS,
nanosuspension formulation of
nintedanib
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We next went on to test our hypothesis that localized treatment

with NTB-NS would contribute to the normalization of the lung

mechanical property, particularly the static lung elastance, based on

our observation that NTB-NS effectively mitigated pulmonary fibrosis

in the silicotic lungs (Figures 3 and 4). Elastance is a measure of the

pressure required to inflate the lungs and is elevated by pulmonary

fibrosis that pathologically transforms the healthy elastic tissue to a

scar tissue, as observed in mouse models of silicosis.28,33,40–43 We

first confirmed that our silicosis model exhibited a significant eleva-

tion of static lung elastance compared to healthy control animals (con-

trol vs silicosis-vehicle, P < 0.01, Figure 5). We then found that

intratracheal NTB-NS (1 mg/kg, every third day), unlike oral NTB-Esy

(100 mg/kg, daily), significantly decreased the static lung elastance

(p < 0.05) to a level on par with the healthy control animals (Figure 5).

Likewise, it has been recently demonstrated that inhaled treatments

with NTB-Esy (2.1 mg/kg, daily), but not daily oral treatments at

30 mg/kg, significantly reduces lung elastance in a mouse model of

silica-induced pulmonary fibrosis.12 In contrast to our study, however,

the model used in this study did not manifest increased lung elastance

over the healthy control animals,12 likely indicating a mild or moderate

disease phenotype. The discrepancy is most likely attributed to a sub-

stantially lower silica dose (2.5 mg/kg) employed to establish their

model, compared to our silica dose (800 mg/kg) that has essentially

yielded severe silicosis with prevalent granuloma areas.28

The robust anti-fibrotic effects mediated by NTB-NS were

achieved despite more delayed treatment onset, the lower NTB

dose, and the reduced dosing frequency implemented in our study

compared to the above-mentioned inhalational NTB-Esy study.12

We first attribute this outcome to sustained drug release from

our NS formulation, presumably offsetting the ephemeral nature

of NTB in the lung epithelium12 to prolong the lung residence

time of the drug.44,45 Furthermore, nonadhesive surface F127

coating enhances lung retention of our formulation by minimizing

the adhesive interactions with airway mucus and lung-resident

macrophages16–20 that promote the clearance of inhaled foreign

matters from the lung as natural host defense mechanisms.11 Of

note, we have demonstrated that F127-coated model NS formula-

tions efficiently traverse human mucus samples harvested from

various mucosal surfaces31 and that covalent surface shielding of

nanoparticles with the hydrophilic segment of F127 (i.e., polyethyl-

ene glycol) markedly reduces particle phagocytosis by alveolar

macrophages.46

Albeit not primarily for inhaled use, there are more than 20 mar-

keted NS products as of 2020.45 On the other hand, aqueous drug

suspensions are widely used in clinic for the inhaled treatment of

F IGURE 4 Intratracheally administered NTB-NS significantly
reduces TGF-β1 expression in the lungs of silicotic mice. The TGF-β1
mRNA transcript levels in the lung tissues determined by RT-qPCR.
Bars represent mean ± SD (n = 6 mice per group). The difference is
statistically significant as indicated (*P < 0.05; one-way ANOVA
followed by a Tukey post hoc test). NTB-Esy, nintedanib esylate;
NTB-NS, nanosuspension formulation of nintedanib

F IGURE 5 Intratracheally administered NTB-NS restores
mechanical lung function of silicotic mice. Static lung elastance
(Est, L). Bars represent mean ± SD (n = 6 mice per group). The
differences are statistically significant as indicated (*P < 0.05,
**P < 0.01; one-way ANOVA followed by a Tukey post hoc test).
NTB-Esy, nintedanib esylate; NTB-NS, nanosuspension formulation of
nintedanib
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patients with numerous lung diseases, including asthma, chronic

obstructive pulmonary disease, and cystic fibrosis.47–50 Unlike dry

powder formulations, lung deposition of inhaled aqueous drug sus-

pensions is dictated by the aerodynamics of water droplets generated

by a nebulizer51 and thus fate after lung deposition is the primary con-

sideration for formulation design. To this end, we have focused on

enhancing the lung pharmacokinetics by endowing our formulation

with the ability to avoid natural clearance mechanisms inevitably

encountered following the settlement on lung lumen. Multiple reports

have demonstrated that nebulization provides markedly greater or

more uniform deposition in human lungs compared to dry powder

inhalation.52,53 We here show that NTB-NS can be aerosolized with

a vibrating mesh nebulizer without perturbing the physicochemical

properties that enable enhanced lung pharmacokinetics. Of note,

vibrating mesh nebulizers have been shown in clinical studies to

provide superior lung deposition or therapeutic outcomes compared

to jet nebulizers which have a longer history of clinical use.54–56

Importantly, NTB-NS can be lyophilized for long-term storage

and remote shipping. We thus expect the final product to be a

lyophilisate powder that patients can rehydrate with a co-packaged

medical-grade vehicle solution prior to self-administration via a

portable vibrating mesh nebulizer. The preclinical safety and

practical aspects established in this study as well as the relevance of

the formulation and drug delivery mode to the current clinical

practice collectively underscore the feasibility of implementing our

therapeutic approach in clinic.

3 | EXPERIMENTAL SECTION

3.1 | Preparation and characterization of NTB-NS

NTB in a free-base form (LC Laboratories; Woburn, USA) was

dispersed in an aqueous Pluronic F127 (Sigma-Aldrich, St. Louis,

USA) solution at varying NTB and F127 concentrations. This

dispersion was then transferred to a tube containing 1.5 g of

yttria-stabilized 0.5 mm zirconium oxide beads (Next Advance, Inc.;

Troy, USA), and wet bead-milling was performed using a TissueLy-

ser LT (Qiagen Inc., Germantown, MD), at a speed of 3000 oscilla-

tions/min for 10 hours. Wet milling was performed at 4�C to

dissipate heat. Subsequently, NTB-NS was washed with ultrapure

water to remove free NTB and/or F127. All preparation steps were

performed using aseptic technique.

Physicochemical properties of NTB-NS, including particle hydro-

dynamic diameter, polydispersity index (PDI), and surface charge (i.e.,

ζ-potential), were measured using a Zetasizer Nano ZS (Malvern Pana-

lytical; Malvern, United Kingdom) at 90� scattering angle.57 Of note,

hydrodynamic diameter/PDI and ζ-potential were measured in ultra-

pure water and 10 mM NaCl, respectively. The colloidal stability of

our formulation was confirmed by monitoring the change of the

hydrodynamic diameters of NTB-NS in ultrapure water or in BALF

every 20 minutes up to 6 hours at 37�C. To determine the impact of

aerosolization on our formulation, NTB-NS was diluted in saline at

0.02% (w/v) and aerosolized by a vibrating mesh nebulizer (Aerogen

Solo, Chicago, IL) controlled by an Analog Discovery 2 data acquisition

device (Digilent, Pullman, WA). Fresh or nebulized NTB-NS was

deposited onto electron microscope grid (EMS Sciences, Hatfield, PA),

and particle size and morphology before and after nebulization

were evaluated by transmission electron microscopy (Hitachi H7600,

Hitachi, Ltd; Tokyo, Japan).

Solid-state characterization was performed using a LabX

XRD-6100 X-ray diffractometer (Shimadzu Corp, Kyoto, Japan),

operated with 40 kV power and 30 mA current. X-ray powder diffrac-

tion patterns were determined from 3� to 45� on the two theta (2θ)

scale, at a step size of 20� per second. Encapsulation efficiency

was determined by LC-MS/MS. Briefly, NTB-NS was fully dissolved in

acetonitrile/methanol (2:1, v/v), transferred to autosampler vials and

run through the HPLC (Prominence-i LC-2030, Shimadzu), equipped

with a Phenomenex Luna, C18 (4.6 � 150 mm, 5 μm) column, at room

temperature. The water/acetonitrile/trifluoroacetic acid mobile phase

(35:65:0.1, v/v/v) was run at isocratic mode for a total of 10 minutes.

The column effluent was monitored using a mass-spectrometric

detector (Sciex triple quadrapole 5500 – Sciex, Vaughan, Canada) with

electrospray ionization operating in positive mode.

For the sterility assessment, NTB-NS or F127 solution was

applied onto the plate with tryptic soy agar growth medium (Fluka

Analytical, St Louis, MO), followed by a 1-week incubation at 37�C

and evaluation of colony formation. Ultrapure water and a suspension

of Pseudomonas aeruginosa 01 (ATCC27853, 5 � 107 CFU in 200 μL

saline) served as negative and positive controls, respectively. To

assess the effect of lyophilization-rehydration on the particle colloidal

stability, we lyophilized freshly prepared NTB-NS in presence or

absence of either sucrose or trehalose at a final concentration of 3%.

After a 48-hour freeze-drying process, NTB-NS was rehydrated in

ultrapure water and analyzed for physicochemical properties using a

Zetasizer Nano ZS (Malvern).

3.2 | Safety assessment of NTB-NS in healthy mice

3.2.1 | Animal treatment

This animal study was approved by the Animal Ethics Committee of

the Health Sciences Centre at the Federal University of Rio de Janeiro

(process no. 01200.001568/2013-87, protocol no. 157/19) and the

Johns Hopkins University Animal Use and Care Committee

(MO19M96). Male 10-week-old C57BL/6 mice were anesthetized

with sevoflurane, and a 1-cm-long midline incision was made to

expose the trachea. NTB-NS at varying doses or vehicle (i.e., ultrapure

water) was intratracheally instilled into the mouse lungs using a

30-gauge needle. The cervical incision was sutured, and mice

were returned to their cages. During a period of 24 hours after the

injection, we observed whether the animals presented significant body

temperature changes, weight loss, and other clinical signs of debilita-

tion, such as piloerection, curved posture, altered respiratory rate,

tearing, eyelid changes, dehydration, and reduced locomotor activity.
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3.2.2 | Evaluation of pro-inflammatory responses

The influx of inflammatory cells into the airway lumen and alveolar

space was quantified by counting cells recovered from BALF. Briefly,

BALF was obtained 24 hours after the administration by flushing the

airways 2 times with 1 mL of PBS and retrieving the fluid by gentle

aspiration. BALF was then centrifuged (239g, 10 minutes), and the cell

pellet was resuspended in PBS. Subsequently, the cell resuspension

was diluted by Türk solution, and total leukocyte population was

counted on a Neubauer chamber using an optical microscope. The dif-

ferential cell counting of polymorphonuclear neutrophils recovered

from the BALF was conducted by staining cells using a commercial kit

(Pan�otico Rápido LB, Pinhais, RS, Brazil), followed by calculating the

percentage of neutrophils per 100 cells.

After the BALF collection, lung tissues were harvested and fixed

with 4% paraformaldehyde in PBS. We then embedded the tissues in

paraffin blocks, cut as 4 μm-thick slices and stained with hematoxylin

and eosin. The percentage of neutrophils in alveolar septa was deter-

mined by the point-counting technique, across 10 randomly selected

and nonoverlapping microscopic fields.58 Histological analyses were

performed in a blinded manner.

3.3 | Therapeutic efficacy assessment of NTB-NS
in preclinical silicosis

3.3.1 | Animal treatment

Male 10-week-old C57BL/6 mice were randomized in a (healthy) con-

trol group and a silicosis group. To induce silicosis, silica microparticles

(0.5-10 μm in particle diameter, Sigma-Aldrich) were instilled intratra-

cheally (IT) at a dose of 800 mg/kg using a 30-gauge needle. Control

group animals received saline (Figure S3). Fifteen days after the silica

instillation, silicosis group animals were randomly redistributed in the

following four experimental groups: (1) Vehicle, daily oral doses of ultra-

pure water (serving as an untreated control); (2) NTB-Esyte, daily oral

doses of 100 mg/kg NTB (serving as a clinically-relevant control);

(3) NTB-NS 0.1, IT instillation every 72 hours at 0.1 mg/kg NTB;

(4) NTB-NS 1, IT instillation every 72 hours at 1 mg/kg NTB. Vehicle

and NTB-Esy (LC Laboratories) solution were prepared at 1% hydro-

xyethyl cellulose prior to administration. Treatments were performed

over a period of 18 days.

3.3.2 | Lung mechanics analysis

At the end of treatments, mice were sedated with diazepam (1 mg/kg,

intraperitoneal), anesthetized with thiopenthal sodium (20 mg/kg,

intraperitoneal), tracheotomized, paralyzed with vecuronium bromide

(0.005 mg/kg, intravenous), and ventilated with a constant flow venti-

lator (Samay VR 15, Montevideo, Uruguay) using the following param-

eters: frequency 100 breaths/min; tidal volume 0.2 mL; fraction of

inspired oxygen 0.21. The chest wall was surgically removed and a

positive end-expiratory pressure of 2 cm H2O was applied. During a

10-minute ventilation period, 10 respiratory cycles using the end-

inflation occlusion method were computed for evaluation of lung

static elastance (Est, L).59,60 Data were analyzed using ANADAT data

analysis software (RHT-InfoData Inc., Montreal Canada).

3.3.3 | Histological analysis

Left lung tissues were fixed with 4% paraformaldehyde and embedded

in paraffin blocks. We then cut the blocks as 4-μm thick slices and

stained with Masson's trichrome to quantify collagen fiber content.61

The fraction areas of collagen fiber in the alveolar septa and granuloma

were determined by digital densitometric recognition in ImageJ soft-

ware (Image-Pro Plus 5.1 for Windows, Media Cybernetics, Silver

Spring, MD).62 Airways and blood vessels were carefully avoided during

the measurements. Lung sections were also photographed in a micro-

scope (Leica M205 FA, Wetzlar, Germany) to quantify the fractional

area occupied by granulomas. Specifically, we captured three images of

lung sections at 150-μm intervals for each animal and subsequently ana-

lyzed using ImageJ to measure the areas of individual granulomas and

the total lung area. The granuloma fraction was calculated as follows:

Granuloma fraction %ð Þ¼
P

granulomas areað Þ
Lung area

�100:

3.3.4 | RT-PCR

Right lung tissues were lysed for RNA extraction using the ReliaPrep

RNA Miniprep System (Promega Corporation, Madison, WI) as per the

manufacturer's protocol. The total RNA concentration and purity was

measured by spectrophotometry using a Nanodrop ND-1000 system

(Thermo Fisher Scientific, Waltham, MA). Approximate A260/A230 and

A260/A280 ratios of two were considered ideal for RNA purity.63

First-strand cDNA was synthesized from 1 μg purified RNA using a high-

capacity cDNA reverse transcription kit (Thermo Fisher Scientific). The

relative levels of mRNA were measured by SYBR Green detection

(Promega) in a PCR Mastercycler Ep Realplex system (Eppendorf,

Hamburg, Germany). All samples were measured in triplicate. The rela-

tive TGF-β1 transcript level was calculated as the ratio of the levels of

the target gene (i.e., TGF-β1) over the control gene (ie, acidic ribosomal

phosphoprotein P0, 36B4). The primer sequences used in this study

were: forward CAACCCAGCTCTGGAGAAAC and reverse

GTTCTGAGCTGGCACAGTGA for 36B4; forward CTAATGGTG-

GACCGCAACAAC and reverse GACAGCCACTCAGGCGTATC for

TGF-β1.

3.4 | Statistical analysis

Sample size was based on our experience with models of

silicosis.42,43,64 The normality of the data was confirmed using the
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Shapiro-Wilk test and the ROUT test was performed to identify

outliers. One-way analysis of variance (ANOVA) followed by a Tukey

post hoc test was then conducted for statistical analysis, and statis-

tical significance was established at P < 0.05. All tests were carried

out in GraphPad Prism version 9.1.0 (GraphPad Software, San

Diego, CA).

4 | CONCLUSIONS

In the present work, we developed NTB-NS formulation for localized

silicosis treatment. Our formulation possesses characteristics to over-

come key extracellular biological delivery barriers, thereby potentially

enhancing pharmacokinetic profiles of the payloads in the lung. We

demonstrated that intratracheal NTB-NS provided remarkable anti-

fibrotic activity in a mouse model of silicosis without incurring local

and systemic safety concerns. Importantly, the pro-fibrotic effects

were attained in a therapeutic manner (i.e., treatments commenced

after the disease was fully established) with a sign of functional nor-

malization and at a 100- and a 3-fold lower dose and dosing fre-

quency, respectively, employed for the oral dosage group that served

as a clinically relevant control. To this end, our NTB-NS formulation

constitutes a potential as a novel therapeutic option for localized

treatment of silicosis and perhaps other fibrotic lung diseases.
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