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Abstract

Structural variations (SVs) are a key type of cancer genomic alterations, contributing to
oncogenesis and progression of many cancers, including colorectal cancer (CRC). How-
ever, SVs in CRC remain difficult to be reliably detected due to limited SV-detection capacity
of the commonly used short-read sequencing. This study investigated the somatic SVs in 21
pairs of CRC samples by Nanopore whole-genome long-read sequencing. 5200 novel
somatic SVs from 21 CRC patients (494 SVs/ patient) were identified. A 4.9-Mbp long inver-
sion that silences APC expression (confirmed by RNA-seq) and an 11.2-kbp inversion that
structurally alters CFTR were identified. Two novel gene fusions that might functionally
impact the oncogene RNF38 and the tumor-suppressor SMAD3 were detected. RNF38
fusion possesses metastasis-promoting ability confirmed by in vitro migration and invasion
assay, and in vivo metastasis experiments. This work highlighted the various applications of
long-read sequencing in cancer genome analysis, and shed new light on how somatic SVs
structurally alter critical genes in CRC. The investigation on somatic SVs via nanopore
sequencing revealed the potential of this genomic approach in facilitating precise diagnosis
and personalized treatment of CRC.

Author summary

Structural variants contribute to oncogenesis and progression of colorectal cancer, but
they remain difficult to be reliably detected. Aiming at obtaining a comprehensive picture
of somatic SVs in CRC, we perform long-read nanopore sequencing on CRC tumor sam-
ples and their matched para-carcinoma tissues. Our results show long-read sequencing
precisely and reliably detects 494 somatic SVs per sample, which are significantly more
than previously reported short-read sequencing based studies. We find large scale inver-
sions (>10 kbp) that are frequently difficult to be detected by short-read sequencing and
alter the expression or structure of key tumor suppressor genes (including APC and
CFTR). A novel gene fusion RNF38-RAD51B is also identified, and we find it functionally
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acts to enhance migration, invasion, and metastasis capabilities of colorectal cancer cells.
Although the molecular mechanisms and clinical relevance of the inversions and gene
fusions need to be further studied, our work presents a relatively complete SV landscape
of CRC, and providing a genetic basis for CRC’s personalized medicine.

Introduction

Colorectal cancer (CRC) is the third most common malignancy with over 1.8 million new
cases and 0.86 million deaths worldwide in 2018 [1]. The development and progression of
CRC are largely attributed to genetic alterations, such as structural variations (SVs), single
nucleotide variations (SN'Vs), and epigenetic changes. Among these genetic alterations, the
SVs that affect gene expression and function via gene amplification or deletion, gene structure
disruption, and gene fusion, are prevalent in CRC [2,3], and have been examined in several
studies by copy number variation (CNV) arrays and short-read sequencing [4-7]. These stud-
ies identified copy number alterations of oncogenes (including KRAS and MYC), deletions of
tumor suppressors (such as FHIT, PTEN, SMAD2 and SMAD4), and recurrent R-spondin
tusions [8,9]. However, CNV arrays are incapable of determining precise positions of most of
SVs, and short-reads sequencing is inefficient in detecting long, complex, or repetitive-region
located SVs [10-12]. Thus, precise and detailed detection of SVs in CRC still remains as a chal-
lenge [13,14].

Long-read sequencing technologies can generate long continuous reads (length over tens of
kilobase pairs (kbp)), possess increased reliability and sensitivity in SVs detection [15]. Pacific
Bioscience (as called single-molecule read-time (SMRT) sequencing or PacBio sequencing)
and Oxford Nanopore Technologies (ONT, or nanopore sequencing) are the two major strate-
gies of long-read sequencing [16]. Unlike short-read sequencing, PacBio and nanopore
sequencing generate reads directly from native DNA (without ultrasonic / enzymatic fragmen-
tation and PCR amplification), avoid the difficulty of detecting variants in genome regions
with repeat content or atypical GC content [17]. The advantages of long-read sequencing in
studying human diseases were highlighted in several studies. For instance, a pentanucleotide
repeat expansion in SAMDI2 that may cause familial cortical myoclonic tremor with epilepsy
was identified using nanopore sequencing [18]. This type of repetitive-region residing SVs
were difficult to be analyzed by short-read sequencers [18]. In addition to this, long read
sequencing identified the leukoencephalopathy-related GGC repeat expansions, X-linked Dys-
tonia-Parkinsonism-related SINE-VNTR-Alu retrotransposon insertions [19], and these vari-
ants were previously missed by short read sequencing. Moreover, long read sequencing
realized fast and low-cost genome sequencing of pathogen, such as SARS-CoV-2 [20].

In addition to hereditary disease, long-read sequencing also facilitates the studies of cancer
genome. Using nanopore sequencing, a complex KLHDC2-SNTBI fusion (larger than 10 kbp)
composed by three separate chromosome regions was discovered in a breast cancer cell line
(SK-BR-3) using nanopore sequencing [11]. In lung adenocarcinoma, a novel class of complex
SVs consisting of several small/ middle-sized SV, were identified via the latest nanopore Pro-
methION sequencer [21]. Given the advantages of long read sequencing, novel large-scale and
/ or complex SVs that affecting the structure and expression of key oncogenes or tumor sup-
pressor genes, repetitive-region residing SVs that may causing genomic instability (such as
transposable element) or contributing to tumor progression, and tumor-promoting gene
fusions may be efficiently detected, which would provide a more comprehensive understand-
ing of the genomic aberrations of CRC and further in-depth study of their biology functions.
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Here, using long-read whole genome sequencing to analyze CRC tumors from 21 patients, we
(1) precisely and reliably detected somatic SV's across the cancer genomes, (2) showed the repre-
sentative large-scale inversions that altered the expression or structure of key tumor suppressor
genes, such as APC and CFTR, in CRG; (3) discovered a novel gene fusion RNF38-RAD51B that
could increase the migration, invasion and metastasis ability of CRC cells.

Material and methods
Ethics statement

This study was conducted according to the Helsinki human subject doctrine and was approved
by the Huazhong University of Science and Technology review board and Ethics Committee
(IORG No. IORG0003571, 2020-S197), written consents to participate was acquired from all
the patients.

Sample collection and Oxford nanopore sequencing

21 pairs of tumor samples and matched para-carcinoma samples were obtained from the surgi-
cally removed tumor tissues and adjacent intestinal tissues (>6 cm from tumor tissues) of
CRC patients in Wuhan Union Hospital, and stored at -80°C. All the samples were analyzed
and sequenced using long-read Nanopore sequencing, short-read whole exome sequencing
and RNA sequencing. Genomic DNA from each sample was extracted by sodium dodecyl sul-
phate method. DNA was shared to > 20kb by Covaris g-tude. Then genomic DNA libraries
were constructed according to the manufacturer’s instructions by using the Ligation Sequenc-
ing kit 1D (SQK-LSK109). The prepared libraries were loaded into R9.4(1D) flow cells and
then sequenced on the PromethION sequencer (ONT, UK). Then Guppy (version: 2.0.8) was
used to perform basecalling on fast5 files to generate FASTQ format files.

Alignment and SVs calling

‘All the reads from ONT sequencing were aligned to the human reference genome with only
major chromosomes 1-22 and X, Y from NCBI (ftp://ftp-trace.ncbi.nih.gov/1000 genomes/ftp/
technical/reference/human_glk_v37.fasta.gz) using NGMLR (v0.2.7) with default parameters.
Samtools (v1.9) was used to compute alignment ratio and mapping identity by analyzing bam
files. Structural Variations were called using Sniffles v1.0.8 with minimum reads supporting num-
ber 2 and minimum SV size 50bp. In order to obtain high-quality SVs in tumor and normal sam-
ples, only SVs supported by at least 0.3 folds of average sequencing depth were retained.

Somatic SVs (present in tumor but not in normal samples SV calls) were obtained by com-
paring high quality tumor samples SV's passed above filtering thresholds with normal samples
SVs only supported by two or more reads. This strategy is to improve the recall rate of normal
samples SV's to improve the reliability of somatic SVs. Tumor and matched normal sample
SVs were merged using svmerge (https://github.com/GrandOmics/svmerge) with a maximum
distance of 1000bp for all types SV, 40% reciprocal overlaps for deletions, inversions and
duplication and difference in SV length less than 20%. We used svhawkeyes (https://github.
com/yywan0913/SVhawkeye) for the manual curation of unfiltered somatic SVs. The reads
alignment images of each unfiltered somatic SVs were generated by svhawkeyes from align-
ment files and manually checked. Somatic SV's that appear in both cancer and paired normal
samples were identified as false positive. Finally, all the somatic SVs were merged into an inte-
grated call set. SVs with upstream and downstream genes were annotated in the segdup
(UCSC golden path hg19), rmsk (UCSC golden path hg19), dgv (2016-05-15), 1000 Genome
Project (phase 3), gnomAD (2.1.1), and COSMIC databases (v70) using annovar (2017-07-17).
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Insertions were further annotated as tandem repeats or known repeat classes using TRF (4.09)
and RepeatMasker (4.1).

Whole exome sequencing and variants calling

Sheared genome DNA from each tumor and normal sample was used for library preparation.
Exome DNA was captured using the XGen Exome Research Panel v1.0 51Mb kit and sequenced
using the Illumina NovaSeq platform with 150 bp paired-end sequencing mode. The sequencing
depth of each sample was above 200X. Bam files were generated using sentieon DNA pipelines
(sentieon-genomics-201808.01) including alignment, removing duplications, sorting and local
realignment following the Broad Institute’s best practices. Somatic mutations and Indels were
detected by using Sentieon TNscope from co-realigned tumor and normal BAM files with
dbSNP 138 in target intervals. All somatic mutations and Indels were annotated in the dbSNP
147, clinvar (2017-05-01), ExAC (2016-04-23), 1000 Genome Project (phase 3), gnomAD
(2.1.1), InterVar (2017-02-02) and COSMIC databases (v70) using ANNOVAR (2017-07-17).

Transcriptome sequencing and quantification of gene expression level

Sequencing libraries were generated using NEBNext Ultra RNA Library Prep Kit for Illumina
(NEB, USA) according to the manufacturer’s instructions. AMPure XP system (Beckman
Coulter, Beverly, USA) was used to purify the library fragments and 3 pl USER Enzyme (NEB,
USA) was used for size selection (250~300 bp). The library preparations were sequenced on an
[lumina Hiseq platform with 150 bp paired-end model, and at least 6 G of clean data were
generated for each sample. Paired-end reads were aligned to the reference genome using
Hisat2 (v2.0.5). Reads counts were calculated using FeatureCounts (v1.5.0-p3). Differential
expression analysis was performed using the edgeR R package (v 3.18.1) and significance was
defined as adjusted P-value < 0.05 and foldchange > 2.

Novel gene fusions identification

Fusion gene usually caused by reasons such as chromosome translocation, inversion and dele-
tion. Two genes containing two breakpoints of the same SV respectively were selected as can-
didate fusion gene. star-fusion(1.2.0) was used to detect fusion genes from Illumina RNA
sequencing data with—annotate;—examine_coding_effect;—FusionInspector inspect;—deno-
vo_reconstruct;—min_junction_reads 1;—min_sum_frags 2. Fusion genes predicted by struc-
tural variation and expressed in the RN Aseq data were further used for manual curation from
both nanopore whole genome sequencing and Illumina RNA sequencing alignments. Primers
were designed to span fusion junction and were validated by PCR and Sanger sequencing.
Primer sequences.

Breakpoint 1 Breakpoint 2
Reverse (5’ to 3°) Forward (5" to 3) Reverse (5’ to 3’)

TGGGTATCAGATCTCTATAGGCTGT | GCACTTCTATGTATGTGTCAGGG | ACCAGAAGGCAGGGTCATTG | CCCAGCAAGCAAGGAAGTTG

ACAAATTCCAAGACTTACTGGCA TGGTCACTGGCTTGTTGAGA GACATGATCCTTTTGCAGCCT | TGTGCCCACAGTTCAAACCT
TGGTTTGGCTACTTTCCCTCT GCAGGGGTACTCAAAGTCCC
GAAGCCAAAACACCGGACAC TCATACTTCTGGGGCTGGGA TGGCTGAAGGTCTGTTTTGT | ACAGAGAAGCCAAGAAGCCA
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Cell lines

HEK293T (human embryo kidney cell line), LoVo (human colon adenocarcinoma cell line)
and HCT116 (human rectum adenocarcinoma cell line) cells were purchased from the Ameri-
can Type Culture Collection (Rockville, MD, USA) and maintained in Dulbecco’s Modified
Eagle medium (Hyclone, Logan, UT, USA), supplemented with 10% fetal bovine serum (Scien-
cell, Carlsbad, CA, USA) at 37°C under 5% CO, in a cell incubator.

Establishment of RNF38-RAD51B overexpressing cell lines

The cDNA of RNF38 and RAD51b was amplified from a cDNA library of HCT116 cells, then
cloned into pLenti-puro lentiviral reporter plasmid to form a RNF38-RAD51b overexpression
vector. The overexpression vector was confirmed by PCR and Sanger sequencing (sequences
of the primer pair are listed below). Then, the lentivirus vector was obtained by co-transfecting
HEK293T cells with pLenti-puro-RNF38-RAD51b, psPAX2 packaging, and pMD2.G envel-
oped plasmids according to the manufacturer’s instructions. HCT116 and LoVo cells were
infected by filtered lentivirus (pLenti-puro-vector or pLenti-puro-RNF38-RAD51b) with poly-
brene (8 pg/mL) and then selected by puromycin (1 pg/mL) for 1 week. The expression level of
RNF38-RAD51B fusion gene was measured using western-blot.

Transwell migration and invasion assays

The migration and invasion assays of RNF38-RAD51B overexpressing HCT116 and LoVo
cells were assessed using 8.0-um pore size transwell inserts. For migration assay, cells were
seeded to inserts and cultured for 15 (LoVo cells) or 30 (HCT116 cells) hours. For migration
assay, cells were seeded to Matrigel-coated inserts (invasion assay) and cultured for 36 (LoVo
cells) or 48 (HCT116 cells) hours Then, the cells on the underside of the inserts were fixed and
stained with crystal violet, and counted by microscope. Each experiment was repeated for
thrice.

Animal studies

Six weeks old male BALB/c nude mice purchased from Beijing HFK Bioscience Co., Ltd were
used for the animal studies. 1 x 10® RNF38-RAD51B overexpressing HCT116 cells were
injected into the livers of the nude mice via the splenic vein (eight mice per group). After six
weeks, the mice were euthanized by excessive anesthesia and the livers were collected. Then,
the liver tissues were sectioned, stained with hematoxylin and eosin (H&E), and assessed by
quantifying the number of metastatic lesions by a microscope.

Results
Nanopore sequencing of CRC samples

We generated whole-genome long-read sequence data from 21 CRC patients (S1 Table) using
PromethION (Oxford Nanopore Technologies) nanopore sequencers. All the patients were at
stage II (n = 13) or stage III (n = 8), and five of them were of high-level microsatellite instability
(MSI-H). All samples were also analyzed by short-read whole exome sequencing (WES) and
RNA-seq to obtain SNVs and gene transcriptional data, respectively. We obtained over 51 bil-
lion bases (>17X in depth) long-read data per sample with a mean read N50 of 30,211 bp
(range from 19,238 bp to 45,166 bp; 94% of reads were >10 kbp) (Fig 1A and 1B and S2 and

S3 Tables). The maximum read length and the N50 length of the obtained reads were 897,996
bp and 42,969 bp, respectively, consistent with previously reported PromethION data [21], but
longer than those generated by MinION platform [11,15]. With NGMLR [22], 96.3% of the
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reads were mapped to the reference genome (human G1Kv37) with the mean mapping inten-
sities of 87.4% (Fig 1C).

Long-read sequencing identified widespread somatic SVs in colorectal
cancer

We employed Sniffles [22] for SV calling and identified 817,857 SVs in all the samples (19466
SVs per sample) (S1 Fig), largely consistent with previous studies [22,23]. These SVs were used
to map somatic SVs, yielding 14508 unfiltered somatic SVs. After manual curation (see
Method), we obtained 494 somatic SV per tumor sample (in total 5,200 nonredundant
somatic SVs), significantly more than previous short-read data in CRC [24,25], likely due to
the increased sensitivity of long-read sequencing in detecting SVs [11,26]. The lengths of 98%
of SV's were less than 10,000 bp, and the mutual distance of most SVs (~80%) was between 10°
~ 107 bp (S2 Fig). The components of these somatic SVs were 661 (12.7%) deletions, 4,383
(84.3%) insertions, 61 (1.2%) duplications, 56 (1.1%) inversions, and 39 (0.8%) translocations
(Figs 2A, upper, 2B, left; and S3). The classification of sequences and loci of these insertions
and deletions revealed that most of insertions (95%) occur in MSI-H samples due to the abnor-
mal expansion of short tandem repeat (STR) regions (Figs 2C and S4). After exclusion of inser-
tions in STR regions, 54.72%, 32.37%, 5.05%, and 3.32% of somatic SVs were deletions,
insertions, duplications, and translocations, respectively (Figs 2A, lower, 2B, right; and S3).
The number of inversions in MSI-H samples was significantly lower than that in MSS samples,
and the numbers of other types of SVs were similar across different MSI status and different
stages (S5 Fig). Some loci with high frequency were associated with the genes involved in onco-
genesis and development of CRC, including alternative splicing factor RBFOX1, tumor sup-
pressor gene FHIT, and several oncogenes such as LGR6, CTGF and RABI1A (Fig 2A).
Meanwhile, 62.1% of somatic SVs were detected in at least two samples (Fig 2D). Recurrent
insertions were mainly located in STR regions (56 Fig). In addition, duplications, inversions,
and translocations were less likely to be recurrent events, as over 90% of these SVs were single-
tons (S7 Fig).
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Fig 2. Detection of somatic SVs in CRC by long-read sequencing. (A) Chromosome ideogram showing somatic
deletions (DEL) and insertions (INS) identified by long-read sequencing in 21 pairs of CRC samples. (B) Pie chart
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https://doi.org/10.1371/journal.pgen.1010514.9002

Characterizations of somatic SVs reveal expanded LINE and SINE
insertions in CRC

We classified the identified SVs by repeat contents of the variant sequence using RepeatMasker
(http://www.repeatmasker.org) to explore the genomic context of somatic SVs. Approxi-
mately, half of the deletions were located in tandem-repeats regions or mobile elements (for
instance, LINE, SINE and Long terminal repeat (LTR)) (Fig 3A). After exclusion of STR
regions, approximately 70% of insertions were mobile elements’ insertions (Figs 3B and 3C
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proportions of deletions and insertions including or excluding insertions in STR regions.

https://doi.org/10.1371/journal.pgen.1010514.9003

and S8), half of which were LINE insertions, indicating aberrant activation of LINE-1 retro-
transposons in CRC, consistent with previous reports [27,28].

Large-scale inversions cause dysfunction of tumor suppressors

In addition to small SV, large-scale (> 10 kbp) somatic SV that affected tumor suppressors
through disrupting gene structure to silence them, were also detected by nanopore sequencing.
In the sample C546-T, a high-confidence 4.9 Mbp inversion that spanned from chrb:
107,157,237 to chr5: 112,073,107 covering the exon 1 of APC was identified (Fig 4A). We ana-
lyzed the PCR products amplified against the sequences spanning across each breakpoint
using Sanger sequencing to detail the structure of both breakpoints (S9A Fig). An 8-bp dele-
tion at breakpoint 1 (BP1) was revealed, which resulted in microhomology and might conse-
quently cause the formation of inversion via microhomology-mediated end joining (SI0A
Fig). RNA-seq results showed that APC expression was sharply decreased (FPKM: 0.296) at
mRNA level compared to the paired normal sample (C546-N, FPKM: 2.262). No variant in
APC was reported using short-read based WES, which was possibly because the base sequence
of inverted exon 1 of APC was unchanged.

Additionally, we identified an 11.2-kbp somatic inversion that spanned from chr7:
117,191,185 to chr7: 117,202,321 involving the exon 11 of CFTR in the sample C564-T (Fig
4B). Notably, four long reads spanned both breakpoints of the inversion (Fig 4B), and covered
the complete structure of such a relatively-long inversion. Sanger sequencing of both break-
points revealed small insertions, deletions, and duplications in the vicinity of both breakpoints,
suggesting that this inversion may be generated by microhomology-mediated break-induced
replication (S9B and S10B Figs).

Novel gene fusions identified by long-read sequencing

Long read sequencing have proven immensely helpful in detecting gene fusions [29]. For
instance, we identified two new rearrangements that possibly resulted in gene fusions,
RNF38-RAD51B and SMAD3-SHISA6. For RNF38-RAD51B, the upstream of the intron 3 of
RNF38 was connected to the downstream of the intron 8 of RAD51B (Fig 4C). This gene fusion
was also detected by RNAseq and confirmed by PCR products encompassing breakpoint junc-
tions (S9C and S11A Figs). The formation of this fusion might change the function of RNF38,
which reportedly promotes cancer cell migration and invasion, inhibition of cancer cell apo-
ptosis, and epithelial-mesenchymal transition [30-32]. For SMAD3-SHISAG6 (Fig 4D), PCR
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alignment and split reads, respectively.

https://doi.org/10.1371/journal.pgen.1010514.9004

validated that the downstream of the intron 7 of SMAD3 was connected to the upstream of the
intron 3 of SHISA6, while the upstream of the intron 7 of SMAD3 was reversely connected to
the downstream of intron 7 of SHISA6 (S9D and S11B Figs). However, this gene fusion was
not detected by RNAseq, possibly because of its low expression. Given that SMAD?3, a major
transcription factor in TGF-P pathway, acts as a tumor suppressor and its functional disrup-
tion was positively associated with CRC progression and metastasis [33], this fusion might
lead to SMAD3 dysfunction, consequently suppressing the function of TGF-p pathway.

RNF38-RAD51B promotes CRC cell migration, invasion, and metastasis.

To investigate the oncogenic effects of the RNF38-RAD51B fusion, we cloned the fusion gene
and established RNF38-RAD51B overexpressing LoVo (human colon adenocarcinoma cell
line) and HCT116 (human rectum adenocarcinoma cell line) cells (S12 Fig). The overexpres-
sion of RNF38-RAD51B significantly promoted cell migration and invasion in vitro in trans-
well assays (Fig 5A-5D). We next examined the in vivo oncogenic roles of the
RNF38-RAD51B fusion by intravenously injecting RNF38-RAD51B overexpressing HCT116
cells into nude mice. The metastasis of tumor cells into the livers was observed (Fig 5E and
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Fig 5. RNF38-RAD51B promotes cell migration, invasion and CRC metastasis. (A, B) Representative images (A) and
statistical results (B) of transwell migration assay of RNF38-RAD51B overexpressing CRC cells (three repetitions per group). (C,
D) Representative images (C) and statistical results (D) of transwell invasion assay of RNF38-RAD51B overexpressing CRC cells
(three repetitions per group). (E, F) Representative H&E-staining images (E) and counts (F) of metastatic tumors in the liver of
the xenograft mice intravenously injected with RNF38-RAD51B overexpressing HCT116 cells (eight mice per group). p < 0.05
are statistically significant (students’ t-test).

https://doi.org/10.1371/journal.pgen.1010514.g005

5F); the number of metastatic loci were two-time higher than that in the control (injected with
empty-vector expressing cells). These results demonstrate that RNF38-RAD51B fusion
enhances CRC cells’ ability of migration, invasion and metastasis.

Discussion

Structural variations are deemed as oncogenic organizers that alter expression and function of
oncogenes or tumor suppressors [5]. However, due to the short read length caused ambiguous
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alignment, commonly used short-read sequencing strategies are ineffective in breakpoints
phasing, and complex or long SV detection and reconstruction [34] Yet, large amount of hid-
den structural variations in human genomes need to be further identified [15,35]. In this
study, we applied nanopore long-read sequencing in 21 pairs of CRC samples, detected
approximately twice numbers of somatic SVs in each sample than using short-read sequencing
[24,25], and many of them were related to known oncogenes and tumor suppressors. We fur-
ther investigated the types and components of SVs in CRC, and identified multiple SV hot-
spots that were associated with CRC-associated genes. This is the first study that employed
long-read sequencing to investigate SVs in human CRC samples.

The majority of clinically-used precision therapeutics approaches for colorectal cancer,
such as food and drug administration (FDA) approved MSK-IMPACT (Memorial Sloan Ket-
tering Cancer Center) and FoundationOne CDx (Foundation Medicine, Inc) tests, used short-
read capture sequencing or amplicon sequencing to detect cancer-relevant and/ or drug-tar-
getable mutations as treatment indicators [36,37]. However, patients might not benefit from
short-read capture sequencing or amplicon sequencing if their treatment indicators are SVs
[38] since SVs (especially large-scale SVs) may span over one or more exons without any
change in their sequence, it is highly possible that these exon-spanning SVs would be missed if
using capture sequencing or amplicon sequencing. For instance, the inversions in APC and
CFTR clearly altered the structure (including coding regions) of both genes, but were not
detected by WES. Thus, detection of such SVs would be valuable to cancer precision therapeu-
tics. Compared to short-read capture sequencing, long reads sequencing are advantageous in
capturing large, complex SVs, and SVs in repetitive regions, as long reads (> 5 kbp) can easily
span repetitive sequences or SV breakpoints, and aligned precisely [22]. In the current study,
the reads spanning the 11.2-kbp inversion in CFTR showed that the enhanced read length
enables a full capture of SVs, significantly improving cancer SV detection efficacy, providing
a powerful tool for cancer precision therapeutics.

Gene fusions resulting from genomic rearrangements, represent an important part of
tumor genomic landscape and are involved in development of approximately 16% of all cancer
types, including CRC [39]. Although short-reads based whole genome sequencing (WGS) and
RNA-seq are two major methods for identifying fusion genes, WGS is limited by the disadvan-
tages mentioned above, and RNA-seq suffers from poor sensitivity for detecting the fusion
genes that are expressed at rather low levels or diluted by accompanying non-cancerous cells
[40]. In contrast, the advantages of long-read sequencing allow more effective identification of
novel genetic rearrangements that may result in gene fusions. Indeed, our work uncovered a
novel gene fusion, RNF38-RADS51B, which could enhance CRC cells’ oncogenic functions.
RNF38 was reported as a vital driver of cancer progression and could promote the invasion
and metastasis of cancer cells [30,31]. The RNF38-RAD51B gene fusion may enhance the
expression or function of RNF38, since it significantly promoted the invasion and metastasis
ability of colorectal cancer cells. Although the molecular mechanisms and clinical relevance of
this gene fusion need to be further studied, our results suggest that nanopore sequencing may
serve as a new strategy for detecting oncogenic gene fusions.

Nevertheless, this study has some limitations. First, the sample size (21 pairs of samples)
was limited, making it difficult to find low-frequency somatic SVs in CRC. Second, a higher
sequencing depth would be needed to improve the accuracy of SV phasing, especially for small
insertions and deletions. Third, functional studies were required for further revealing func-
tional roles of our newly-discovered somatic SVs, even though they were likely to promote
development and progression of CRC according to their impact on genes structures (i.e., the
inversions altered tumor suppressors APC and CFTR).
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In summary, our study provides an example illustrating the utility of long-read nanopore
sequencing in cancer genome investigation. Our work highlights the potential of the long-read
sequencing in serving as a new platform for the precise diagnosis and treatment of CRC, and
portrayed the first landscape of somatic SVs detected by long-read sequencing in CRC, which
can be a useful resource for future biological and clinical studies.
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