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Monitoring the physiological changes of organelles is essential for understanding the local biological 
information of cells and for improving the diagnosis and therapy of diseases. Currently, fluorescent probes 
are considered as the most powerful tools for imaging and have been widely applied in biomedical fields. 
However, the expected targeting effects of these probes are often inconsistent with the real experiments. 
The design of fluorescent probes mainly depends on the empirical knowledge of researchers, which was 
inhibited by limited chemical space and low efficiency. Herein, we proposed a novel multilevel framework 
for the prediction of organelle-targeted fluorescent probes by employing advanced artificial intelligence 
algorithms. In this way, not only the targeting mechanism could be interpreted beyond intuitions but also 
a quick evaluation method could be established for the rational design. Furthermore, the targeting and 
imaging powers of the optimized and synthesized probes based on this methodology were verified by 
quantitative calculation and experiments.

Introduction

Subcellular organelles, as subunits of cells, play an indispensa-
ble role in different physiological processes. The imbalance of 
biologically active species in them will cause their dysfunction, 
which has a serious impact on the health of organisms [1,2]. 
Fluorescent probes have become a powerful tool for intra-
cellular visualization by taking advantage of their high sensi-
tivity, fast response time, strong specificity, and real-time 
imaging and are popular in bioimaging and biosensing [3–5]. 
In recent years, a large number of works based on the specificity 
of fluorescent probes for imaging different organelles have been 
reported [6,7], including specific imaging of mitochondria, 
Golgi apparatus, lysosome, and endoplasmic reticulum [8–12]. 
On this basis, some fluorescent probes for the imaging of 
enzymes, reactive oxygen species (ROS), and viscosity in these 
organelles have also been reported. The reported probes have 
achieved relatively good detection and imaging effects in the 
imaging of subcellular organelles and biologically active sub-
stances [13–17]. The targeting ability of these probes in actual 
imaging experiments, however, cannot reach the expectation, 
although there are specific targeting groups of different sub-
cellular organelles that have been summarized according to 
current researches. In particular, there are some fluorescent 
molecules that, although coupled with specific targeting groups 

for subcellular organelles, still cannot be specific [18,19]. One 
of the major causes is that most of these probes were designed 
mainly depending on empirical knowledge, which was limited 
by small chemical space and low efficiency. Therefore, how 
to solve the problem of discrepancies between experimental 
results and design, so that researchers can reasonably and accu-
rately design specific subcellular organelle probes before the 
construction of probes, is a great challenge.

In recent years, with the explosive growth of biomedical data 
and the rapid development of computer software and hardware, 
artificial intelligence has increasingly penetrated deep into 
various aspects of drug research and development and has 
greatly boosted the process [20–22]. Especially in the field of 
drug design, prediction models based on artificial intelligence 
technology can be used to evaluate important properties in the 
early stage of drug development. For example, models estab-
lished for predicting a series of important drug ADMET 
(absorption, distribution, metabolism, excretion, and toxicity) 
properties can effectively reduce the risk of failure due to poor 
pharmacokinetic properties in late-stage development, which 
can benefit from decreasing the cost and shortening the time 
[23–25]. In addition, artificial intelligence technology also 
embraces many methods for structure-based molecular trans-
formation and optimization, which greatly expands the chemical 
space of drugs [26,27]. With these in mind, appropriate artificial 
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intelligence models may have the potential to address the above-
mentioned challenges and provide a rapid prediction for organelle- 
targeted molecular probes, thus greatly reducing blindness.

Here, a new method integrated with advanced artificial 
intelligence with quantitative calculation was proposed to help 
provide new insights into the accurate design of specific sub-
cellular organelle probes (as shown in the graphical abstract). 
Firstly, we collected the currently published fluorescent probes 
targeting subcellular organelles and chemical compounds with 
known subcellular localization. Then, we established a pre-
treated molecular library. On this basis, we developed a multi-
level framework that consisted of a series of prediction models 
by employing advanced-artificial intelligence methods. The first 
level was a classification model (B-PvsC model) to uncover the 
reason why the subcellular organelle targeting of fluorescent 
probes were different from commonly seen chemical com-
pounds. The second level was a binary classification model 
(B-MvsP model) expected to focus on mitochondrial targeting. 
The third level was a multiclassification model (M-PvsP model) 
expected to predict specific subcellular organelles targeting 
of a probe further. The last level was a colocalization model 
(B-McoL model) to estimate the targeting effect of a probe. 
Afterward, by taking advantage of the detailed explanations 
and summarized rules of these models, we designed several 
groups of probes on the basis of different fluorescence mecha-
nisms and estimate them by our framework. Then, on this basis, 
we selected the fluorescent probes with better performance to 
synthesize them and verified their accuracy and biological 
application by experimental methods. In addition, we further 
combined the means of quantum chemistry to perform quan-
titative calculations on the synthesized molecules to explain 
their spectroscopic properties. With the above inspiring strate-
gies, a method that enabled more accurate prediction of 
organelle-targeted fluorescent probes was successfully con-
structed. Thus, it would help researchers to design and construct 
novel organelle-targeted fluorescent probes more accurately 
and rationally, especially for mitochondria-targeted ones, and 
allow more effective detection of specific bioactive molecules, 
thereby advancing the field.

Results

Datasets
A total of 1,661 organelle-targeted fluorescent probes and 614 
compounds that were not fluorescent probes (Np-Compounds) 
were manually collected from >10 thousand publications over 
the recent 10 years (2012–2022) (Table S1). These data items 
were used to construct datasets for the model building of our 
designed framework. All molecules were checked and con-
verted into InChIKey for deduplication using ChemDes and 
PyBioMed [28,29]. Duplicate molecules within the same label 
were deleted, and duplicate molecules in different categories 
were retained. The dataset for building B-PvsC model to dis-
tinguish the mitochondria-targeted probes and commonly seen 
compounds consisted of 1,005 mitochondria-targeted fluores-
cent probes and 236 mitochondria-targeted Np-Compounds. 
After deduplication, that became 982 and 236, respectively. The 
dataset for B-MvsP model included 982 probes for mitochon-
drial targeting and 637 probes for other organelles. The dataset 
for M-PvsP model to predict specific subcellular organelle 
targeting of a probe consists of 41, 156, 370, 37, 1,005, and 52 
fluorescent probes targeting the Golgi apparatus, endoplasmic 

reticulum, lysosome, cell membrane, mitochondria, and nucleus, 
respectively. After deduplication, that became 40, 153, 361, 36, 
982, and 50, respectively.

In addition, for mitochondria-targeted fluorescent probes, 
we have also attempted to estimate the colocalization effect by 
predicting their correlation coefficients (B-McoL model). For 
the 1,005 mitochondrial targeting probes, their colocalization 
in the measurement system by different colocalization dyes was 
collected. The 914 data, for which the dyes were MitoTracker 
Green and MitoTracker Red (MTR), and numerical correlation 
coefficients were available, were selected and deduplicated 
according to InChIKey. Then, the arithmetic mean of multiple 
records for the same molecule was adopted. Since the colo-
calization data would only be reported when they obtained an 
expected probe with a good colocalization ability, the correla-
tion coefficients were usually high. Specifically, the correlation 
coefficients of the retained 896 unique probes were centered 
overwhelmingly between 0.8 and 1. Therefore, we took 0.8 as 
the threshold and labeled 811 probes with correlation coefficients 
not <0.8 as the positive and 85 probes <0.8 as the negative. In 
addition, a synthetic minority oversampling technique [30] was 
adopted to oversample the minority class to compensate for 
the unbalanced sample distribution (811 positives versus 
811 negatives; Fig. S1).

The performance analysis of B-PvsC model
The optimal B-PvsC model for detecting mitochondria-targeted 
fluorescent probes and Np-Compounds was explored with a 
wide range of descriptors and algorithms. The best performance 
was achieved by ECFP4-LR model with an accuracy (ACC) of 
0.93 and 0.95 for the cross-validation (CV) and test set, respec-
tively (Table). The area under the curve (AUC) of 0.97 ± 0.01 
(Mean ± SD) for CV showed excellent performance (Fig. 1E). 
In addition, 99.0% of probes and 79.07% of the Np-Compound 
in the test set were correctly predicted (Fig. S2). Among the 6 
molecular representations, ECFP4 and Pubchem fingerprints 
achieved the highest accuracy on the test set, and the ECFP4-LR 
model was better during CV (Fig. 1A and Table S2).

The performance analysis of B-MvsP model
The B-MvsP model tried to distinguish the probes targeting 
mitochondria and other organelles with mitochondria as 
positive and the other 5 organelles as negative. By comparing 
molecular descriptors/fingerprints and algorithms, the 
best model is the combination of MACCS fingerprints and 
LightGBM, with accuracy of 0.858 and 0.843 for the CV and 
test set, respectively (Table). The AUC of 0.916 ± 0.01 (Mean ± 
SD) for CV showed good performance (Fig. 1F). Among the 
199 mitochondria-targeted probes in the test set, 86.93% of 
them (173 probes) were correctly predicted, and 80.00% of the 
125 other probes were correctly predicted (Fig. S3). The 2D descrip-
tors from Molecular Operating Environment (MOE), MACCS and 
ECFP4 fingerprints showed better performance in this predic-
tion; all of them reported an accuracy of >0.8 in the test set. 
However, CDK fingerprints performed comparatively less well 
(Fig. 1B and Table S3).

The performance analysis of M-PvsP model
The M-PvsP model was designed to further specify the more 
detailed localization of fluorescent probes among the 6 kinds 
of organelles. By comparing the predictive power of different 

https://doi.org/10.34133/research.0075


Dong et al. 2023 | https://doi.org/10.34133/research.0075 3

kinds of descriptors and algorithms, the best model was the 
MACCS-LightGBM. The accuracy was 0.783 and 0.809 for the 
CV and test set, and the AUC was 0.904 and 0.932 (Table and 
Fig. 1G), respectively. In the test set, Golgi apparatus and nucleus 
probes, which have a smaller sample size, showed deficient 
prediction results in which most probes were incorrectly classified 
as mitochondria-targeted ones. While for the same smaller 
sample size of cell membrane-targeted probes, nearly 50% were 
correctly predicted. It can be noticed that because of the imbal-
ance in sample size between the classes (up to 195:7 in the test set), 
5 Golgi apparatus-targeted ones were misclassified as mito-
chondria (7 in total), while the endoplasmic reticulum, lysosome, 
and mitochondria all had high precision (70.00%, 80.52%, and 
83.49%) in the MACCS-LightGBM model. For mitochondrial 
samples, it got a high recall rate of 93.33% (Fig. S4).

The performance analysis of B-McoL model
The B-McoL model was developed to predict the colocalization 
ability of mitochondria-targeted fluorescent probes. A series 
of models were constructed by combining different algorithms 

and molecular descriptors. Among them, the best combination 
was the 2D-LightGBM model, with an accuracy of 0.941 for 
CV and 0.963 for the test set (Table). The AUC for CV was 
quite high reaching 0.98 (Fig. 1H). In addition to the optimized 
2D molecular descriptors, CDK and AtomPair fingerprints also 
achieved comparable predictive performance, followed by 
MACCS fingerprints (Fig. 1D and Table S5). For the 154 probes 
of good colocalization ability, 98.05% were correctly predicted, 
and that was 94.74% for the 171 probes of weak colocalization 
ability. With a systematic oversampling of the inferior class, the 
error of assigning all data points to the dominant category due 
to unbalanced sample distribution was avoided. In addition, 
the decision boundaries of the LightGBM model were visual-
ized via principal components analysis by compressing the 
information of the 2D descriptors into 2 principal components. 
Unlike fingerprints, the 2D molecular descriptors preserved 
considerable information after principal components analysis. 
Most of the data points fell into the regions of their right class, 
and the volume of information in the inferior class was not 
distorted by oversampling (Fig. S5).

Table. The best performance of the 4 models for the multilevel framework. The AUC, Recall, and Precision of the M-PvsP model were calcu-
lated with the weighted method.

Model Feature Algorithm
5-CV Test

ACC AUC Recall Precision ACC AUC Recall Precision

B-PvsC ECFP4 LR 0.933 0.974 0.974 0.946 0.955 0.981 0.990 0.957

B-MvsP MACCS LightGBM 0.858 0.916 0.908 0.865 0.843 0.902 0.869 0.874

M-PvsP MACCS LightGBM 0.783 0.904 0.783 0.757 0.809 0.932 0.809 0.794

B-McoL 2D LightGBM 0.941 0.980 0.961 0.927 0.963 0.982 0.981 0.944

Fig. 1. Results of machine learning models. The heatmaps displayed the accuracy for the test set of B-PvsC (A), B-MvsP (B), M-PvsP (C), and B-McoL (D) models constructed 
by different molecular representations and algorithms. The ROC curve plots for the CV and test set of the best B-PvsC (E), B-MvsP (F), M-PvsP (G), and B-McoL (H) models.

https://doi.org/10.34133/research.0075


Dong et al. 2023 | https://doi.org/10.34133/research.0075 4

Model explanation and rules
To explore the relationships between molecular structures and 
the organelle-targeting effects, the model explanation was per-
formed and rules were summarized. When focused on mito-
chondria-targeted ones, the B-MvsP model using MACCS 
fingerprints and LightGBM algorithm showed the best predic-
tive power and good robustness. Therefore, we made an expla-
nation for the model based on the interpretable SHAP (SHapley 
Additive exPlanations) values and the feature importance 
generated by LightGBM. Because of the differences between 
the selected algorithms, the feature importance calculated will 
not be identical, but the most important features will always 
have a higher score. Among the 166 MACCS keys, more than 
half of the Top50, Top30, and Top15 most important features 
selected preferentially via both methods overlapped, and 88% 
of the Top50 were mainly associated with heteroatoms such as 
nitrogen, oxygen, and phosphorus. A visualization of the 9 most 
important MACCS keys codetermined in the Top15 of SHAP and 
LightGBM methods is shown in Fig. 2A. Of these, MACCS166 
cannot be visualized but represents whether a structure has 
disconnected fragments. This indicated that the charge was very 
important, as these fragments were usually anions and cations. 
MACCS49 and MACCS29, the 2 most important features iden-
tified by SHAP, represented charge and phosphorus elements, 
and both of them contributed positively to the mitochondrial 
targeting of probes (Fig. 2B). This was consistent with the con-
clusions of some published studies [31]. Moreover, the double 
carbon bonds (MACCS99) and ethyl groups (MACCS114) also 
had a facilitative effect on targeting mitochondria, while the 

presence of nitrogen-containing heterocycles and fragments 
had a negative effect (MACCS111 and MACCS75). Apparently, 
the double carbon bonds came from the conjugated structure 
that can produce fluorescence emission. Lipophilic groups were 
helpful for the probe to target mitochondria, while hydrophilic 
groups were the opposite. In addition to MACCS fingerprints, 
MOE 2D molecular descriptors covering lots of physicochem-
ical and topological properties also had a good performance. 
Therefore, the 2D-LightGBM model was also interpreted to 
provide additional insights. The 10 most important descriptors 
determined by SHAP are shown in Fig. 2C. These descriptors 
described charge, molecular shape, surface area, energy, and 
synthetic feasibility. We speculated that probes with higher total 
formal charges, easily transformed conformations, and strong 
lipophilicity were more likely to target mitochondria. This 
could be confirmed and supplemented by the previous experi-
mental analysis [31].

Library design of mitochondria-targeted probes
To validate the practicality of the explanation and rules, and 
evaluate the predictive power of the framework, we first designed 
a series of fluorescent molecules based on excited-state intra-
molecular proton transfer (ESIPT), twisted intramolecular 
charge transfer (TICT), and ICT, which were 3 representative 
fluorescent mechanisms. Then, among these fluorescent mole-
cules with different mechanisms, we further distinguished them 
into mitochondrial dyes and probes that could be specifically 
used for ROS, enzymes, and viscosity imaging in mitochondria 
according to their structural properties, which were 3 important 

Fig. 2. The explanation of the selected B-MvsP model. (A) The 9 most important MACCS keys that were codetermined in the Top15 of SHAP and feature importance methods 
driven by LightGBM algorithm. The bars represent the relative value of feature importance after Min-Max normalization (dark cyan, SHAP; claret, feature importance). The 
MACCS 166 is not applicable and represents whether a structure has disconnected fragments. (B) The SHAP values for the top 10 MACCS keys from the MACCS-LightGBM 
model. (C) The SHAP values for the top 10 MOE 2D descriptors from the 2D-LightGBM model.
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biomedical applications of mitochondria-targeted probes. 
According to our plan, firstly, we designed 451 molecules of 
ICT and 70 molecules of ESIPT, respectively. Then, some of 
these molecules were connected with the corresponding ROS 
response sites [15,32] and alkaline phosphatase (ALP) sites 
[33,34] to further explore whether these molecules can still 
target mitochondria accurately and detect related biomarkers 
meanwhile. As a result, 37 ROS and 21 ALP probes were 
generated. In addition, we selected 54 molecules with TICT effect 
from ICT molecules for the imaging of intramitochondrial 
viscosity [35,36]. Finally, A library of 633 molecules designed 
above was set up, including 70, 451, 21, 37, and 54 molecules 
for ESIPT, ICT, ALP, ROS, and viscosity, respectively (Tables 
S7–S11).

Prediction and screening of optimized probes
The molecular library mentioned above was fed into our multi-
level framework to predict their organelle-targeting and colo-
calization effects. The predicted results are shown in Fig. 3A. 
We can see the prediction accuracy was quite good. In the first 
level, all structures in the ALP, ESIPT, and ROS sets were 
predicted as fluorescent probes by the B-PvsC model. In the 
ICT and viscosity sets, 17 and 1 structures were predicted as 
Np-compounds, respectively. This may be because some probes 
merely consist of a single fluorescent group but do not have 
obvious feature or recognition groups, so they are similar to 
Np-compounds. The second and third levels are the B-MvsP 
model and the M-PvsP model, respectively, which were used 
to classify the organelle targeting of fluorescent probes. As 
shown in the results, all structures in the ALP and ROS sets 
were similarly predicted as mitochondria-targeted both in the 
B-MvsP model and in the M-PvsP model. For the ESIPT set, 
no probes were predicted as Np-compounds as expected. In 
the B-MvsP model, only 12 probes were predicted as other 
organelle-targeted. Most of the 12 probes identified as other 

organelle-targeted by the second level were consistent with 
the third level while only 2 were reclassified as mitochondria- 
targeted. More importantly, most of the mitochondria-targeted 
ones predicted by the B-MvsP model were still kept there in 
the M-PvsP model, only 10 of them were predicted as lysosome- 
targeted, and 1 was predicted as nucleus-targeted. In the ICT 
set, only a few molecules were classified as Np-compounds and 
other organelle-targeted, while most of them were then back 
to be predicted as mitochondria-targeted by the M-PvsP model. 
As for the viscosity set, the M-PvsP model classified all struc-
tures as mitochondrial targeting, even though the B-MvsP 
model identified 4 other organelle-targeted. Similar to the 
ESIPT and ICT sets, the reason for this partial reassignment of 
structures to mitochondria-targeted by the M-PvsP model may 
be the tendency of classifiers to assign higher probabilities to 
categories with a larger sample size. Therefore, the simultaneous 
construction of binary and multiclassification models can 
compensate for the lack of fine classification and avoid an 
unbalanced prediction to improve the accuracy of the frame-
work through a comprehensive evaluation. The last level is 
the B-McoL model that identifies the colocalization effect of 
mitochondria-targeted probes, and it was found that almost all 
designed probes possessed a good colocalization effect and only 
3 probes in association with ICT might have poor colocaliza-
tion effects.

To help us select the optimized probes, in addition to the 
rules summarized above, the physicochemical properties, syn-
thetic accessibility, and safety were evaluated by an ADMETlab 
platform [24] for comprehensive screening and comparison. 
Among the dozens of properties from ADMETlab, rat oral 
acute toxicity could be a suitable indicator that estimates the 
biosafety of probes; synthetic accessibility could be a good indi-
cator to balance the effectiveness and cost; logP could bridge 
the summarized rules (e.g., lipophilicity) and molecular struc-
tures in the form of numerical values. The probes retained after 

Fig. 3. The prediction results of the designed probes by our multilevel framework. (A) The Sankey diagram displayed the predicted categories and the relationship between 
different models for ESIPT, ICT, ALP, ROS, and Viscosity sets. (B to D) The distribution of the important properties (rat oral acute toxicity, synthetic accessibility, and logP) 
for P1-ALP, P2-VIS, and P3-ROS compared with all designed probes. Here, rat oral acute toxicity represents the probability of a compound being of high toxicity; synthetic 
accessibility estimates the ease of synthesis of drug-like molecules, from 1 (very easy) to 10 (very difficult); logP represents the logarithm of the n-octanol/water distribution 
coefficient. The value of 3 was usually used as a threshold, and a higher one means high lipophilicity. (E) The molecular structures of P1-ALP, P2-VIS, and P3-ROS.

https://doi.org/10.34133/research.0075


Dong et al. 2023 | https://doi.org/10.34133/research.0075 6

the filtering by our multilevel modeling were then fed into the 
platform. By analyzing the important properties and consider-
ing our experimental feasibility, we chose P1-ALP, P2-VIS, and 
P3-ROS from each set to forward. Figure 3B to D displays the 
distribution of rat oral acute toxicity, synthetic accessibility, and 
logP of the selected probes. It was shown that all the selected 
probes were low toxic with an acceptable synthetic difficulty. 
Among them, P1-ALP obtained a logP of 1.918 which was not so 
lipophilic but in the optimal range for a drug-like molecule.

Quantitative calculation
We first optimized the ground-state structure of our selected 
probes and then calculated the ultraviolet (UV) absorption of 
each compound based on different functionals based on this 
structure. As shown in Table S6, we found that for each com-
pound, the functional suitable for them was not the same because 
of the different nature of their respective charge transfer. So next, 

we performed optimization of excited states separately to 
obtain their fluorescence emission based on the functionals 
suitable for them. As shown in Table S6, according to the com-
parison of the calculated results with our experimental data, it 
was demonstrated that the method we chose can correctly 
describe the excited-state properties of each compound. 
Therefore, we performed further calculations on each com-
pound separately to obtain their respective characteristic data. 
First, the ESIPT properties were calculated for P1-ALP. As 
shown in Fig. 4, according to our calculation results, there was 
no energy barrier to overcome for the occurrence of ESIPT, so 
the fluorophore can be rapidly converted from an enol to a keto 
structure after being excited. The calculated excitation energy 
of the enol form is 3.19 eV, and the excitation energy of the keto 
form emission is 2.44 eV, which was also in good agreement 
with our experimental data (3.30 and 2.55 eV). This indicated 
that, for P1-ALP, our calculations can adequately describe our 

Fig. 4. The quantitative calculation results of selected probes. (A) The molecular orbitals and excitation energy of selected probes and fluorophores. The P1-ALP-ENOL-HOMO 
means the highest occupied molecular orbital of P1-ALP in the enol form, and so on. ΔE represents the energy gap between the molecular orbitals. (B) The ESIPT process 
of P1-ALP. (C) Potential energy curve of TICT corresponding to P2-VIS. The ground-state structure of each compound was calculated by using Gaussian16 based on PBE0/
Def2-SVP, and the excited state based on PBE0 (P1-ALP) and CAM-B3LYP (P2-VIS and P3-ROS). The single-point energy was calculated on the basis of PBE0/Def2-TZVP 
(P1-ALP) and CAM-B3LYP/Def2-TZVP (P2-VIS and P3-ROS).
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experiments. Then, we calculated the TICT properties of the 
viscosity probe P2-VIS. Through the potential energy surface 
scan, we can find that the excited P2-VIS can undergo further 
distortion without an energy barrier to reach the state of TICT, 
which corresponded to the molecule. There was no fluorescence 
emission phenomenon in the state of a dilute solution, and then 
because of environmental constraints, P2-VIS will be forced to 
stay in the state of planar intramolecular charge transfer (PICT) 
without further relaxation. According to the calculation, the 
excitation energy of PICT of P2-VIS was 2.25 eV, which was 
basically consistent with the fluorescence emission observed 
in our experiments (2.25 eV). For P3-ROS, we found that the 
fluorescence wavelength of the probe appeared blue-shifted 
after the response, so we calculated the fluorescence emission 
of P3-ROS before and after the response. According to our 
calculation results, the excitation energy of the probe after the 
response was 2.34 eV, which was also consistent with our experi-
mental data (540 nm, 2.29 eV, respectively).

Synthesis of P1-ALP, P2-VIS, and P3-ROS
The detailed synthesis process and schematic diagram can be 
found in the Supplementary Materials.

Characterization of P1-ALP and the response to ALP
After obtaining P1-ALP, we first measured the UV spectrum 
and fluorescence spectrum of P1-ALP. As shown in Fig. S6, 
when the probe was added with LAP, the fluorescence emission 
of the system was about 390 nm. After incubation with ALP, a 

new and distinct fluorescence emission peak at 510 nm appeared 
in the spectrum, thus indicating that the probe P1-ALP could 
respond to ALP. According to the response time study, P1-ALP 
could respond completely to ALP within 28 min, which demon-
strated high efficiency. To explore the environmental impacts, 
we first implemented a pH-effect experiment. As shown in Fig. 
S8, the probe P1-ALP could be used for detecting ALP over the 
pH value of 5 to 9 which proved the availability in the physio-
logical environment. Therefore, our subsequent detection envi-
ronment was phosphate-buffered saline:dimethyl sulfoxide 
(pH = 7.4). The probe and ALP were incubated in a water bath 
at 37 °C for 30 min. Additionally, according to the results of 
anti-interference experiments, the probe P1-ALP showed a 
specific response to ALP and good anti-interference performance 
(Fig. S7). Therefore, given the favorable characteristics, we tried 
to establish the standard detection curve. As shown in Fig. 5B, 
according to the results of the probe's response to different 
concentrations of ALP, the probe exhibited good linearity over 
the 0 to 120 U/l of ALP concentration. Generally, the above 
results indicated that P1-ALP could be used for specific quan-
titative detection of ALP, which provided a solid foundation 
for our subsequent imaging experiments.

Characterization of P2-VIS and the response to 
viscosity determination
After obtaining P2-VIS, we measured the UV and absorption 
of P2-VIS. As shown in Fig. S18, the maximum absorption of 
P2-VIS is 550 nm. Because of the strong TICT effect of P2-VIS, 

Fig. 5. The optical characterization and mitochondrial colocalization imaging of selected probes. (A) The cell imaging for P1-ALP, P2-VIS, and P3-ROS. From left to right, they 
are the mitochondrial fluorescence image of MTR, the mitochondrial fluorescence image of the probe, the respective merge image, and the corresponding scatter plot. The 
scale was 40 μM. The “r” represents Pearson correlation coefficient. (B) The fluorescence spectrum of P1-ALP response to different concentrations of ALP. (C) The fluorescence 
spectrum of P2-VIS response to different viscosities. (D) The fluorescence spectrum of P3-ROS response to different concentrations of hydrogen peroxide. a.u., arbitrary units.
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P2-VIS basically has no fluorescence emission. Subsequently, 
we measured the fluorescence intensity of P2-VIS at different 
viscosities. As shown in Fig. 5C, fluorescence at 550 nm grad-
ually increased with the increasing viscosity. The fluorescence 
intensity of the probe had a good phenomenon in the viscosity 
range of 2.66 to 1,319 cp, which indicated that P2-VIS could 
be satisfactory for in vivo viscosity imaging.

Characterization of P3-ROS and the response to 
hydrogen peroxide
Similarly, for P3-ROS, we measured the UV and fluorescence 
spectra of the probe, and the results showed that the maximum 
absorption of P3-ROS was 425 nm (Fig. S24). After P3-ROS 
reacted with hydrogen peroxide, the UV absorption was 360 nm, 
and the fluorescence emission was 535 nm (Fig. S25). We 
measured the pH effect, selectivity, and response time respec-
tively (Figs. S22 to S23). It was shown that the probe enabled a 
specific response to hydrogen peroxide in the pH range of 6 to 
9 within 30 min. According to the response experiment of 
P3-ROS to hydrogen peroxide at different concentrations, the 
probe P3-ROS could detect quantitatively hydrogen peroxide 
between the hydrogen peroxide concentration of 0 to 10 μM 
(Fig. 5D).

Bioimaging
After the success of in vitro response of the above 3 probes, 
further experiments were conducted for cell imaging, to verify 
the ability to target mitochondria. As shown in Figs. S10 and 
S27, P1-ALP and P3-ROS can be successfully used to image 
high intracellular ALP expression and ROS, respectively. We 
used MTR as a mitochondrial colocalization dye to evaluate 
the mitochondrial localization ability of the 3 probes. Consistent 
with our expectation, as shown in Fig. 5A, the colocalization 
coefficient of P1-ALP, P2-VIS, and P3-ROS with MTR reached 
0.85, 0.93, and 0.94, respectively. Together, we successfully 
verified the accuracy of the mitochondrial targeting ability 
of the probes we screened based on our artificial intelligence 
framework.

Discussion
When analyzing the 4 constructed models, we found that these 
models all achieved quite good performance that realized a 
reasonable multilevel evaluating framework. Both the B-PvsC 
and B-McoL models reported ACC reaching a maximum of 
0.963 and a minimum of 0.933. In the B-MvsP model, the Recall 
values of mitochondria-targeted and other probes were 0.869 
and 0.800, respectively. We can find a closer sample size 
between them (199 and 125). However, in the M-PvsP model, 
the sample size gap between categories increased obviously, 
resulting in categories with smaller sample sizes (e.g., Golgi 
apparatus) being more likely to be misclassified to the category 
with a larger proportion of sample size (e.g., mitochondria). 
This is because the classifier calculates the probability of each 
sample falling into each class in the prediction and determines 
which class the sample most likely belongs to by comparing the 
maximum of the 6 probabilities. Since the ROC curves are class 
skew independent, but related closely to the probability the 
classifier assigns to all samples in each class, it is clear that the 
AUC values for each class in the test set are still high (Fig. S4C). 
Thus, the M-PvsP model we constructed did successfully dis-
tinguish 6 types of organelle-targeting probes from the others. 

In this multiclassification model with imbalanced sample dis-
tribution, the probability values may reveal its true categories 
better than the output labels.

On the basis of the above statistical calculations, it was indi-
cated that the positive charge was important for mitochondria- 
targeting molecules, which was in accordance with the mechanistic 
studies that positive charges could be pumped into mitochon-
dria driven by mitochondrial membrane potential [37]. This 
explains that most of the current mitochondria-targeting probes 
are positively charged. Second, since triphenylphosphine is a 
relatively mature specific site for targeting mitochondria, this 
leads to the high importance of the P atom in our calculation 
results [7]. Third, the calculation results suggested that lipo-
philicity plays a more important role, as molecules with stronger 
lipophilic fragments can better cross the phospholipid mem-
brane [37].

It was worth noting that the probes targeting the nucleus 
and lysosome were also positively charged, which means that 
the specificity of the mitochondria-targeted molecules could 
not rely only on the explanation based on the positive charge. 
In terms of molecular structure, the molecules targeting lyso-
some are highly similar to those targeting mitochondria, which 
makes it difficult to distinguish them from the view of the struc-
ture. Moreover, there were some special fluorescent molecules 
with multiple targeting abilities, which also affects the ability 
of predicted molecules to target mitochondria. These phenomena 
remind us that the probe design based on the consideration of 
multiple important factors should be better and a more refined 
multiclassification model may help.

Given the abovementioned mechanisms and analysis, it 
should be pointed out that there is still more that can be done 
to improve the predicting ability. First, the limited reaction 
types and structural scaffolds restricted the application domain 
of the models, which can easily lead to misclassification for the 
organelle categories with a small amount of data mentioned 
above. It suggests that we need to enlarge the data size of the 
model, which is a challenge in itself. Secondly, under the cur-
rent prediction framework, we can combine the prediction 
results with structural similarity to make a better decision 
regarding the confusing organelle-targeted ones. Finally, the 
development of some new descriptors capable of elucidating 
the mechanism of fluorescent molecules will help to character-
ize the structure of such molecules, thereby improving the 
accuracy and specificity of the models.

During the screening of optimized probes, almost all designed 
molecules were predicted to have good mitochondrial targeting 
ability, as the molecular design of this library was based on the 
inspiration and rules obtained from the above artificial intelli-
gence models. However, it was this situation that posed a 
challenge for us to select more reasonable probes. Therefore, 
we need to consider not only the targeting ability of these 
probes but also some important additional properties, as well 
as the complexity of the physiological environment and the 
synthesis conditions in the laboratory. For example, here, the 
logP value of P1-ALP was not prominent in the whole library, 
but it was still selected after comprehensive consideration. 
Notably, the colocalization experiments showed a colocaliza-
tion coefficient (0.85) of P1-ALP lower than that of P2-VIS 
(0.93) and P3-ROS (0.94), which confirmed the rule we con-
cluded: Lipophilicity was friendly to mitochondrial targeting.

According to our experimental results, the compound struc-
tures we predicted on the basis of the above descriptors have 
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good accuracy for fluorescent molecules with different fluores-
cence mechanisms. The results of our synthesized P1-ALP, 
P2-VIS, and P3-ROS with ESIPT, TICT, and ICT properties 
show that P1-ALP, P2-VIS, and P3-ROS are not only suitable 
for detecting respective analytes in vitro and in cell imaging 
but also can accurately target mitochondria for the imaging of 
each detected object in the mitochondria.

In summary, we proposed a new method that integrated 
artificial intelligence with quantitative calculation to enable the 
rational design of organelle-targeted fluorescent probes. We 
firstly collected high-quality datasets concerning the organelle- 
targeted molecules and established a multilevel prediction 
framework by systematically comparing different algorithms 
and molecular descriptors, from which we obtained the struc-
tural features and rules of fluorescent molecules targeting mito-
chondria. Then, we applied these rules to design a library of 
mitochondria-targeted fluorescent probes with different fluo-
rescence mechanisms. After assessment based on the frame-
work and important physicochemical properties, 3 optimal 
probes were selected and synthesized. Their fluorescence 
mechanisms were then verified by quantitative calculation. As 
expected, in the experiments, they successfully achieved mito-
chondria targeting and subsequently detect ALP, viscosity, and 
hydrogen peroxide, respectively. Therefore, we believe that this 
work not only provides a great reference value for seeking 
fluorescent probes related to subcellular imaging but also 
helps to make a step forward in the intelligent design of 
molecular probes.

Materials and Methods

Molecular representation
In this work, different kinds of molecular descriptors and 
fingerprints were calculated to represent the physicochemical 
properties and structural features of molecules. The MOE soft-
ware (version 2018, Chemical Computing Group, Montreal, 
QC, Canada) was used to calculate 2D descriptors, which 
consists of 206 descriptors in continuous and discrete values. 
The RDKit [38] and CDK software [39] were used to generate 
MACCS, ECFP4, AtomPair, Pubchem, and CDK fingerprints. 
Detailed information about these fingerprints can be found in 
ChemDes [28].

Machine learning algorithm
In order to explore the most suitable machine learning models 
for the designed multilevel framework, 10 classical algorithms 
that cover tree ensemble models and linear models were 
employed, including simple decision tree [40], random forest 
(RF) [41], adaptive boosting (AdaBoost) [42], categorical 
boosting (CatBoost) [43], gradient boosting tree (GBT) [44], 
eXtreme gradient boosting (XGBoost) [45], light gradient 
boosting machine (LightGBM) [46], extra tree (ET) [47], logistic 
regression (LR) [48] and linear kernel support vector machine 
(SVM) [49]. In addition, the MolMapNet [50] was chosen as a 
representative deep learning method for the comparison. These 
algorithms are either simple or complex, based on different 
principles, and have their own advantages. They have been 
successfully applied in different scenarios. They were imple-
mented in a customized Python (3.8.8) environment equipped 
with scikit-learn (1.0.2), molmap (1.3.6), xgboost (1.6.1), 
catboost (1.0.5), and lightgbm (3.2.1). All models using classical 
algorithms were constructed with 80% of the randomly split 

data set as the training set and the remaining as the test set to 
evaluate the model performance. In addition, a 5-fold CV of 
the training set was performed to ensure the robustness of the 
models. For MolMapNet, the dataset was randomly split into 
training set, validation set, and test set by 8:1:1 ratio.

Feature selection and explanation
A customized feature selection pipeline was adopted to depre-
cate redundant features and avoid unnecessary computational 
costs. MOE 2D descriptors with variance of zero were dropped. 
If high correlation (> 0.95) were found between 2 descriptors, 
one of them was reserved. An interpretable explanatory method 
named SHAP [51] was used to provide perspectives from the 
feature contributions in order to have a better understanding 
of the constructed model and the predictions. In this context, 
the Shapley values represent the feature contributions to each 
prediction and have an additive property to provide an over-
view of which features have the most contributions to a model. 
More importantly, Shapley values can shed light on the direc-
tional influence of a feature in a single prediction, which can 
help us to attribute prediction errors. Moreover, tree-based 
feature importance is also used to provide insights into the 
ranks of feature contributions in the model.

Quantitative calculation methods
Firstly, we used MOE to perform a conformational search on 
the ground-state structure of the compounds. After obtaining 
the structure with the lowest energy, we optimized the ground-
state structure of each compound based on PBE0/Def2-SVP, 
and then because of the different charge transfer properties of 
each compound, we performed the structural optimization of 
excited states based on PBE0 and CAM-B3LYP, respectively. 
After obtaining the most stable structure, we calculated the 
single-point energies based on PBE0/Def2-TZVP and CAM-
B3LYP/Def2-TZVP, respectively, to obtain more accurate excita-
tion energies. In the calculation of the potential energy surface, 
we use the flexible scanning method to obtain the ESIPT and 
TICT or PICT potential energy surface.

Chemical experimental characterization
Unless otherwise stated, all reagents and chemicals were 
purchased from qualified suppliers with required purities. All 
glassware was dried before use. Nuclear magnetic resonance 
spectra were measured on a Bruker AVANCE III HD 500-MHz 
spectrometer with tetramethylsilane as the internal standard. 
Mass spectrometry was performed on an Agilent Technologies 
6530 quadrupole time-of-flight liquid chromatograph-mass 
spectrometer. UV-vis absorption spectra were performed on 
a UV-2550 scanning spectrophotometer (Shimadzu, Japan). 
Fluorescent spectra were recorded on a Hitachi F-2700 equipped 
with a 1-cm quartz cell. Dynamic light scattering measure-
ments were performed at 25 °C on Zestier Nano ZS (Malvern 
Instruments Ltd, UK).

Bioimaging
MCF-7 cells and Hela cells were purchased from the Institute 
of Basic Medical Sciences (IBMS) of the Chinese Academy of 
Medical Sciences. The cells were cultured in Dulbecco's 
modified Eagle's medium supplemented with 10% fetal bovine 
serum and 1% antibiotics (100 U/ml penicillin and 100 μg/ml 
streptomycin) at 37 °C in a 5% CO2 atmosphere. Cells were 
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seeded in petri dishes (35 mm, Biosharp) for overnight culture. 
Then, the solution of selected probes (10 μM) and MTR (1 μM) 
were added to the cells and incubated for 30 min at 37 °C. After 
washing with phosphate-buffered saline 3 times, cells were 
imaged with a laser scanning confocal microscope (Leica TCS 
SP8, Germany).
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