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Abstract

Objective: Spastic paraplegia type 2 (SPG2) is an X-linked recessive (XLR)

form of hereditary spastic paraplegia (HSP) caused by mutations in proteolipid

protein 1 (PLP1) gene. We described the clinical and genetic features of three

unrelated families with PLP1 mutations and reviewed PLP1-related cases world-

wide to summarize the genotype–phenotype correlations. Methods: The three

probands were 23, 26, and 27 years old, respectively, with progressively aggra-

vated walking difficulty as well as lower limb spasticity. Detailed physical exam-

ination showed elevated muscle tone, hyperreflexia, and Babinski signs in lower

limbs. Brain MRI examinations were investigated for all cases. PLP1 mutations

were identified by whole exome sequencing, followed by Sanger sequencing,

family co-segregation, and phenotypic reevaluation. Results: A total of eight

patients with SPG2 were identified in these three families. The probands addi-

tionally had cognitive impairment, urinary or fecal incontinence, ataxia, and

white matter lesions (WML) in periventricular regions, with or without kinetic

tremor. Three hemizygous mutations in PLP1 were identified, including

c.453+159G>A, c.834A>T (p.*278C), and c.434G>A (p.W145*), of which

c.834A>T was first associated with HSP. Interpretation: We identified three

families with complicated SPG2 due to three PLP1 mutations. Our study sup-

ports the clinically inter-and intra-family heterogeneity of SPG2. The periven-

tricular region WML and cognitive impairment are the most common

characteristics. The kinetic tremor in upper limbs was observed in 2/3 families,

suggesting the spectrum of PLP1-related disorders is still expanding.

Introduction

Hereditary spastic paraplegia (HSP) is a highly clinically

and genetically heterogeneous group of neurodegenerative

diseases characterized by progressive spasticity of the

lower limbs.1,2 They are characterized by length-

dependent corticospinal tract and dorsal column degener-

ation with a prevalence ranging from 0.1 to 9.6/105

around the world.3 Currently, up to 101 genetic loci and

86 subtypes have been described in HSP, which can be

categorized into pure or complicated forms on the basis

of clinical features.4,5

In 1957, Blumel et al.6 first reported a family of

X-linked recessive (XLR) spastic paraplegia. Subsequently,

Keppen et al.7 demonstrated the location of the locus for

this disorder, designated Spastic paraplegia type 2 (SPG2,

OMIM # 312920), in the middle of the long arm of the

X chromosome. Saugier-Veber et al.8 found that prote-

olipid protein 1 (PLP1, NM_000533) is a possible candi-

date gene for SPG2 by narrowing the genetic interval in
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the X-linked SPG family reported by Bonneau et al.9

SPG2 is a rare subtype of XLR-HSP due to mutations in

PLP1 gene. Therefore, males who carry a PLP1 pathogenic

variant are mostly affected. However, neurological symp-

toms are occasionally observed in some female carri-

ers.10,11 Clinical phenotypes of SPG2 compromise pure

and complicated forms usually occurring in the first dec-

ade of life.11 The complicated form is characterized by

additional neurological dysfunctions, such as dysarthria,

ataxia, cognitive impairment, and nystagmus.12,13

Here, we described the clinical and genetic features of

three families with SPG2, and further summarized the

genotype–phenotype correlations.

Material and Methods

Participants

We identified three probands fulfilling the diagnosis of

HSP according to progressive spasticity of lower limbs

and walking difficulty.4 All probands and their family

members were clinically examined.

Ethical approval

Written informed consent was obtained from the patients.

The ethics committee of Shanghai Sixth People’s Hospital

Affiliated to Shanghai Jiao Tong University School of

Medicine approved the study.

Mutation analysis

Genomic DNA was extracted from peripheral blood lym-

phocytes with a standard phenol/chloroform extraction

protocol. Healthy individuals (n = 300) of matched geo-

graphic ancestry were included as normal controls. Exome

sequencing was performed for the patients, using Agilent

SureSelect v6 reagents for capturing exons and Illumina

HiSeq X Ten platform. Alignment to human genome

assembly hg19 (GRCh37) was carried out followed by

recalibration and variant calling. Population allele fre-

quencies compiled from public databases of normal

human variation [1000 Genomes (1000 g; http://browser.

1000genomes.org), the Exome Aggregation Consortium

(ExAC; http://exac.broadinstitute.org), dbSNP (https://

www.ncbi.nlm.nih.gov/projects/SNP/), NHLBI Exome

Sequencing Project (ESP) Exome Variant Server (http://

evs.gs.washington.edu/EVS), and the Genome Aggregation

Database (gnomAD; http://gnomad-sg.org/)] were used to

initially filter the data to exclude variants at >1& fre-

quency in the population. The variants were further inter-

preted and classified according to the American College

of Medical Genetics and Genomics (ACMG) Standards

and Guidelines.14 In this segment, two neurogeneticists

analyzed the inheritance pattern, allele frequency (from:

1000 g, ExAC, dbSNP, gnomAD, NHLBI Exome Sequenc-

ing Project (ESP) Exome Variant Server, and 300 healthy

controls), amino acid conservation, and nucleotide

pathogenicity prediction [Mutationtaster (http://www.

mutationtaster.org), PolyPhen-2 (http://genetics.bwh.

harvard.edu/pph2/), and Scale-invariant feature transform

(SIFT; http://sift. jcvi.org)]. The variants were further

interpreted and classified according to the ACMG guide-

lines.14 Putative pathogenic variants were further con-

firmed by Sanger sequencing both forward and reverse

strands.

Results

Clinical findings

Family 1 was comprised of five generations including

six male patients presenting with progressive muscle

weakness and spasticity in lower limbs. The proband

T1866 (IV:5 in Fig. 1A) was a 23-year-old male, with

progressive gait disturbance for 5 years. During school

days, poor performances of physical education examina-

tions were recorded. His initial symptoms appeared at

the age of 18 when he had difficulty in running and

climbing stairs. Three years later, abnormal walking pos-

ture and pes valgus were noticed. His symptoms pro-

gressively aggravated and mild cognitive dysfunction was

noted at the age of 23. Physical examination showed

hyperreflexia, weakness (4/5 on a medical research coun-

cil scale graded 0–5), bilateral ankle clonus, and Babin-

ski signs in lower limbs. At the age of 23, he was able

to walk alone slowly with a scissors gait and occasion-

ally experienced urinary incontinence. He scored 10

points in Spastic Paraplegia Rating Scale (SPRS). Mag-

netic resonance imaging (MRI) of the brain showed

white matter lesions (WML) in the periventricular

regions (Fig. 2A). Nerve conduction studies showed

impairment of deep sensory pathways in both lower

extremities. The similar symptoms and physical exami-

nation results of his 29-year-old brother T2137 (IV:4 in

Fig. 1A) were recorded. However, he manifested with a

more complicated and much severer phenotype, includ-

ing platypodia, sensory disturbance of distal extremities,

kinetic tremor in upper limbs, delayed motor mile-

stones, mental retardation after birth, and schizophrenia

at the age of 17. Right now, he is still able to walk

alone slowly with a scissors gait without assistance. He

scored 17 points in SPRS.

In Family 2, the proband T6956 (II:1 in Fig. 1B) was a

26-year-old male with progressive unsteady gait and leg

stiffness for 5 years. He had severe ichthyosis for 19 years
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and hyperuricemia for 4 years. The physical examination

showed hyperreflexia, weakness (4/5), bilateral ankle clo-

nus, and Babinski signs in the lower limbs. Recently, he

complained about a moderate decline in recent memory.

At the most recent outpatient visit, he was able to walk

independently on flat ground with a scissors gait. He

scored 12 points in SPRS. The results of MRI showed

WML in the periventricular regions (Fig. 2B) and multi-

ple Schmorl’s nodes in lumbar vertebrae.

In Family 3, the proband T0650 (II:1 in Fig. 1C) was a

27-year-old male with gait disturbance. Leg weakness,

drag-to and toe-walking gait were first noted between the

age of 2 and 3 years old. Later on, he had kinetic tremor

in upper extremities, especially when taking chopsticks

and fastening buttons. He had fecal and urinary inconti-

nence since early childhood. Neurological examination

showed dysarthria, right horizontal nystagmus, and invol-

untary movements of lip with mild cognitive impairment.

Figure 1. Pedigree of three families with SPG2 and conservation analysis of the PLP1 mutations among different species. The pedigree is shown

with squares representing males, circles representing females; black-filled symbol representing affected, the white symbol representing unaffected,

and the half white and half black symbol representing heterozygous carriers, respectively. (A) Pedigree of Family 1. Sequence chromatogram of

PLP1 gene displays one hemizygous intronic mutation c.453+159G>A in the proband (IV:5), which was identified in his mother (III:4) and affected

brother (IV:4) but negative in his father (III:5). (B) Pedigree of Family 2. Sequence chromatogram of PLP1 gene displays one hemizygous elongation

mutation c.834A>T (p.*278C) in the proband (II:1), which was identified in his mother (I:2) but negative in his father (I:1). (C) Pedigree of Family

3. Sequence chromatogram of PLP1 gene displays one hemizygous de novo mutation of c.434G>A, p.W145* in the proband (II:1), which was

negative in both parents (I:1 and I:2). (B,C) The mutations located in the highly conserved region of proteins are shown in the bottom half. Red

square frame: mutant amino acid.
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He had reduced strength (4/5), and increased muscle tone

in his lower limbs, without muscle atrophy. Tendon

reflexes were brisk in lower limbs with bilateral ankle clo-

nus and bilateral Babinski signs. Abnormal results were

disclosed bilaterally during the finger-to-nose test, heel–
knee-tibia test, and Romberg test. The patient was able to

walk slowly with the help of walker with a scissor gait.

Brain MRI showed symmetrical diffuse hyperintensity in

bilateral paraventricular central semiovale, posterior limb

of internal capsule, corpus callosum, bilateral cerebello-

pontine brachium conjunctivum, and medulla oblongata

on T2-weighted sequences.

The detailed clinical features of the four patients are all

summarized in Table 1.

Genetic findings

A hemizygote intronic variation c.453+159G>A in PLP1

gene was identified in the proband (IV:5), his elder

brother (IV:4) and their mother (III:4) which was nega-

tive in the unaffected father (III:5) of Family 1 (Fig. 1A).

An elongation mutation c.834A>T (p.*278C) was dis-

closed in the proband (II:1) and his mother (I:2) but was

negative in the unaffected father (I:1) of Family 2

(Fig. 1B). In Family 3, a de novo nonsense variant

c.434G>A (p.W145*) was detected in the proband (II:1)

which was negative in both parents (I:1 and I:2, Fig. 1C).

The amino acid sites affected are all highly conserved

among different species. All of the three variants were not

identified in 300 healthy controls, 1000 Genome Project

(http://browser.1000genomes.org), NHLBI Exome

Sequencing Project (ESP) Exome Variant Server or ExAC,

and were predicted as “disease causing” by multiple sili-

con software. c.434G>A has been recorded in dbSNP

(rs132630292). According to ACMG guidelines,14 all the

variants in PLP1 genes are classified as “pathogenic”

(Table 1).

Discussion

PLP1-related disorders include a wide spectrum of XLR

neurodegenerative dysfunctions. So far, a total of 392

PLP1 mutations have been reported to be associated with

SPG2, multiple sclerosis, hypomyelination of early myeli-

nating structures (HEMS), Pelizaeus–Merzbacher disease

(PMD), autism, neurodevelopmental disorders, and early-

onset neurological disease trait (EONDT),15–27 which dif-

fer in the onset, severity of symptoms and neuroimaging

findings.17 Among these, PMD typically manifests as sev-

ere spasticity, ataxia, nystagmus, hypotonia, cognitive

impairment, WML, and shortened lifespan, usually with

onset in infancy or early childhood.28 However, SPG2

patients usually have normal life span.11 HEMS represents

an intermediate phenotype between PMD and pure

SPG2.29 Among these, sever PMDs are usually due to

duplication mutations and gross insertions,30 while milder

Figure 2. Brain MRI of patients with SPG2. (A) (patient T1866) and (B) (patient T6956) showed hypersignal intensity of white matter in

periventricular regions on Flair-weighted sequences.
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forms, such as SPG and milder PMD, could be related

with mutations in less conserved regions.31

Up to now, 32 mutations have been documented to

cause SPG2, including 12 missense mutations, 3 nonsense

mutations, 7 frameshift mutations, 4 splicing mutations,

and 6 deep intronic mutations, which distribute in differ-

ent exons and introns, such as exon1 (1), exon2 (2),

exon3 (10), exon4 (3), exon5 (2), exon6 (1), exon7 (3),

and intronic regions (10) (Fig. 3). Intronic mutations

included c.454-2A>G, del 26 bp beginning of intron5,

c.192-2A>T, c.622+1G>A, c.622+2T>C, c.4+78_4+85del,
c.4+1406_*2137del33565, c.-2150_5-3963del6774, c.-

64626_5-1905del71308, and c.453+159G>A. The muta-

tions in intron3 have been showed to alter PLP1/DM20

alternative splicing, resulting in the reduced PLP1/DM20

ratio.27,32,33 So far, a total of 36 SPG2 families have been

reported worldwide, including 66 males and 16

females.8,10,18,31,34–54 SPG2 usually starts before age 10,

while adult cases have also been reported.45,48 All patients

presented with gait abnormality (100%, 54/54). Moreover,

complicated form is predominant (81.48%, 44/54), which

is characterized by cognitive impairment (44.44%, 24/54),

nystagmus (31.48%, 17/54), dysarthria (29.63%, 16/54),

and ataxia (27.78%, 15/54). Physical examination showed

Babinski sign (100%, 54/54), lower limbs hypertonia

(96.30%, 52/54), and hyperreflexia (88.89%, 48/54) in

lower limbs weakness (35.19%, 19/54). In MRI, thin cor-

pus callosum (8.89%) and leukoencephalopathy (88.89%)

are common neuroimaging findings, which mostly

involve the periventricular regions, parieto-occipital,

internal capsule, corpus callosum, subcortical, medulla,

thalamus, and brainstem.10,31,34,36–38,40,43,45,46,48,53,55

Abnormal nerve conductive velocity accounts for 64.71%

(11/17) (Fig. 4).

PLP1 gene is located in Xq22.2 containing 7 exons and 6

introns, and it spans approximately 17 kb.12 It encodes

proteolipid proteins PLP1 and one spliced isoform DM20,

which account for more than 50% of the total protein mass

of myelin in central nervous system (CNS).56 The patho-

genesis mechanism lies in misfolded protein accumulation

in endoplasmic reticulum (ER), toxic overexpression, and

loss function of PLP1.57–59 DM20 contains 242 amino

acids, which differs from PLP1 (277 aa) in a deletion of 35

amino acids (117–151) from the major hydrophilic

domain.60 PLP1 and DM20 play an important role in stabi-

lizing and maintaining the myelin sheath and in the devel-

opment of oligodendrocytes precursors.56,61 Genomic

deletions of PLP1 directly lead to the physically fragile mye-

lin sheath, which is susceptible to subsequent demyelina-

tion.62 While, overexpression of PLP1 also results in

perturbed myelination and reduced viability of oligoden-

drocytes via cholesterol and PLP1 accumulation as well as

mis-trafficking of raft components.63 Some femaleT
a
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heterozygous carriers may develop late-onset gait distur-

bance, which is probably due to skewed inactivation of the

wild-type allele on the X chromosome.10,52 Indeed, female

carriers with a gross deletion in PLP1 are likely to present

with EONDT (severe developmental delay, intellectual

disability, and behavioral abnormalities).18,19 Furthermore,

the phenotypic heterogeneity of PLP1-related disorders

might be related with variable genetic background, the con-

tribution of genetic modifiers of PLP1 as well as the envi-

ronmental factors.64–66

Figure 3. Schematic diagram of PLP1 structure and summary of genotype–phenotype correlations of SPG2. Mutation spectrum of SPG2. The

schematic diagram of PLP1 structure with all mutations in exons associated with SPG2 were highlighted with different colors. Intronic mutations

were listed in the left bottom. Genotype–phenotype correlations of SPG2 were highlighted with different colors. PLP1 is 30 kDa tetraspanin

protein with -NH2 and -COOH termini in cytoplasm. Full length of PLP1 (NM_000533) contains four transmembrane domains [A (aa from 10–36);

B (aa 64–88); C (aa 152–177); D (aa 234–260)] and five topological domains [a (aa 2–9); A,B (aa 37–63); B,C (aa 89–151); C,D (aa 178–233); d

(aa 261–277)]. These mutations distributed in different domains, such as “a” (22.22%, 2/9aa), “A” (3.70%, 1/27), “A,B” (0%, 0/27), “B”

(8.00%, 2/25), “B,C" (8/63, 12.70%), “C” (2/26, 7.69%), “C,D" (3/56, 5.36%), “D” (1/27, 3.70%), “d” (3/17, 17.65%). Yellow balls: amino

acids in topological domains; red balls: amino acids in transmembrane domains; green balls: known mutations associated with SPG2; purple balls:

mutations reported in this study; EC, extracellular; IC, intracellular; NH2, amino terminal; COOH, carboxyl terminal; aa, amino acids.
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Excitingly, potential therapeutic targets for PLP1-

related disorders are emerging. Morpholino antisense oli-

gomers could significantly shift alternative splicing toward

PLP1 expression in oligodendrocyte cell line.67 Colony-

stimulating factor 1 receptor (CSF-1R) inhibitor PLX3397

could significantly reduce resident microglia and T-

lymphocyte recruitment in the CNS of two PLP1 mutant

mouse models.68,69 In addition, umbilical cord blood

transplantation could delay the PMD’s progression and

improve myelination.70 Furthermore, cytotoxic drugs

VX680 or 5azadC successfully reversed the abnormal X-

chromosome inactivation and restored expression of the

wild-type allele in the female carrier-derived lympho-

blastoid cell line.52

Conclusion

Overall, our study reported three families with SPG2, in

combination with cognitive impairment, WML, with or

without ataxia and tremor. The kinetic tremor in upper

limbs was observed in 2/3 families, suggesting the spec-

trum of PLP1-related disorders is still expanding.

Figure 4. Clinical features of SPG2 patients with PLP1 mutations. For each clinical feature, the proportion of patients is indicated. Blue: clinical

symptoms; yellow: physical examinations; green: imaging and electrophysiological findings. UL, upper limbs; LL, lower limbs; ASD, anal sphincter

dysfunction; NCV, nerve conduction velocity.
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