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Abstract

Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to 

various external stimuli by consuming different amounts of energy. In this work, we use methods 

from large deviation theory to identify a thermodynamic control principle for structural transitions 

in a model cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with 

respect to the work done by nonequilibrium components effectively renormalizes the interaction 

strength between such components, which can eventually result in a morphological transition. 

Our work demonstrates how a thermodynamic quantity can be used to renormalize effective 

interactions, which in turn can tune structure in a predictable manner, suggesting a thermodynamic 

principle for the control of cytoskeletal structure and dynamics.

The actin cytoskeleton is a paradigmatic example of an adaptive biomaterial that regulates 

important biophysical properties of the cell, such as its structural integrity, motility, and 

signaling, by adopting various nonequilibrium morphologies [1-3]. While there have been 

many efforts to unravel the driving forces responsible for sustaining many of these structures 

[1, 4-9], a clear thermodynamic understanding of the underlying principles governing their 

adapative properties has remained elusive [10]. Here, using tools from large deviation 

theories [11], we provide evidence that a nonequilibrium thermodynamic control framework 

can indeed predict and rationalize adaptive structural transitions in cytoskeletal networks. 

Specifically, the central question motivating our work is: Can we predict how a cytoskeletal 

network adapts its structure to external conditions (e.g., conditions requiring the formation 

of a contractile bundle) by controlling its energy budget?

To answer this question, we introduce a model that resembles in vitro biomaterials 

consisting of actin filaments and molecular motors (Fig. 1(a)), and exhibits two well-known 

phases of such assemblies: asters and bundles (Fig. 1(b)) [2, 4]. The core of the bundles 

is composed of anti-parallel actin strands resembling morphology found in stress fibers 

†Corresponding author. svaikunt@uchicago.edu.
*These authors contributed equally to this work.

Additional references included in the SI are Refs. [37-39].

HHS Public Access
Author manuscript
Phys Rev Lett. Author manuscript; available in PMC 2023 March 14.

Published in final edited form as:
Phys Rev Lett. 2022 September 16; 129(12): 128002. doi:10.1103/PhysRevLett.129.128002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and cytokinetic rings [12, 13]. The transition between these two states can be achieved 

in our model by modulating a material parameter related to the motor stiffness. Our 

main result shows how, by controlling the statistics of the rate of work done by the 

motors, the cytoskeletal network can transition between asters and bundles, thus generating 

configurations characteristic of different microscopic material properties. Importantly, this 

transition is now achieved even when the microscopic makeup of the cytoskeletal material 

(i.e., motor stiffness, motor speed, filament concentrations) are all held fixed.

We obtain our results by building on recent theoretical studies [11, 14-17], based on large 

deviation theory [18, 19] and stochastic thermodynamics [17, 20, 21] and applying them 

to our model actomyosin system. The framework of large deviation theory provides a 

convenient way to control the rate of work by applying a dynamical bias to an ensemble 

of trajectories, namely a series of time realizations for the coordinates of motors and 

filaments. Combining detailed and specialized simulations with phenomenological theory, 

we reveal that the configurations generated with such a dynamical bias resemble those that 

would have been generated with a specific renormalization of the microscopic material 

properties. Specifically, for the regimes investigated here, given a cytoskeletal biomaterial 

composed of filaments and motors with a set stiffness and biochemical makeup, we show 

how configurations characteristic of different values of motor stiffness can be accessed by 

simply modulating the statistics of the work done by the motors.

Our results suggest that controlling the rate of work, which could be achieved in practice 

by changing the consumption of chemical fuel [22, 23], can be regarded as a basic design 

principle for the development of an adaptive biomaterial. Below, we first introduce the 

microscopic coarse-grained description of actomyosin networks that we use in this paper. 

Next, we introduce tools of large deviation theory such as trajectory biasing, that allow us to 

probe the response of the system as the statistics of the work done by the motor are tuned. 

Finally, our main results in Fig. 2 demonstrate how a biomaterial can access different classes 

of configurations, even though its microscopic makeup remains the same, when tuning the 

statistics of the work done by molecular motors.

Inspired by the rich phase diagram exhibited by actomyosin systems both in vivo [24] and 

in vitro [2, 4, 25], we study the organization of short polar filaments connected by molecular 

motors using a coarse-grained platform, Cytosim [26]. Actin filaments and motors are, 

respectively, modelled as semi-flexible polymers and Hookean springs with filament binding 

sites at the two ends (Fig. 1(a)). Each motor head can bind to a filament and walk along 

its length towards the barbed end. When both motor heads are bound, the spring exerts a 

force f m on the motor head in the direction pointing from the motor head to the center of 

the motor. The magnitude of f m is determined by the motor rigidity, k, and the length of the 

spring, l: ∣ f m ∣ = kl. This force then modulates the loaded speed of each motor head vm as 

[26]:

vm = v0(1 + f m ⋅ d ∕ f0), (1)
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where d is the unit vector pointing from the motor head to the barbed end of the filament, f0 

and v0 are friction force and velocity constants, respectively. As the motor heads walk along 

the filaments, they transmit the forces originating from the motor springs, and in response, 

the actin filaments can assemble into specific structures.

The phase diagram obtained by tuning the motor rigidity k and the motor unloaded velocity 

v0 is described in Fig. 1(c-e). We characterize various regimes by calculating the size of the 

largest cluster of the filament-motor cluster (Fig. 1(d)), and its radius of gyration Rg (Fig. 

1(e), Section S1C). Values of Rg larger than half the length of a single filament indicate 

elongated bundle-like structures. Long bundles form at large k, and decreasing k reduces Rg 

until it reaches a plateau value corresponding to a radial arrangement of filaments, namely 

asters (Figs. S1 and S2). This trend is consistent across different values of v0 (Fig. S2). 

Neither bundles nor asters form when the unloaded motor velocity v0 exceeds a critical 

value, in which case a diffuse isotropic phase is observed. Our asters and bundles share 

core characteristics with those observed in experiments, such as the antiparallel alignment of 

filaments in sarcomeric bundles and stress fibers [27] and clusters of radial filaments in vitro 
[1, 28] (Fig. S1).

The rate of work due to the relative motion of the motor on the actin filament is defined as

w. = ∑
m

f m ⋅ v m, (2)

where m runs over the number of motor heads (Fig. 1(a)). In what follows, we focus on the 

range of v0 where the bundle-aster transition occurs, which is associated with a change of 

sign of the average rate of work 〈w. 〉 (Fig. 1(c)). In this regime, we aim to demonstrate that 

the transitions and structural changes that can be achieved by modulating the motor stiffness 

can equivalently be achieved, even when the motor stiffness and other material properties are 

held fixed, by modulating the statistics of w.  using tools from large deviation theory.

Specifically, we bias the trajectories generated in our simulations according to the rate of 

work (using cloning algorithm [29, 30], see Section S1E) such that the probability of biased 

trajectories reads

Pα ∝ P0 eα∫0
τw. dt, (3)

where P0 is the probability of the trajectory in the absence of biasing, and τ the time 

duration of the trajectories. The parameter α tunes the strength and direction of the bias. In 

practice, trajectory biasing against the rate of work w.  can be considered as a way to probe 

the response of the system as the statistics of w.  are tuned [19]. Besides, the specific choice 

of exponential reweighting in Eq. (3) ensures that the distance between original and biased 

dynamics, as measured by the Kullback-Leibler divergence of their respective trajectory 

probabilities, is minimal [19]. Below, we show that the configurations accessed when tuning 

the statistics of w.  resemble those that would have naturally emerged in a material with a 

renormalized motor rigidity k.
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Before proceeding to our numerical results, we first motivate how applying dynamical 

bias might impact system properties by considering a minimal phenomenological 

model of an actomyosin network [31]. Focusing on a simpler transition between an 

isotropic state and a state with asters, we show in Section S2 that the dynamics of a 

relevant order parameter, ψ, may be described in terms of an effective free energetic 

landscape ℱ(ψ) = − aψ + bψ2 − cψ3 + dψ4, with {a, b, c, d} as phenomenological parameters. 

Importantly, the phenomenological terms b and c are modulated by microscopic material 

constants such as k and v0, which can explain how the transition from the isotropic state to 

aster can be achieved by tuning the analogue of the motor rigidity in the phenomenological 

model (Section S2). Furthermore, we show how the application of a trajectory bias eα∫0
τg(ψ) dt

results in dynamics that, at small noise, are equivalent to those generated by an effective free 

energy landscape [30, 32] but with renormalized phenomenological constants (Section S2B). 

The probability distributions generated by biasing with various values of α are shown in Fig. 

2(a).

This simple perturbative analysis reveals how an application of the bias can renormalize 

the phenomenological constants b and c, effectively altering the motor rigidity. It also 

reveals how structural transitions obtained by tuning k might also be achieved by tuning 

α. This phenomenological model makes it reasonable to speculate that biasing the statistics 

of w.  in our coarse-grained simulations might effectively change the motor spring stiffness, 

opening up a different route to a structural transition. To confirm this intuition, we report 

in Fig. 2(b-c) snapshots of the structure obtained in the biased dynamics without changing 

motor rigidity k (Section S1E), along with those of unbiased simulations with varying 

k. The similarity between these structural changes shows that biasing against w.  alone is 

indeed sufficient to induce the filament-motor system to move across the bundle-aster phase 

boundary. It also suggests that biasing as in Eq. (3) might be effectively equivalent to 

modulating motor rigidity.

To quantify the effect of biasing on structure, we measure the relative alignment of filaments 

through the order parameter sin θ, where θ is the angle between neighboring filaments. 

We evaluate the order parameter by averaging sin θ over the nearest neighbors for each 

filament (Section S1F). The distribution, P(sin θ), is shown for all filaments in the largest 

filament-motor cluster (Fig. 2(d)). For bundles at large k, the peak at sin θ ≈ 0.25 reflects 

parallel orientation of filaments. The distribution shifts towards larger values of sin θ as k 
decreases and the filaments rearrange into a radial aster. This order parameter sin θ is related 

to the radius of gyration Rg used to illustrate structural changes in Fig. 1e, but they are not 

equivalent. sin θ is more sensitive to the aster-bundle transition (Section S1F). Therefore, 

we use sin θ to quantify the effect of biaisng. For each biasing parameter α, we define the 

effective motor rigidity keff by matching the distribution P(sin θ) measured in the biased 

dynamics with distributions obtained in the unbiased dynamics at k = keff. In practice, this 

matching is done by minimizing the divergence between these two distributions (Section 

S1G), leading to a very good agreement between them (Fig. 2(d)). Repeating this operation 

for different values of bias parameter α and unloaded motor velocities v0, we obtain Fig. 

2(e), which recapitulates the effect on the system structure of biasing the dynamics. This 
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correspondence confirms that the effect of biasing against the rate of work is indeed fully 

accounted for as an effective change of motor rigidity, all other parameters being equal.

Finally, since varying motor rigidity k at fixed velocity vo leads to a transition between 

two distinct morphological states, asters and bundles, we aim at constructing a two-state 

model which, although minimal, is sufficient to rationalize quantitatively the effect of 

dynamical bias. We begin by assuming that the dynamics associated with the transition 

can be described by a master equation P
.

= W P , where P is the column vector with elements 

{Paster, Pbundle}, and W is the transition rate matrix:

W = −Rab Rba

Rab −Rba
. (4)

The entries Rab and Rba are meant to model the transition rates from aster to bundle and 

from bundle to aster, respectively. We express these rates using the Arrhenius law, Rab 

= A exp[−βεbundle] and Rba = A exp[−βεaster], where the energies of aster and bundle 

states are given by εaster and εbundle, respectively, and A is an Arrhenius prefactor. For 

convenience, we work in units such that A =1 and β = 1/(kBT) = 1, and we set εbundle = 0. 

To quantitatively connect this two-level picture with the simulation results of Cytosim, we 

relate energy levels to distributions by

εaster = − ln P aster

1 − P aster
, (5)

where Paster is extracted from numerical data as ∫sin θc
1 P (sin θ) d sin θ with the choice 

sin θc = 0.6, see Fig. 2(d).

The effect of applying a dynamical bias with respect to w.  is then recapitulated in terms of 

the master equation P
. (α) = W (α)P (α). The transition matrix W (α) reads

W (α) = −Rab + α w. aster Rba

Rab −Rba + α w. bundle
, (6)

where w. aster and w. bundle are the rate of work for the aster and bundle states, respectively. 

The biased transition matrix is known as a “tilted” matrix, and is constructed based on the 

principles of large deviation theory [18, 33] (Section S3A). We show that, to leading order in 

the bias α (Section S3B), the effective energy level in biased dynamics εaster
(α)  can be expressed 

as [17]

εaster
(α) ≈ εaster − α (w. aster − w. bundle)

1 + Rba
. (7)

Eq. 7 hence predicts how the energy barriers may be modified due to biasing α. This 

equation can be used to obtain a prediction for keff as a function of α by plugging the 

estimate of the modified barrier in Eq. 5 and looking up the value of k at which the 

estimate of Paster best matches the modified barrier height. The quantity w. aster − w. bundle in Eq. 
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(7) is best estimated from numerical values of 〈w. 〉 close to the aster-bundle transition. To 

generalize this relation to regions away from the transition, we look to the meaning of 

w. aster and w. bundle bundle in our two-state model. Specifically, these quantities are meant to 

denote the typical values of w.  in the regimes of high and low sin θ, respectively. Since 

away from this transition, the distribution P(sin θ) is dominated by either the bundle or the 

aster phase, the difference in the typical values of w.  at high and low sin θ is reduced. 

To effectively capture this reduction, we assume that, to leading order, w. aster − w. bundle is 

proportional to the slope of the w.  versus k curve, with the proportionality constant as a 

fitting parameter. This assumption, along with numerical estimates of εaster for a range of 

k values, enable us to predict how keff changes with the biasing parameter α (Section S3). 

Our prediction is in good agreement with keff obtained numerically by directly matching 

the structure distributions taken from the biased and unbiased dynamics (Fig. 2(e)). This 

agreement shows that our two-state model, although providing an over-simplified picture of 

the underlying dynamics, indeed captures the effective modulation of motor rigidity due to 

biasing the dynamics with respect to the rate of work.

A feature of probing the response of the system to w.  modulation in this manner (using 

the tools of large deviation theory) is that we do not provide any explicit protocol for 

how to perturb the energy consumption. We envision that experiments can be done by 

deploying active components such as light-sensitive motors [6, 8], or by fueling the system 

with different ATP supplies [22, 23], which might provide a physical route for achieving 

such a perturbation. Our central results hence suggest a new route for the modulation of 

cytoskeletal material properties through the regulation of underlying energy consumption.

The ideas presented here are complimentary to existing hydroynamic treatments of 

actomyosin networks [34, 35]. These seminal works have shown how various actomyosin 

phases may be accessed by tuning phenomenological parameters, which in turn affects 

energy consumption (although in a way which can prove difficult to predict). Instead, our 

results reveal that directly tuning energy consumption, now in a much more predictable 

manner, is also a route to inducing structural transitions. While we focus here on the 

connection between w.  and network structure, our work may also provide a roadmap for 

understanding how cytoskeletal networks adapt to changing external stress conditions. 

Indeed, when the motor head velocity is a constant, w.  is simply proportional to the force 

exerted by motors along the axis of the actin filament (Eq. (2)). In these regimes, tuning 

the statistics of w.  is equivalent to tuning the axial forces exerted on the filaments. From 

a biological perspective, our work paves the way towards a thermodynamic understanding 

of the control principles regulating the cytoskeleton, to rationalize both how it adapts its 

structure to external cues [6, 8], and how spontaneous flows can form as a result of internal 

activity [36].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Structural transition between asters and bundles. (a) Schematic of two filaments (blue) 

connected by a motor (orange). The motor is modeled as a Hookean spring with rigidity k. 

The motor force ∣ f m ∣ is proportional to motor rigidity k. Each motor head (dark orange) 

binds to one filament and moves towards the barbed (+) end with velocity v m (Eq. (1)). 

When the motor is bound to two filaments, the rate of work done by the motor spring (w. )

is computed as the sum of f m ⋅ v m over the two motor heads. (b) Tuning k induces the 

structural transition between asters and bundles. (c) Color map of 〈w. 〉. Asters and bundles 

are respectively associated with positive and negative values of 〈w. 〉. (d) Color map of the 

largest cluster size. A system with no cluster larger than 40 is considered to be isotropic. (e) 

Color map of radius of gyration Rg of the largest cluster. The boundary between bundle and 

aster is Rg = 0.125. The boundary of isotropic is the same as in (d).
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FIG. 2. 
Dynamical bias effectively renormalizes the motor rigidity k. (a) Probability distribution 

obtained by biasing the dynamics of a given order parameter ψ (with free energy 

ℱ(ψ) = − aψ + bψ2 − cψ3 + dψ4) with respect to ψ. Parameters: a = 4d = −b = −30c = 

1. Biasing parameter: α = 0 (unbiased dynamics, blue), 0.005 (green), 0.1 (orange) and 

0.3 (purple). (b) Snapshots of unbiased simulations with changing motor rigidity k. (c) 

Snapshots of simulations from biased simulations with fixed motor rigidity k = 3. (d) The 

statistics of structure from biased dynamics matches with that from an unbiased simulations 

at a different k. The order parameter sin θ is calculated from angles between neighboring 

filaments and averaged across nearest neighbors. Matching the distribution of sin θ from 

biased (black lines with the error bar shown with gray area) and unbiased simulations (red 

and blue) results in defining an effective rigidity keff. (e) Effective rigidity keff as a function 

of bias parameter α at v0 = 0.8 (black), 1.0 (magenta), and 1.2 (green). The two green curves 

correspond to k = 3 and 2.8 analyzed for v0 = 1.2. Filled points are obtained by matching 

structures from biased and unbiased simulations. Hollow points are analytical predictions 

derived from the two-state model (Eq. (7)).
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