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Artificial intelligence (AI) involves using data and 
algorithms to perform activities normally achieved 
through human intelligence. AI and its key com-
ponent machine learning contextualize data and 
enhance decision making to transform how we oper-
ate, discover, and develop drugs. Transforming clini-
cal pharmacology (CP) as AI- augmented CP (AI/
CP) requires an ecosystem including digitized data 
collection, standardized processes, complementary 
technologies, and an ethical framework. This com-
mentary aims to highlight the future perspectives of 
AI/CP in drug development.

DIGITAL AND DATA 
CONSIDERATIONS

For	 decades,	 clinical	 pharmacologists	 have	 embraced	
the	 mathematical	 representation	 of	 physiology	 and	 ex-
plored	modeling	options	to	derive	relationships	between	
drug	 and	 temporal	 changes	 in	 pharmacokinetics	 (PK)	
and	 pharmacodynamics.	 Now,	 as	 an	 evolution	 toward	
defining	better	therapies,	we	strive	toward	more	digitiza-
tion.	 Digitized	 drug	 interaction	 databases,	 for	 example,	

consisted	of	curated	qualitative	and	quantitative	data	re-
lated	 to	various	extrinsic	and	 intrinsic	 factors,	 including	
comedications,	 excipients,	 food	 products,	 organ	 impair-
ment,	and	genetics	that	can	affect	human	systemic	drug	
exposure.	Besides,	digital	biomarkers	(measured	by	means	
of	 digital	 devices	 such	 as	 portables,	 wearables,	 implant-
able)	provide	new	and	faster	data	in	real	time,	giving	cli-
nicians	a	better	understanding	of	how	medication	impacts	
the	disease	and	its	interaction	with	an	individual's	overall	
health.	With	recent	advancements	in	collecting	electronic	
health	records	and	processing	patient	genomics	data,	digi-
tal	twins	and	virtual	populations	are	becoming	achievable.	
With	 the	 development	 of	 natural	 language	 processing–	
like	 techniques,	 artificial	 intelligence	 (AI)	 models	 could	
use	physician	notes	and	laboratory	books	as	data	for	pre-
dictive	modeling.	With	the	development	of	the	Internet	of	
Things	(network	of	devices	work	together	seamlessly	con-
necting	medical	devices	and	databases),	it	is	now	possible	
to	collect	more	electronic	data	 than	ever	using	wearable	
devices.	The	availability	of	curated	databases,	real-	world	
evidence	 databases,	 patient-	centric	 sampling,	 and	 futur-
istic	wearable	data	would	provide	the	foundation	for	AI/
clinical	 pharmacology	 (CP)	 to	 develop	 and	 deliver	 life-	
changing	medicine	for	patients.
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OPPORTUNITIES IN CP

Our	expectation	for	AI-	augmented	CP	is	to	enable	accu-
rate	 predictions,	 drive	 making	 unbiased	 decisions,	 and	
provide	efficient	CP	systems	(Figure 1)	to	deliver	the	core	
part	 of	 the	 guidance	 to	 the	 prescriber	 (e.g.,	 labels,	 sum-
maries	of	product	characteristics).	In	this	perspective	we	
focus	 on	 the	 intersection	 of	 AI	 and	 the	 field	 of	 clinical	
pharmacology	with	a	focus	on	the	potential	impact	of	AI	
in	these	aspects:	dose	recommendations,	drug	interaction,	
variability	in	PK	and	patient	stratification/selection.

DOSE RECOMMENDATIONS

A	dose-	recommender	system	based	on	AI/machine	learn-
ing	(ML),	which	integrates	data	across	domains	including	
but	not	limited	to	multiple	safety	and	efficacy	measures,	
electronic	 records	 about	 current	 health	 status,	 informa-
tion	about	the	disease	and	previous	treatment	history,	and	
patient-	reported	outcomes,	would	provide	tailored	dosing	
options	 for	patients,	 enhancing	efficacy	and	minimizing	
adverse	events.	Currently,	reinforcement	learning–	based	
algorithms	 showed	 potential	 for	 dose	 predictions	 and	
dose	 modifications	 during	 treatment	 by	 precision	 dos-
ing	for	oncology	patients.1	The	Dose–	Response	Network2	
uses	deep-	learning	(DL)	approaches	that	can	estimate	in-
dividual	patient	outcomes	at	different	 intervals	of	dose–	
response	 curves.	 The	 ability	 of	 AI	 to	 recommend	 doses	
in	 counterfactual	 conditions	 is	 questionable.	 However,	

generative	 adversarial	 networks,	 with	 their	 ability	 to	
learn	 from	 current	 data	 and	 expand	 the	 learning	 to	 the	
unknown	dose–	response	surface,	could	revolutionize	in-
dividualized	dose–	response	curve	predictions.2

DRUG INTERACTIONS AND 
ADVERSE REACTIONS

CP-	based	 impact	 on	 prescribing	 information	 depends	
predominantly	 on	 studies	 evaluating	 drug–	drug	 inter-
actions	 (DDIs),	 drug–	food	 interaction,	 bioavailability,	
and	 PK	 changes	 in	 special	 populations.	 However,	 this	
information	 is	 limited	 compared	 to	 the	 potential	 drug	
interactions	in	clinical	practice	and	real-	world	settings.	
AI/CP	can	expand	beyond	the	patient	population	evalu-
ated	in	clinical	studies.	Innovative	algorithms	based	on	
knowledge	 graphs	 (KGs)	 showed	 the	 potential	 to	 pre-
dict	unknown	adverse	drug	reactions,3	DDIs,	and	drug–	
food	interactions.4	Bougiatiotis	et	al.5	demonstrated	the	
utility	of	biomedical	literature	KGs	and	link	prediction	
models	 to	 assess	 the	 DDIs	 in	 Alzheimer's	 disease	 and	
lung	cancer.	With	the	help	of	the	KG	framework,	exist-
ing	physiologically	based	PK	(PBPK)	expertise	and	data	
sources	 (see	 Digital	 and	 Data	 Considerations),	 clinical	
pharmacologists	 can	 project	 potential	 and	 dangerous	
DDIs	 due	 to	 simultaneous	 administration	 of	 multi-
ple	 drugs.	 This	 provides	 opportunities	 to	 include	 both	
known	and	unknown	(potential)	DDIs	in	patient	infor-
mation	leaflets.

F I G U R E  1  Potential	application	
of	artificial	intelligence	and	machine	
learning	in	clinical	pharmacology.	AI,	
artificial	intelligence;	ML,	machine	
learning;	PK,	pharmacokinetics
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VARIABILITY AND PATIENT 
STRATIFICATION/SELECTION

In	clinical	practice,	 therapeutic	drug	monitoring	offers	
dose	 recommendations	 for	 drugs	 with	 relatively	 high	
variability	 in	 PK	 and	 a	 narrow	 therapeutic	 index.	 AI/
ML	has	demonstrated	better	dose	recommendations	for	
propofol	and	remifentanil	with	 less	error	 in	predicting	
bispectral	index	during	anesthesia	than	traditional	mod-
eling	 methods.6	 AI/ML	 approaches	 can	 now	 recognize	
patterns	by	identifying	complex	and	nonlinear	relation-
ships	and	the	influence	of	intrinsic	and	extrinsic	factors	
on	the	variability	of	PK	in	different	subpopulations.	We	
envision	that	integrating	ML	capability	with	population-	
based	 approaches	 would	 help	 further	 explain	 PK	 vari-
ability	and	offer	options	to	modify	dose	in	subgroups	of	
patients.

US	Food	and	Drug	Administration	guidance7	on	clini-
cal	trial	enhancement	strategies	suggest	including	patients	
with	a	high	chance	of	showing	a	disease-	related	end	point	
(prognostic	indicators)	and	patients	who	are	likely	to	re-
spond	to	the	treatment	(predictive	indicators).	DL	meth-
ods	can	handle	the	array	of	data	(liquid	biopsy,	pathology	
imaging,	computerized	tomography	scans,	and	extensive	
omics	data)	and	understand/recognize	patterns	with	 the	
prognostic/predictive	potential.	Reduced	population	het-
erogeneity	includes	choosing	patients	with	baseline	mea-
surements	of	a	disease	or	a	biomarker	characterizing	the	
disease	in	a	narrow	range.	In	contrast,	excluding	patients	
whose	 disease	 or	 symptoms	 improve	 spontaneously	 or	
whose	measurements	are	highly	variable	would	help	to	in-
crease	study	power,	reduce	costs,	and	bring	new	medicine	
to	patients	faster.	Decreasing	variability	often	uses	a	pro-
cess	known	as	electronic	phenotyping,	which	focuses	on	
reducing	population	heterogeneity.	Electronic	phenotyp-
ing8	requires	mining	large	databases	of	electronic	health	
records	and	accounting	for	heterogeneity	between	patient	
records	 and	 data	 types.	 Applying	 AI	 technologies,	 espe-
cially	ML	and	DL,	to	electronic	phenotyping	processes	can	
accelerate	the	identification	of	eligible	patients	for	clinical	
trials.

PHARMACOMETRICS AND AI

Efforts	to	automate	pharmacometric	modeling	and	the	de-
velopment	of	neural	network/neural	ordinary	differential	
equation–	based	predictive	modeling	and	novel	algorithm-	
based	 clinical	 trial	 designs	 (Table  1)	 lay	 the	 foundation	
for	the	future	of	model-	based	drug	development	(MBDD).	
We	postulate	that	exploiting	AI	methods	extracting	infor-
mation	 from	 unstructured	 data	 (e.g.,	 imaging/electronic	
records)	 would	 enhance	 current	 approaches	 for	 MBDD	

by	improving	personalized	projections	and	decision	mak-
ing	 across	 clinical	 trials.	 The	 potential	 to	 hybridize	 ML	
and	 pharmacological	 models	 helps	 ML	 to	 perform	 well	
in	 limited	data	scenarios	and	conversely	 the	ML	models	
help	with	improving	misspecification	of	pharmacological	
models	 (Table 1).	Meta-	analyses	of	clinical	and	observa-
tional	 studies	 aggregate	 meaningful	 inferences	 support-
ing	 drug	 development,	 but	 these	 analyses	 are	 hugely	
time-	consuming.	 However,	 with	 the	 combination	 of	 AI	
and	 human	 intelligence,	 Michelson	 et	 al.9	 performed	 a	
rapid	meta-	analysis	to	generate	insights	indicating	ocular	
toxicity	as	a	side	effect	of	hydroxychloroquine	in	a	much	
shorter	 period	 (<30	min)	 than	 traditional	 meta-	analysis.	
Similarly,	unsupervised	ML	assisted	with	the	automated	
screening	and	study	selection	process	for	meta-	analysis.10	
Efficient	 and	 rapid	 ML-	based	 literature	 analysis	 could	
help	with	a	well-	informed	comparative	analysis	 in	early	
clinical	 trials.	 A	 predictive	 modeling	 ecosystem	 includ-
ing	 nonlinear	 mixed-	effect	 models,	 mechanistic	 models,	
PBPK,	 quantitative	 systems	 pharmacology,	 AI/ML	 algo-
rithms,	 structured/unstructured	 data,	 and	 ML-	assisted	
meta-	analysis	 would	 drive	 advancements	 in	 MBDD.	
Overall,	a	synergism	in	terms	of	efficiency	and	developing	
accurate	predictive	models	are	expected	while	integrating	
pharmacometrics	and	ML.

PITFALLS

Causality and bias

In	 general,	 ML	 approaches	 use	 inductive	 reasoning,	 and	
the	inferences	are	correlative,	not	causal.	Furthermore,	true	
causal-	based	 understanding	 comes	 from	 applying	 deduc-
tive	reasoning	and	the	application	of	a	scientific	method.	In	
health	care,	 it	 is	vital	to	understand	the	root	cause	of	any	
changes	 (physiological,	 pharmacological)	 causally	 related	
to	 an	 underlying	 disease.	 In	 the	 absence	 of	 such	 knowl-
edge,	we	may	make	poor	medical	decisions.	Although	AI	
in	health	care	has	promise,	algorithms	are	 trained	on	big	
and	extensive	datasets	with	high	variability	and	imbalance,	
resulting	in	algorithmic	bias.	Several	other	avenues	of	data	
accumulation	 can	 import	 bias	 into	 the	 algorithm,	 includ-
ing	but	not	limited	to	differences	in	infrastructure	used	for	
data	collection	(e.g.,	wearable	device	data)	and	the	quality	
of	training	provided	for	patients	and	practitioners	for	data	
collection.

Data privacy and ethical concerns

Regarding	 data	 privacy,	 much	 progress	 has	 been	 made	
with	the	influential	“General	Data	Protection	Regulation”	
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T A B L E  1 	 Summary	of	examples	featuring	artificial	intelligence	and	clinical	pharmacology

Description Clinical pharmacology feature Reference

PK/PD	modeling

Latent	hybridization	model	integrating	
expert	PK/PD	models	with	hospital	
observation	data	through	neural	
ODEs

Informing	clinical	decisions	with	expert	
pharmacological	models;	potential	for	
improving	the	PK/PD	model	based	on	
clinical	observation	variables

Qian	Z,	Zame	WR,	Fleuren	LM,	Elbers	P,	van	
der	Schaar	M.	Integrating	expert	ODEs	
into	neural	ODEs:	pharmacology	and	
disease	progression.	2021.	doi:10.48550/
ARXIV.2106.02875

An	automated	tool	to	distil	closed-	form	
ODEs	from	observed	trajectories

Discovering	an	interpretable	set	of	
differential	equations	that	corresponds	
to	the	PK/PD	model	of	a	drug

Qian	Z,	Kacprzyk	K,	van	der	Schaar	M.	
D-	CODE:	discovering	closed-	form	ODEs	
from	observed	trajectories.	Presented	at:	
International	Conference	on	Learning	
Representations,	2022.	https://openr	eview.
net/forum	?id=wENMv	IsxNN	[accessed	04	
Oct	2022]

Nonpharmacometric	models	to	predict	
longitudinal	changes	in	tumor	size

Predict	changes	in	tumor	trajectory	and	
optimize	the	treatment	options

Talianu	A,	Johnson	M.	Long	short-	term	
memory	recurrent	neural	networks	to	
predict	longitudinal	changes	in	tumor	size.	
Presented	at:	Population	Approach	Group	
Europe	29.	2021.	Abstract	9815.	https://
www.page-	meeti	ng.org/?abstr	act=9815	
[accessed	2–	3	Sep	2021]

Algorithm	exploring	different	dosing	
regimens	for	cancer	treatment

Potential	for	personalized	dosing	regimen	
balancing	safety	and	efficacy

Sotto	Mayor	T,	Irurzun	Arana	I,	Johnson	
M.	Developing	a	reinforcement	learning	
algorithm	to	determine	an	optimal	dosing	
regimen	for	cancer	treatment.	Presented	
at:	Population	Approach	Group	Europe	30.	
2022.	Abstract	10151.	https://www.page-	
meeti	ng.org/?abstr	act=10151	[accessed	28	
Jun	2022]

Apply	machine-	learning	algorithms	to	
develop	population	PK	models

High	potential	for	automated	PK	model	
selection

Sale	M,	Ismail	M,	Wang	F,	et	al.	Comparison	of	
robustness	and	efficiency	of	four	machine	
learning	algorithms	for	identification	
of	optimal	population	pharmacokinetic	
models.	Presented	at:	Population	Approach	
Group	Europe	30.	2022.	Abstract	10053.	
https://www.page-	meeti	ng.org/?abstr	
act=10053	[accessed	28	Jun	2022]

Clinical	trials

A	Bayesian	framework	for	finding	the	
maximum	tolerated	dose	for	drug	
combinations	in	the	presence	of	
safety	constraints

Better	clinical	designs	for	testing	most	
optimal	dose	combinations	while	
having	a	constrained	number	of	
patients	in	a	safe,	informative,	and	
efficient	way

Lee	H-	S,	Shen	C,	Zame	WR,	Lee	J-	W,	van	der	
Schaar	M.	SDF-	Bayes:	cautious	optimism	
in	safe	dose-	finding	clinical	trials	with	drug	
combinations	and	heterogeneous	patient	
groups.	Presented	at:	Proceedings	of	the	
24th	International	Conference	on	Artificial	
Intelligence	and	Statistics	(AISTATS)	2021;	
April	13–	15,	2021;	San	Diego,	CA.

Safe	efficacy	exploration	dose	
allocation:	a	model	for	maximizing	
the	cumulative	efficacies	while	
satisfying	the	toxicity	constraints	
with	high	probability

State-	of-	the-	art	clinical	designs	that	find	
the	optimal	dose	at	phase	I	with	a	
higher	success	rate	and	fewer	patients	
while	preserving	the	validity	of	the	
study

Shen	C,	Wang	Z,	Villar	S,	Van	Der	Schaar	M.	
Learning	for	dose	allocation	in	adaptive	
clinical	trials	with	safety	constraints.	In:	
Daumé	H	III,	Singh	A,	eds.	Proceedings 
of the 37th International Conference on 
Machine Learning.	Vol.	119.	Omnipress.	
2020:8730–	8740.

https://doi.org/10.48550/ARXIV.2106.02875
https://doi.org/10.48550/ARXIV.2106.02875
https://openreview.net/forum?id=wENMvIsxNN
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https://www.page-meeting.org/?abstract=9815
https://www.page-meeting.org/?abstract=9815
https://www.page-meeting.org/?abstract=10151
https://www.page-meeting.org/?abstract=10151
https://www.page-meeting.org/?abstract=10053
https://www.page-meeting.org/?abstract=10053
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compliance	 efforts.	 Most	 healthcare	 companies	 have	
more	 awareness	 of	 data	 privacy	 and	 structural	 compo-
nents	 in	 terms	 of	 infrastructure	 and	 governance	 boards	
for	 data	 use.	 However,	 applying	 these	 tools	 in	 a	 clinical	
setting	requires	robust	information	technology	platforms	
for	commercial	technology	giants.	To	protect	patient	pri-
vacy	and	control	the	utility	of	data	by	third	parties,	strong	
data	 privacy	 regulation	 (across	 the	 globe)	 is	 required.	
Implementing	AI	tools	in	clinical	practice	requires	further	
ethical	considerations	regarding	data	privacy	and	patient	
consent.	Recommendations	and	guidance	for	using	AI	in	
clinical	practice	are	scarce	or	nonexistent;	from	a	patient	
perspective,	 patient	 consent	 for	 data	 usage	 and	 aware-
ness	of	using	AI	for	their	life/health	decisions	needs	well-	
formulated	moral	guidance.

SUMMARY

Rapid	growth	in	digitization	is	the	foundation	for	imple-
menting	 AI	 in	 CP.	 With	 the	 transformation	 in	 data	 and	
digital	 systems,	 AI	 could	 help	 improve	 dose	 recommen-
dations	that	are	the	core	CP	deliverable	and	improve	the	
efficiency	 of	 pharmacometrics.	 Overall,	 the	 patient	 can	
benefit	by	expanding	the	CP	section	of	the	label	(providing	
expected	DDI	and	unknown	adverse	reactions).	However,	
a	lack	of	causal	inference	and	ethical	data-	sharing	issues	
must	be	addressed	for	a	successful	and	thriving	AI	in	CP.
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