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Abstract
Quantifying	 the	 effect	 of	 kidney	 disease	 on	 glomerular	 filtration	 rate	 (GFR)	 is	
important	when	describing	variability	in	the	clearance	of	drugs	eliminated	by	the	
kidney.	We	aimed	to	develop	a	continuous	model	for	renal	function	(RF)	from	
prematurity	 to	adulthood	based	on	consistent	models	 for	 fat  free	mass	 (FFM),	
creatinine	production	rate	(CPR),	and	GFR.	A	model	for	fractional	FFM	in	pre-
mature	neonates	to	adults	was	developed	using	pooled	data	from	4462	subjects	
and	2847	FFM	observations.	It	was	found	that	girls	have	an	FFM	higher	than	that	
predicted	from	adult	women	based	on	height,	total	body	mass,	and	sex,	and	boys	
have	an	FFM	lower	than	adult	men	until	around	the	onset	of	puberty,	when	it	ap-
proaches	adult	male	values.	Data	from	108	subjects	with	measurements	of	serum	
creatinine	 (Scr)	 and	 GFR	 were	 used	 to	 construct	 a	 model	 for	 CPR.	 Creatinine	
clearance	was	predicted	using	the model	for	CPR	(based	on	FFM,	postmenstrual	
age,	and	sex)	and	Scr,	and avoids	discontinuous	predictions	between	neonates,	
children,	 and	 adults.	 Individual	 CPR	 may	 then	 be	 used	 with	 individual	 Scr	 to	
predict	 the	 estimated	 GFR	 (eGFR;	 eGFR  =  CPR/Scr).	 A	 previously	 published	
model	for	human	GFR	based	on	1153	GFR	observations	in	923	subjects	without	
known	kidney	disease	was	updated	using	the	model	for	fractional	FFM	to	predict	
individual	size	and	age-	consistent	values	for	the	expected	normal	GFR	(nGFR).	
Individual	renal	function	was	then	calculated	using	RF = eGFR/nGFR.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Fat free	mass	(FFM)	is	predictable	from	children	to	adults	using	total	body	mass,	
height,	 sex,	 and	 age.	 Creatinine-	based	 estimates	 of	 glomerular	 filtration	 rate	
(GFR)	can	be	problematic	 if	differences	in	size,	body	composition,	and	age	are	
not	accounted	for	appropriately.
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INTRODUCTION

Body	size	is	quantitatively	the	most	important	factor	pre-
dicting	drug	clearance	 (CL).1	Size	has	 traditionally	been	
described	using	total	body	mass	(TBM)	without	considera-
tion	of	body	composition.	There	is	still	a	lack	of	consensus	
in	how	to	describe	pharmacokinetics	in	individuals	using	
body	composition.	Normal	fat	mass	(NFM)	has	been	pro-
posed	 because	 it	 can	 be	 parameter	 specific,	 but	 it	 relies	
on	 knowing	 fat	 free	 mass	 (FFM).1	 Predictive	 equations	
for	FFM	have	been	described	in	adults.2	That	FFM	model	
has	been	extended	down	to	children	as	young	as	3	years	of	
age3	 and	 also	 to	 include	 different	 ethnicities.4	 However,	
there	 is	 currently	 no	 continuous	 model	 predicting	 FFM	
from	premature	neonates	to	adults.	Such	a	model	would	
be	useful	to	account	for	body	composition	in	drug	phar-
macokinetics	across	the	human	age	span.

Differences	in	the	ability	of	the	kidney	to	eliminate	a	
drug	or	metabolites	can	be	described	using	a	metric	that	
we	call	renal	function	(RF),	obtained	from	a	comparison	
between	estimated	glomerular	filtration	rate	(eGFR)	using	
a	 biomarker	 (e.g.,	 serum	 creatinine	 [Scr])	 and	 normal	
glomerular	 filtration	 rate	 (nGFR).	 nGFR	 is	 the	 expected	
glomerular	filtration	rate	(GFR)	in	the	absence	of	kidney	
disease	based	on	size,	body	composition,	and	maturation.	
RF	is	therefore	the	ratio	of	eGFR	to	nGFR	under	the	as-
sumption	 that	 eGFR	 is	 equal	 to	 creatinine	 CL	 (CLcr).	
CLcr	 is	 typically	 calculated	 from	Scr	and	an	estimate	of	
the	creatinine	production	rate	(CPR).	There	are	two	types	
of	approaches	using	Scr	for	the	estimation	of	GFR:	mech-
anistic	and	empirical.

The	first	is	based	on	mechanistic	principles	involving	
CPR	 and	 Scr	 to	 estimate	 CLcr	 (CLcr  =  CPR/Scr).	 This	
method	 is	 based	 on	 the	 relationship	 between	 the	 rate	
of	 elimination	 and	 the	 concentration	 that	 defines	 CL	
(Equation 1).

There	 are	 several	 mechanistic	 models	 for	 CLcr	 in	
adults5–	7	 and	 in	 children.8–	10	 These	 models	 predict	 CPR	
using	covariates	such	as	TBM	(equivalent	to	weight),	age,	
sex,	and	height	and	then	divide	by	Scr	to	obtain	CLcr.

The	second	approach	uses	empirical	 regression	mod-
els	involving	similar	covariates	such	as	age,	sex,	race,	and	
Scr	 to	 estimate	 GFR,	 for	 example,	 the	 Modification	 of	
Diet	 in	Renal	Disease	(MDRD)	method	and	the	Chronic	
Kidney	 Disease	 Epidemiology	 Collaboration	 (CKD-	EPI)	
method.11	 The	 MDRD	 and	 CKD-	EPI	 methods	 are	 only	
useful	for	adults	and	contain	a	race-	based	covariate	(skin	
color),	which	is	challenging	to	use.12–	14	These	GFR	meth-
ods	 implicitly	 use	 a	 prediction	 of	 CPR	 divided	 by	 Scr,	
although	an	empirical	power	 function	of	Scr	 is	 typically	
used	rather	than	Scr	itself.	Methods	that	scale	for	size,	for	
example,	per	1.73	m2,	need	to	be	unscaled	to	obtain	CLcr	
in	the	individual.

A	less	biased	and	more	precise	way	of	determining	GFR	
is	 to	 use	 the	 gold	 standard	 measurement	 methods	 (e.g.,	
inulin,	iothalamate	or	iohexol	CL,	or	radiolabeled	isotope	
methods).	However,	these	are	seldom	performed	because	
of	cost	and	practical	difficulty.	 Instead,	CLcr	 is	a	widely	
used	estimate	of	GFR	because	Scr	measurement	is	read-
ily	available	in	most	clinical	settings.	eGFR	equations	can	
be	 implemented	 in	pharmacokinetics	 studies	as	a	quan-
titative	way	 to	describe	kidney	 function.	However,	 these	
equations	are	often	developed	in	specific	populations	and	
may	not	be	able	to	be	extended	down	to	infants	and	neo-
nates	when	developed	for	adults	or	vice	versa.	This	means	
a	 description	 of	 kidney	 function	 can	 be	 challenging	 in	
pharmacokinetics	studies	with	a	wide	age	range.

A	better	description	of	how	kidney	disease	may	affect	
drug	disposition	would	be	helped	by	consistent	models	for	

(1)Rate out = clearance × concentration

WHAT QUESTION DID THIS STUDY ADDRESS?
This	study	described	a	model	for	renal	function	predicted	using	the	ratio	of	es-
timated	GFR	to	normal	GFR.	This	accounts	for	differences	in	size,	maturation,	
body	composition,	and	the	effect	of	birth	from	neonates	to	adults.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A	method	for	the	prediction	of	FFM	in	neonates	and	infants	has	been	developed	
that	is	consistent	with	previous	methods	for	children	and	adults.	Continuous	mod-
els	 for	creatinine	production	rate,	creatinine	clearance,	and	GFR	are	described	
from	neonates	to	adults.	These	models	were	used	to	predict	renal	function.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This	 study	 provided	 a	 consistent	 metric	 describing	 renal	 function	 suitable	 for	
dose	adjustment	from	neonates	to	adults.



   | 403DESCRIBING RENAL FUNCTION

predicting	 differences	 based	 on	 factors	 used	 to	 calculate	
RF	(i.e.,	body	size,	body	composition,	and	maturation).	An	
update	 to	a	previously	published	GFR	model15	has	been	
developed	 using	 the	 FFM	 model	 presented	 in	 this	 work	
with	a	birth	effect	on	GFR	 in	addition	 to	 the	process	of	
maturation	occurring	both	before	and	after	birth.	An	in-
dividual	with	expected	nGFR	and	no	kidney	disease	will	
have	an	RF	value	of	one	for	all	combinations	of	size,	body	
composition,	 and	 maturation.	 Typically,	 kidney	 disease	
will	decrease	RF,	but	values	greater	than	one	are	expected	
with	 disease-	associated	 hyperfiltration,	 which	 has	 been	
described	in	septic	states.16	We	describe	the	development	
of	consistent	FFM,	CPR,	and	GFR	models	used	to	calcu-
late	individual	RF.

METHODS

We	 developed	 a	 continuous	 model	 for	 RF	 comprising	
three	submodels.	For	each	model,	the	data	used	in	its	con-
struction	are	presented	 first,	 followed	by	 the	calculation	
of	 the	dependent	variable	when	 it	 is	derived	 from	other	
primary	observations	and	then	the	model	itself.

Body size

NFM1	is	used	as	the	descriptor	for	body	size	in	the	FFM,	
CPR,	and	nGFR	models	described	in	this	work.	NFM	is	an	
extension	of	the	concept	of	predicted	normal	weight17	and	
is	a	size	metric	derived	from	TBM,	FFM,	and	theory-	based	
allometric	 concepts.	 NFM	 is	 calculated	 from	 FFM	 and	
TBM	with	an	additional	parameter,	 fraction	of	 fat	 (Ffat)	
(Equation 2).

The	influence	of	fat	mass	(TBM–	FFM)	combined	with	
FFM	as	a	predictor	of	theory-	based	allometric	size	is	de-
scribed	by	Ffat.	The	basis	of	NFM	is	to	estimate	the	value	
of	 Ffat,	 which	 is	 specific	 to	 the	 biological	 structure	 or	
function	parameter	being	described.	For	example,	if	Ffat	is	
estimated	to	be	0,	then	FFM	alone	may	be	used	to	predict	
size,	whereas	if	Ffat	is	1,	then	TBM	may	be	used	to	predict	
size.	 A	 standard	 value	 for	 NFM	 (NFMstd)	 may	 be	 calcu-
lated	for	a	male	with	a	TBM	of	70	kg,	an	FFM	of	56.1 kg,	a	
height	of	1.76	m,	and	the	drug	parameter–	specific	value	of	
Ffat	(Equation 3).

A	 size	 factor,	 Fsize,	 can	 be	 obtained	 from	 NFM,	
NFMstd,	 and	 a	 theory-	based	 allometric	 exponent	 WBE	

(Equation  4).	 WBE	 is	 obtained	 from	 the	 West,	 Brown,	
and	 Enquist	 theory,	 which	 predicts	 an	 allometric	 ex-
ponent	of	1	for	structural	properties	(e.g.,	V)	and	¾	for	
functional	properties	(e.g.,	CL).18	NFM	allows	for	body	
composition	to	be	included	in	the	meaning	of	allometric	
size.

Model for FFM

Data

A	model	to	predict	FFM	from	neonates	to	adults	was	devel-
oped	using	FFM	observations	and	a	published	adult	FFM	
model.2	Data	were	pooled	from	15	studies,	which	included	
100	mean	FFM	values	and	2747	individual	FFM	observa-
tions	 from	a	 total	of	4462	subjects	 (95th	percentile	post-
menstrual	age	[PMA]	interval	[40.6,	1134]	weeks).	These	
were	used	to	calculate	the	fraction	of	adult-	predicted	FFM	
(predicted	from	Janmahasatian	et	al.2).	A	data	summary	is	
presented	in	Table S1,	and	subject	covariate	distributions	
are	shown	in	Figure S1.

Model

The	dependent	variable	for	the	fractional	FFM	(FRFFM)	
model	 was	 calculated	 using	 observations	 of	 FFM	 from	
the	study	data	(FFMobserved)	and	predictions	of	FFM	from	
Janmahasatian	et	al.2	(FFMadult)	using	TBM,	height,	and	
sex	(Equation 5).

FRFFM	is	 then	a	 fraction	of	FFM	predicted	from	the	
adult	model,2	relative	to	the	observed	FFM.	The	FRFFM	
model	(see	Figure 1	and	Equation 6)	predicts	the	value	of	
FRFFM	by	combining	a	baseline	(FFMIN),	a	component	
for	neonates	and	infants	(FFNEO),	and	a	component	for	
children	(FFKID)	using	PMA	and	sex.

The	 baseline,	 FFMIN,	 is	 obtained	 from	 FMAT_PRE,	
a	 parameter	 describing	 FRFFM	 in	 a	 24-	week	 premature	
neonate,	 and	 FMAT_MAX,	 the	 asymptotic	 estimate	 of	
FFMadult	(Equation 7).

(2)NFM = FFM + Ffat × (TBM − FFM)

(3)NFMstd = 56.1 + Ffat × (70 − 56.1)

(4)Fsize =

(

NFMi

NFMstd

)WBE

(5)FRFFM =
FFMobserved

FFMadult

(6)FRFFM = FFMIN + FFNEO + FFKID

(7)FFMIN = FMAT_PRE × FMAT_MAX
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The	 neonatal	 component,	 FFNEO,	 describes	 the	 ex-
ponential	drop	in	FFM	fraction	from	FMAT_PRE	toward	
FFMIN.	TFF_PRE	is	the	half-	life	of	decrease	of	FFNEO,	
and	PMA	is	in	years	(Equation 8).

The	child	component,	FFKID,	is	an	asymmetrical	sig-
moid	Emax	model.	FFKID	rises	as	PMA	approaches	adult	
values	(FMAT_MAX)	from	baseline (FFMIN).	A50	is	the	
PMAY	when FFKID	is	50%	of	the	adult	FRFFM.	The HILL	
exponent	has	a	different	value	when	younger	(HILL_Y)	or	
equal	to	or	older	(HILL_O)	than A50, and PMA is in years	
(Equation 9).	

Each	parameter	of	the	FRFFM	model	is	sex	specific.	
The	 prediction	 of	 FRFFM	 is	 limited	 at	 1.16	 for	 males	
and	1.19	for	females	to	avoid	implausible	values	at	very	
young	PMA.	These	upper	limits	were	obtained	from	the	
upper	95%	percentile	of	the	observed	values	of	FRFFM.	
Figure 1	 shows	 the	predicted	FRFFM	in	males	and	 fe-
males	 with	 an	 indication	 of	 how	 the	 FRFFM	 model	

parameters	 influence	 the	 time	 course	 with	 increasing	
PMA	in	years.

Data	from	each	study	that	provided	only	average	mea-
sured	FFM	data	were	combined	by	weighting	the	variance	
of	the	residual	error	of	the	FFM	prediction	in	inverse	pro-
portion	to	the	number	of	subjects	(Equation 10).	Residual	
unexplained	variability,	coefficient	of	variation	(RUV_CV)	
is	a	parameter	describing	the	proportional	residual	error	
associated	with	the	prediction	of	FRFFM.

Model for CPR

Data

Measurements	 of	 GFR	 and	 Scr	 from	 Rhodin	 et	 al.15	 were	
used	to	construct	the	model	for	CPR.	A	total	of	108	subjects	
had	measurements	of	both	GFR	(not	indexed	to	body	surface	
area	[BSA])	and	Scr,	with	a	95th	percentile PMA	interval	of	
[27.8,	872]	weeks.	Covariate	distributions	for	these	subjects	
are	shown	in	Figure S2.	By	assuming	CLcr	is	equal	to	GFR,	
CPR	can	be	calculated	using	Equation 11.

(8)
FFNEO = (FMAT_PRE − FFMIN) × e

−log(2)

TFF_PRE×
(

PMA− 24
52

)

(9)FFKID =
FMAT_MAX − FFMIN

1 +
(

PMA

A50

)−HILL

(10)SD =

√

(FRFFM×RUV_CV)2

Nsubjects

(11)CPR = GFR × Scr

F I G U R E  1  Predicted	fraction	of	adult	FFM	(FRFFM)	in	males	and	females	from	neonates	to	young	adults	based	on	postmenstrual	
age,	sex,	total	body	mass,	and	height	covariates	in	the	pooled	data	set.	The	arrows	show	the	exponential	drop	from	FMAT_PRE	to	FFMIN.	
In	males,	FRFFM	rises	approaching	adult	fat free	mass	values	caused	by	the	increasing	influence	of	the	child	component	of	FRFFM	and	
the	diminishing	influence	of	the	neonate	and	infant.	Parameter	values	are	shown	in	Table 1.	FFMIN,	baseline	component	of	the	FRFFM;	
FMAT_MAX,	asymptotic	estimate	of	the	adult	fat	free	mass	prediction;	FMAT_PRE,	lower	asymptote	of	neonate	and	infant	component	of	
the	FRFFM estimated	in	a	24-	week	premature	neonate;	FRFFM,	fractional	model	for	fat free	mass;	TFF_PRE,	half-	life	of	decrease	of	the	
neonate	and	infant	component	of	the FRFFM
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Assays	 for	 Scr	 quantitation	 can	 have	 poor	 analytical	
specificity,	for	example,	the	Jaffe	colorimetric	method.19,20	
The	Rhodin	et	al.15	Scr	measurements	used	a	nonspecific	
Jaffe	 method.	 Plasma	 proteins,	 immunoglobulins,	 and	
other	drugs	(e.g.,	cephalosporins)	are	known	to	interfere	
with	 the	 Jaffe	 assay.21	 Enzymatic	 methods	 used	 for	 Scr	
quantitation	 are	 more	 accurate,	 have	 greater	 specificity,	
and	 are	 less	 affected	 by	 interfering	 substances.20,22	 The	
Jaffe	 method	 for	 Scr	 determination	 is	 still	 widely	 used,	
which	can	be	challenging	when	CPR	is	predicted	using	a	
more	specific	method.	A	conversion	factor	may	be	used	to	
convert	Jaffe	Scr	measurements	to	the	more	specific	enzy-
matic	equivalent	(Equation 12).23

The	 value	 of	 88.4	 is	 the	 μmol/L	 equivalent	 of	 1  mg/dL.	
Noncreatinine	 chromogen  offset,	 standard  (NCrstd)	 is	 the	
offset	 required	 to	 make	 a	 Jaffe	 method	 measurement	 ap-
proximately	 equivalent	 to	 an	 enzymatic	 method	 mea-
surement.	 Olympus	 5400	 and	 Roche	 H917	 methods	 are	
corrected	for	noncreatinine	chromogens	with	offsets	of	26.5	
and	18	μmol/L,	respectively.23	Where	the	machine-	type	in-
formation	is	not	available,	an	average	offset	of	22.25	μmol/L	
may	be	used,	giving	a factor	for	serum	creatinine	(FScr)	value	
of	0.748.	The	original	Rhodin	et	al.15	Jaffe	Scr	measurements	
were	corrected	by	FScr	to	approximate	the	more	specific	en-
zymatic	measurements.

Model

CPR	 can	 be	 predicted	 using	 a	 population	 standard	 for	
CPR,	size,	and	age.	The	model	for	CPR	based	on	these	fac-
tors	is	shown	in	Equation 13.

CPRstd	 is	 the	 standard	 enzymatic	 equivalent	 CPR	 for	
a	40-	year-	old	male	based	on	the	estimate	for	a	male	with	
70	kg	TBM	 (0.386	mmol/h/70	kg  =  0.516	mmol/h/70	kg	 x	
FScr).

7	Size	is	scaled	using	FFM	because	Ffat	was	estimated	
to	be	close	to	zero.	The	allometric	exponent	for	CPR	uses	
the	theory-	based	value	of	one	as	CPR	comes	from	muscle	
mass,	which	is	a	structural	rather	than	a	functional	prop-
erty.	An	empirical	maturation	function	(Fmat,CPR)	based	on	
PMA	 was	 used	 to	 describe	 the	 maturation	 of	 CPR	 from	
premature	 neonates	 to	 young	 adults.	 This	 function	 has	
three	segments	depending	on	PMA	(Equations 14–	16).

After	accounting	for	body	size,	when	PMA	is	less	than	
or	equal	to	37	weeks,	the	CPR	does	not	seem	to	increase	
and	is	described	by	the	constant	CPRint	(Equation 14).

From	 infants	 to	 adults	 (PMA	>37	 to	 1080	weeks	
PMAadult/20	years	postnatal	age	[PNA]),	the	CPR	matura-
tion	 function	 is	described	by	a	 linear	 function	(CPRslope;	
Equation  15).	 Both	 the	 CPRint	 and	 CPRslope	 parameters	
are	sex	specific.	

For	 adults	 (>20	years	 PNA),	 CPR	 is	 calculated	 using	
the	 Matthews	 et	 al.7	 modification	 of	 the	 Cockcroft	 and	
Gault	model	(Equation 16).

Low	Scr	concentrations	in	adults	are	more	likely	to	be	
due	 to	 low	 CPR	 rather	 than	 unusually	 high	 renal	 func-
tion.	Methods	have	been	proposed	where	Scr	concentra-
tions	 below	 0.06	mmol/L	 (Jaffe)	 are	 simply	 rounded	 up	
to	 0.06	mmol/L,	 which	 ignores	 the	 actual	 Scr.24,25	 The	
Matthews	et	al.7	method	 (Equation 17)	does	not	discard	
information	about	RF	contained	in	the	Scr.	It	proposes	a	
factor	for	CPR	change	with	a	reduction	by	0.7	when	Scr	
is	less	than	0.049	mmol/L	(enzymatic	equivalent)	=	0.06	x	
FScr	mmol/L	(Jaffe).

Prediction of CLcr

CLcr	can	then	be	calculated	from	a	measurement	of	Scr	
and	predicted	CPR	(Equation 13).	This	typically	assumes	
that	Scr	is	at	steady	state	so	that	CPR	(rate	in)	is	an	esti-
mate	of	 the	 rate	of	elimination	 (rate	out).	When	GFR	 is	
changing	rapidly,	Scr	cannot	be	assumed	to	be	at	steady	
state.	Creatinine	pharmacokinetics	can	be	used	to	account	
for	 rapidly	 changing	 Scr	 by	 predicting	 the	 CLcr	 at	 the	
time	of	Scr	measurement.	Creatinine	is	assumed	to	have	
a	single	distribution	volume	(Vcr = 0.5 L/kg	*	TBM)	and	
renal	elimination	CL	(CLcr	L/h).	The	creatinine	elimina-
tion	rate	constant	(Kcr;	calculated	from	CLcr/Vcr)	is	then	
used	with	the	observed	Scr	(ScrNOW)	to	calculate	CLcr	at	
that	time.	The	first	Scr	is	assumed	to	be	at	steady	state	to	
calculate	the	initial	CLcr	used	to	initialize	the	CLcrLAST	
variable.	The	time	(h)	of	the	first	Scr	observation	is	used	
to	 initialize	 the	 HLAST	 variable.	 At	 subsequent	 times	
(HNOW)	of	Scr,	the	CLcr	(CLcrNOW)	is	obtained	by	solv-
ing	the	creatinine	pharmacokinetic	model	for	ScrNOW.

(12)FScr =

(

88.4 −NCrstd
)

88.4
= 0.748

(13)CPR = CPRstd × Fsize × FMAT,CPR

(14)Fmat,CPR = CPRint

(15)Fmat,CPR = 1 +
CPRslope ×

(

PMAadult − PMA
)

100

(16)FMAT,CPR =
112 −AGE

(112 − 40)
( × 0.82 if female)

(17)Fmat,CPR =
119 −AGE

(119 − 40)
× 0.7
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After	 each	 calculation	 (Equation  18),	 CLcrNOW	 be-
comes	 CLcrLAST	 and	 HNOW	 becomes	 HLAST	 to	 con-
tinue	 the	 algorithm.	 Scr	 is	 not	 reliable	 as	 a	 predictor	 of	
CLcr	immediately	after	birth	because	most	Scr	in	the	neo-
nate	is	derived	from	the	mother.	At	this	time,	it	is	usually	
plausible	to	assume	that	GFR	is	normal.	The	estimate	of	
Kcr	based	on	nGFR	and	Vcr	can	be	used	to	predict	the	cre-
atinine	half-	life	and	how	long	it	will	take	for	most	of	the	

maternally	 derived	 creatinine	 to	 have	 been	 eliminated,	
for	example,	after	four	creatinine	half-	lives.	After	then,	it	
becomes	 reasonable	 to	 use	 measured	 Scr	 in	 neonates	 to	
estimate	CLcr.

Model for nGFR

Data

A	model	has	been	previously	described	for	the	growth	of	
GFR	 based	 on	 gold	 standard	 measurements	 in	 subjects	
with	normal	kidney	function.15	These	data	comprised	of	
1153	GFR	observations	 in	923	subjects,	with	a	95th	per-
centile	PMA	interval	of	[28.3,	1071]	weeks.

(18)

DELTA=HNOW−HLAST; time between Scr measurements

Kcr=
CLcrLAST

Vcr

ScrNOW=
CPR×

(

1−e−Kcr×DELTA
)

CLcrNOW
−ScrLAST×e−Kcr×DELTA

CLcrNOW=
CPR×

(

1−e−Kcr×DELTA
)

ScrNOW−ScrLAST×e−Kcr×DELTA

T A B L E  1 	 Original	parameter	estimates	for	the	FRFFM	model	and	bootstrap	estimates	from	100	bootstrap	runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

Females

FMAT_PRE 0.837 1.33 0.850 1.76 18.5

TFF_PRE PMA	y 0.12 0.10 0.08 0.12 9.4

FFMAT 0	FIXED 0 0 0 –	

FMAT_MAX 2.03 2.05 2.02 2.08 0.9

A50 PMA	y 1.53 1.95 0.255 4.48 152

HILL_Y 0.0339 0.0290 0.0170 0.0386 20.1

HILL_O 0.0306 0.0249 0.0144 0.0325 20.6

PPV_TFF_PRE 0.016 0.032 0.000 0.118 110.8

PPV_A50 3.67 4.61 3.39 8.01 27.0

Males

FMAT_PRE 5.20 5.03 1.62 9.95 46.3

TFF_PRE PMA	year 0.060 0.064 0.051 0.090 16.4

FFMAT 0	FIXED 0 0 0 –	

FMAT_MAX 1.74 1.72 1.68 1.75 1.1

A50 PMA	year 3.54 3.27 2.34 4.06 12.8

HILL_Y 0.127 0.118 0.063 0.178 28.9

HILL_O 0.164 0.173 0.144 0.206 9.3

PPV_TFF_PRE 0.130 0.128 0.103 0.158 10.5

PPV_A50 1.015 0.964 0.767 1.125 10.0

Residual	error

CV_FRFFM 0.046 0.046 0.042 0.051 4.8

Note:	The	bootstrap	2.5th	and	97.5th	percentiles	form	the	empirical	95%	confidence	interval.	RSE	is	calculated	from	the	bootstrap	standard	deviation	divided	by	
the	bootstrap	average.
Abbreviations:	A50,	age	at	which	the	child	component	of	the FRFFM	is	50%	of	the	adult	value;	CV,	coefficient	of	variation	(proportional	residual	error	
calculated	from	the	square	root	of	sigma);	FFMAT,	fraction	of	asymptotic	estimate	of	the	adult	fat free	mass	prediction	that	describes	the	lower	asymptote	
of	the	FRFFM;	FMAT_MAX,	asymptotic	estimate	of	the	adult	fat free	mass	prediction;	FMAT_PRE,	lower	asymptote	of	the	neonate	and	infant	component	
of	the	FRFFM	estimated	in	a	24-	week	premature	neonate;	FRFFM,	fractional	model	for	fat free	mass;	HILL_O,	Hill	exponent	above	or	equal	to	the	age	at	
which	the	child	component	of	the FRFFM is	50%	of	the	adult	value;	HILL_Y,	Hill	exponent	below	the	age	at	which	the	child	component	of the FRFFM;	PMA,	
postmenstrual	age;	PPV,	population	parameter	variability	calculated	from	the	square	root	of	omega;	RSE,	relative	standard	error;	TFF_PRE,	half-	life	decrease	
of	the	neonate	and	infant	contribution	to	the	FRFFM.
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Model

The	 Rhodin	 et	 al.15	 model	 describing	 GFR	 was	 updated	
using	FFM	as	a	measure	of	size	from	the	FRFFM	model	
described	previously	and	the	addition	of	a	PNA	matura-
tion	function,	which	describes	a	birth	effect	(Equation 21).	
nGFR	describes	GFR	predicted	under	the	assumption	of	
normal	kidney	function.	nGFR	changes	rapidly	after	birth	
due	 to	 increasing	body	size	 (growth)	and	 increasing	age	
(maturation).26	 Theory-	based	 allometry	 and	 maturation	
models	can	be	used	 to	describe	 the	 impact	of	 these	pro-
cesses	on	GFR	using	Equation 19.

GFRstd	 is	 the	mature	population	estimate	 for	GFR	of	a	
male	with	TBM	70	kg	and	height	of	176	cm.	NFM,	specific	
for	GFR,	was	used	to	predict	Fsize	(Equation 4).	A	sigmoid	
Emax	model	was	used	to	describe	the	maturation	of	GFR	
with	respect	to	PMA.	To	account	for	maturation	of	GFR	and	
the	 impact	 of	 birth,	 two	 maturation	 fractions	 were	 com-
bined	 based	 on	 PMA	 (Fmat,PMA	 weeks)	 and	 PNA	 (Fmat,PNA	
days).	Fmat,PMA	is	defined	in	terms	of	PMAT50,	the	matura-
tion	half	time,	that	is,	the	PMA	(weeks)	at	50%	of	the	fully	
mature	value	of	one,	and	HILL,	a	parameter	that	describes	
the	steepness	of	the	maturation	curve	(Equation 20).

Transition	from	the	intrauterine	to	the	extrauterine	en-
vironment	is	associated	with	major	changes	in	blood	flow	
and	oxygenation.	This	can	cause	changes	in	GFR,	kidney	
function,	 and	 drug	 metabolism.27,28	 Therefore	 Fmat,PNA	
(PNA	maturation)	was	used	to	describe	changes	in	addi-
tion	to	those	predicted	from	PMA	alone	(Equation 21).

PNAmax	 is	 the	 fractional	 increase	relative	 to	 the	com-
pletion	of	the	birth-	associated	component	of	maturation,	
PNAT50	 is	 the	 half	 time	 required	 to	 achieve	 50%	 of	 this	
maturational	 change,	 and	 PNA	 is	 in	 days.	 Fmat,PMA	 and	
Fmat,PNA	approach	an	asymptote	of	1,	 signifying	comple-
tion	of	these	maturational	processes.

Prediction of RF

RF	is	defined	by	the	ratio	of	eGFR	to	nGFR	(Equation 22).	
It	differs	 from	the	more	general	 term	kidney function	by	

proposing	a	quantitative	measure	of	efficiency	of	all	func-
tions	of	the	kidney	that	are	linked	with	CLcr	and	GFR.

eGFR	can	be	predicted	using	CPR	and	Scr	with	the	as-
sumption	that	CLcr	is	the	same	as	GFR	(Equation 23).

This	 makes	 RF	 a	 quantity	 that	 is	 independent	 of	 size,	
body	composition,	maturation,	and	birth	effects	when	these	
factors	are	consistently	accounted	for	in	both	estimated	cre-
atinine	clearance	(eCLcr) and	nGFR.	The	new	models	pre-
sented	here	for	FFM,	CPR,	and	nGFR	allow	a	continuous	
function	to	predict	RF	from	premature	neonates	to	adults.

Data analysis

Data	were	analyzed	using	NONMEM	(ICON	Development	
Solutions)	Version	7.5.1	and	Wings	for	NONMEM	Version	
744	 (http://wfn.sourc	eforge.net/).	 Population	 parameter	
estimates	 were	 obtained	 using	 NONMEM's	 first-	order	
conditional	 estimation	 method	 with	 the	 interaction	 op-
tion.	 The	 convergence	 criterion	 was	 3	 with	 tolerance	
SIGLEVEL  =  6.	 Nonparametric	 bootstrapping	 was	 used	
to	evaluate	parameter	uncertainty	in	each	model.29	A	total	
of	100	bootstrap	replicates	were	used	to	describe	the	dis-
tribution	of	the	parameter	estimates	and	estimate	the	un-
certainty	of	the	prediction.

Visual	 predictive	 checks	 were	 used	 to	 evaluate	 the	
models	by	comparing	the	5th,	50th,	and	95th	percentiles	
of	 the	 observed	 and	 model-	predicted	 values.30	 The	 95%	
confidence	intervals	were	estimated	from	the	distribution	
of	 each	 of	 the	 prediction	 percentiles.	 Further	 details	 on	
the	data	analysis	are	presented	in	Appendix S1.

RESULTS

Model for FFM

Sex-	specific	 parameter	 estimates	 for	 the	 FRFFM	 model	
are	presented	in	Table 1.	Population	parameter	variability	
(PPV)	 was	 estimated	 for	 TFF_PRE	 (half-	life	 decrease	 of	
FFNEO)	and	A50	(PMA	at	50%	of	FFKID)	with	the	same	
PPV	 for	 males	 and	 females.	 The	 residual	 error	 was	 de-
scribed	using	a	proportional	model	for	the	random	effect.

Girls	 have	 an	 FFM	 larger	 than	 adult-	predicted	 FFM	
(see	female	FRFFM	predictions,	Figure 1).	Boys	have	an	

(19)nGFR = GFRstd × Fsize × Fmat,PMA × Fmat,PNA

(20)Fmat,PMA =
1

1 +
(

PMA

PMAT50

)−HILL

(21)Fmat,PNA = 1 − PNAmax + PNAmax ×

(

1 − e
−ln(2)×PNA
PNAT50

)

(22)RF =
eGFR

nGFR

(23)eGFR = eCLcr =
CPR

Scr

http://wfn.sourceforge.net/
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FFM	 lower	 than	 adult-	predicted	 FFM	 until	 about	 the	
onset	 of	 puberty,	 when	 it	 approaches	 adult	 values	 (see	
male	FRFFM	predictions,	Figure 1).	There	is	high	uncer-
tainty	in	the	estimate	of	A50	in	females.	This	is	likely	due	
to	the	sparse	data	between	1.5	and	4	years	PMA.	The	visual	
predictive	 checks	 of	 the	 FRFFM	 model	 (Figure  2)	 show	
that	the	difference	between	males	and	females	is	well	de-
scribed	by	the	median	prediction	of	the	observed	value.

Model for CPR

The	 parameter	 estimates	 for	 the	 CPR	 model	 are	 shown	
in	 Table  2.	 FFM	 alone	 was	 used	 to	 predict	 the	 size	 for	
CPR	based	on	the	assumption	that	muscle	mass	(the	pri-
mary	source	of	creatinine)	is	not	affected	by	fat	mass,	and	

therefore	FfatCPR = 0.	The	residual	error	was	described	
using	 a	 proportional	 error	 model	 for	 the	 random	 effect.	
The	PPV	of	the	coefficient	of	variation	was	estimated.

CPR	 predictions	 from	 neonates	 to	 adults	 using	 data	
from	 the	 GAVamycin	 covariate	 database	 are	 shown	 in	
Figure  S3.	 Comparison	 of	 CPR	 predictions	 between	
our	model	and	other	published	models	are	presented	 in	
Figures S4	and	S5.	The	visual	predictive	check	for	the	CPR	
model	(Figure 3)	shows	that	the	observed	percentiles	are	
well	described	by	the	model	predictions.

Model for nGFR

The	parameter	estimates	for	the	updated	nGFR	model	are	
shown	in	Table 3.	Size	was	predicted	using	FFM	(FfatGFR	

F I G U R E  2  Visual	predictive	check	for	the	FRFFM	model	in	females	(top)	and	males	(bottom).	The	5%	percentile,	median,	and	95%	
percentile	of	the	distribution	of	the	observations	are	red,	and	predictions	are	black.	The	hollow	circles	in	the	left-	side	plots	are	the	individual	
observations.	The	95%	confidence	intervals	for	the	prediction	percentiles	are	shown	by	the	purple-	shaded	areas	in	the	right-	side	plots.	The	
yellow	lines	on	the	x-	axis	show	the	data	bins	used	in	the	construction	of	the	visual	predictive	check.	FRFFM,	fractional	model	for	fat free	
mass;	PMA,	postmenstrual	age
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estimated	and	not	distinguishable	from	zero)	in	the	update	
to	the	nGFR	model	reported	previously.15	The	maturation	
and	 postnatal	 effects	 of	 birth	 on	 GFR	 were	 investigated	
using	 models	 for	 PMA	 maturation	 and	 postnatal	 transi-
tion	(PNT).28	The	FRFFM	model	was	used	to	describe	GFR	
changes	with	size.	An	asymptotic	exponential	PNT	matu-
ration	model	(PNTexp)	described	the	effect	of	birth	on	GFR	
maturation	and	included	factors	for	PNT	and	PMA	matu-
ration.	Figure S6	shows	the	differences	in	a	PMA	matura-
tion	model	(PMAonly)	compared	with	the	PNTexp	model	

(PMA	plus	PNT).	Maturation	was	slower	before	birth	using	
the	PNTexp	model	compared	with	PMA	maturation	alone.	
At	birth,	the	relative	GFR	estimate	was	25%	less	using	the	
PNTexp	 model	 compared	 with	 PMAonly,	 but	 this	 differ-
ence	 increased	 to	 60%	 during	 the	 first	 weeks	 of	 life.	 The	
estimated	GFRstd	was	116	mL/min/70	kg	TBM	(size	equiva-
lent	 to	56.1 kg	FFM)	 in	a	standard	male.	The	visual	pre-
dictive	 check	 for	 the	 GFR	 model	 (Figure  4)	 shows	 good	
agreement	 between	 the	 observed	 and	 predicted	 percen-
tiles,	confirming	the	assumptions	of	the	model.

T A B L E  2 	 Original	parameter	estimates	from	the	CPR	model	and	bootstrap	estimates	from	100	bootstrap	runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

Females

CPRint mmol/h 0.720 0.700 0.609 0.822 9.3

CPRslope mmol/h/week	PMA −0.0274 −0.0346 −0.0464 −0.0123 27.8

Males

CPRint mmol/h 0.764 0.780 0.623 1.075 15.1

CPRslope mmol/h/week	PMA −0.0315 −0.0358 −0.0515 −0.0217 22.3

Residual	error

CV_CPR 0.228 0.213 0.169 0.255 10.1

PPV_RUV_CPR 0.503 0.522 0.037 0.820 32.2

Note:	The	bootstrap	2.5th	and	97.5th	percentiles	form	the	empirical	95%	confidence	interval.	RSE	is	calculated	from	the	bootstrap	standard	deviation	divided	by	
the	bootstrap	average.
Abbreviations:	CPR,	creatinine	production	rate;	CPRint,	maturation	constant	when	postmenstrual	age	≤37	weeks;	CPRslope,	linear	maturation	function	gradient	
when	postmenstrual	age	is	>37	weeks	and	≤1080	weeks;	CV,	coefficient	of	variation	(proportional	residual	error	calculated	from	the	square	root	of	sigma);	
PMA,	postmenstrual	age;	PPV,	population	parameter	variability	calculated	from	the	square	root	of	omega;	RSE,	relative	standard	error;	RUV,	residual	
unexplained	variability.

F I G U R E  3  Visual	predictive	check	for	the	CPR	model.	The	5%	percentile,	median,	and	95%	percentile	of	the	distribution	of	the	
observations	(red	lines)	and	predictions	(black	lines)	compare	the	distributions.	The	filled	circles	in	the	left-	side	plot	are	the	individual	
observations.	The	95%	confidence	intervals	for	the	prediction	percentiles	are	shown	by	the	purple-	shaded	areas	in	the	right-	side	plot.	
The	yellow	lines	on	the	x-	axis	show	the	data	bins	used	in	the	construction	of	the	visual	predictive	check.	Data	from	Rhodin	et	al.15	CPR,	
creatinine	production	rate;	PMA,	postmenstrual	age
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Renal function

RF	was	predicted	using	Equation (22).	Evaluation	of	pre-
dictions	 of	 RF	 (Figure  S7)	 was	 performed	 using	 covari-
ates	from	a	large	population	(9998	patients)	treated	with	
renally	eliminated	antibiotics	(the	GAVamycin	covariate	
database31).

DISCUSSION

We	propose	a	definition	of	RF	that	is	based	on	GFR.	We	use	
the	 term	RF	as	a	metric	 to	describe	kidney	 function.	This	
is	 different	 to	 the	 more	 common	 use	 of	 RF,	 which	 is	 not	
necessarily	quantitative.	RF	accounts	for	metrics	including	
CPR,	size,	body	composition,	maturation,	and	the	effect	of	

T A B L E  3 	 Updated	parameter	estimates	for	the	GFR	model	using	data	from	Rhodin	et	al.15	and	bootstrap	estimates	from	100	bootstrap	
runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

PMAT50 PMA	week 33.6 33.7 29.5 39.1 7.2

PMA_HILL 3.49 3.55 2.95 4.50 11.4

PNAmax 0.588 0.585 0.474 0.674 9.1

PNAT50 PNA	day 6.94 7.13 3.54 11.9 26.4

GFRstd mL/min/70	kg	TBM 116 116 112 120 1.6

Ffat 0	FIXED 0 0 0 –	

PPV_GFR 0.197 0.193 0.157 0.239 10.2

Residual	error

CV_GFR 0.249 0.250 0.209 0.279 10.2

Note:	The	bootstrap	2.5th	and	97.5th	percentiles	form	the	empirical	95%	confidence	interval.	RSE	is	calculated	from	the	bootstrap	standard	deviation	divided	by	
the	bootstrap	average.
Abbreviations:	CV,	coefficient	of	variation	(proportional	residual	error	calculated	from	the	square	root	of	sigma);	Ffat,	parameter	describing	the	influence	of	
fat	mass	as	a	predictor	of	size; GFR,	glomerular	filtration	rate;	GFRstd,	population	standard	glomerular	filtration	rate;	PMA,	postmenstrual	age;	PMA_HILL,	
Hill	exponent	for	the	postmenstrual	age	maturation	function;	PMAT50,	postmenstrual	age	at	50%	of	the	fully	mature	value	of	1;	PNA,	postnatal	age;	PNAMAX,	
fractional	increase	relative	to	the	completion	of	the	birth	associated	component	of	maturation;	PNAT50,	postnatal	age	required	to	achieve	50%	of	the	fractional	
increase	relative	to	the	completion	of	the	birth	associated	component	of	maturation;	PPV,	population	parameter	variability	calculated	from	the	square	root	of	
omega;	RSE,	relative	standard	error;	TBM,	total	body	mass.

F I G U R E  4  Visual	predictive	check	for	the	GFR	model,	based	on	a	theory-	based	allometric	model	for	size	with	maturation	based	on	the	
postnatal	transition	maturation	model.	The	5th,	median	and	95thpercentiles	of	the	distribution	of	the	observations	are	shown	as	red	lines	
and	the	predictions	as	black	lines.	The	filled	circles	in	the	left-	side	plot	are	the	individual	observations.	The	95%	confidence	intervals	for	the	
prediction	percentiles	are	shown	by	the	purple-	shaded	areas	in	the	right	side-	plot.	The	yellow	lines	on	the	x-	axis	show	the	data	bins	used	in	
the	construction	of	the	visual	predictive	check.	GFR,	glomerular	filtration	rate;	PMA,	postmenstrual	age
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birth—	which	in	turn	are	predicted	from	primary	observa-
tions	of	Scr,	TBM,	height,	sex,	and	age	(postmenstrual	and	
postnatal).	We	developed	a	continuous	model	for	RF	com-
prising	 submodels	 of	 GFR	 (based	 on	 data	 from	 Rhodin	
et	al.15)	and	new	models	for	CPR	and	size	based	on	FFM.

The	 model	 for	 FFM	 described	 in	 this	 article	 extends	
the	prediction	of	FFM	to	neonates	and	extends	the	model	
previously	reported	for	children,3	which	in	turn	was	based	
on	extrapolation	from	a	model	developed	in	adults.2	Using	
NFM	as	a	measure	of	size	can	be	used	to	understand	how	
body	function	is	related	to	size	and	body	composition.	The	
parameter	 estimates	 for	 the	 human	 GFR	 model15	 have	
been	updated	using	the	fractional	model	for	FFM	extended	
to	infants	and	neonates	in	the	current	analysis.	We	have	
shown	that	CPR	from	premature	neonates	to	young	adults	
can	be	predicted	using	FFM,	PMA,	and	sex.	The	increase	
in	CPR	from	premature	neonates	to	adults	is	assumed	to	
be	a	consequence	of	 increasing	muscle	mass	as	opposed	
to	the	decrease	in	CPR	associated	with	the	loss	of	muscle	
mass	that	occurs	with	older	age.	Our	model	for	CPR	shows	
lower	 predictions	 in	 older	 individuals	 (Figure  S5)	 than	
other	 published	 models.	 Empirical	 models	 for	 eGFR	 do	
not	make	the	explicit	assumption	that	CLcr = GFR,	which	
we	have	used	to	develop	a	model	for	CPR	(Equation 23)	
and	may	explain	this	prediction	difference.

A	recent	publication	comparing	creatinine-	based	meth-
ods	 to	 estimate	 measured	 GFR	 found	 a	 worst-	case	 bias	 of	
7%	and	best-	case	bias	of	0.7%32	when	comparing	unscaled	
estimates	of	CLcr	and	measured	GFR.	This	is	similar	in	mag-
nitude	to	 the	bias	reported	by	Soveri	et	al.33	with	different	
methods	of	measuring	GFR	directly	when	compared	with	
renal	CL	of	inulin.	Thus	we	think	the	bias	in	the	estimation	
of	GFR	using	a	creatinine-	based	method	is	clinically	negligi-
ble	for	the	purpose	of	calculating	RF.	Even	if	the	estimate	of	
RF	is	biased	in	relation	to	GFR,	it	does	not	change	the	use-
fulness	of	this	metric	for	describing	kidney	function	because	
differences	in	CPR,	size,	body	composition,	and	maturation	
are	used	in	a	consistent	and	principled	way.	This	should	be	
contrasted	with	the	common	practice	of	expressing	GFR	as	
a	function	of	estimated	BSA	when	there	is	no	biological	link	
between	skin	and	GFR.	The	use	of	BSA	 is	widely	used	 to	
standardize	GFR	across	the	human	size	and	age	range	but	
has	no	rationale	apart	from	clinical	tradition	derived	perhaps	
from	the	misunderstanding	of	studies	of	heat	loss,34	which	
can	be	plausibly	linked	to	BSA,	but	not	to	GFR.	Systematic	
differences	in	eGFR	predictions	have	been	reported	with	the	
exclusion	of	the	race	covariate	from	some	creatinine-	based	
equations.35,36	Our	model	for	eGFR	may	not	have	this	racial	
bias	due	to	the	theory-	based,	rather	than	empirical,	approach	
to	GFR	prediction.	This	could	be	tested	but	would	have	to	be	
evaluated	in	a	US	population	with	Black	individuals.

Determining	 drug	 dosage	 based	 on	 GFR	 estimates	
should	use	them	in	a	consistent	way	that	is	adapted	to	all	

sizes,	maturation,	and	body	compositions.	This	is	what	is	
achieved	using	our	model	for	RF.	It	can	predict	variability	
in	renal	drug	elimination	across	a	broad	age range	from	
birth	to	older	adulthood.	Exploration	of	a	link	between	RF	
and	other	covariates	such	as	exposure	to	potentially	neph-
rotoxic	medication	is	now	feasible	given	a	consistent	age	
and	size	metric	for	kidney	function.

AUTHOR CONTRIBUTIONS
C.J.O.H.	and	N.H.	wrote	the	manuscript.	A.S.,	H.S.A.-	S.,	
and	N.H.	designed	the	research.	C.J.O.H.,	A.S.,	H.S.A.-	S.,	
and	N.H.	performed	the	research.	C.J.O.H.,	H.S.A.-	S.,	and	
N.H.	analyzed	the	data.

ACKNOWLEDGMENTS
This	 work	 used	 a	 license	 for	 NONMEM	 granted	 by	
ICON	to	the	Australian	Centre	of	Pharmacometrics.	The	
Australian	 Centre	 for	 Pharmacometrics	 is	 an	 initiative	
of	 the	 Australian	 Government	 as	 part	 of	 the	 National	
Collaborative	Research	Infrastructure	Strategy.

FUNDING INFORMATION
No	funding	was	received	for	this	work.

CONFLICT OF INTEREST
The	authors	declared	no	competing	interests	for	this	work.

DATA AVAILABILITY STATEMENT
The	 full	 data	 that	 support	 the	 findings	 of	 this	 study	 are	
not	publicly	available	due	to	privacy	or	ethical	restrictions.	
Example	 data	 fragments	 have	 been	 provided	 from	 the	
databases	used	 in	 the	construction	of	 the	 figures	 in	 this	
work.	All	data	has	been	deidentified	with	the	addition	of	
random	variability	to	the	values.	The	R	script	containing	
code	for	all	models	described	in	this	work	as	well	as	for	the	
construction	 of	 the	 figures	 has	 been	 provided.	The	 data	
fragments	and	R	script	can	be	used	together	to	reproduce	
the	models	and	figures	(Appendices	S2–	S4).

ORCID
Conor J. O’Hanlon  	https://orcid.org/0000-0003-2369-2858	
Nick Holford  	https://orcid.org/0000-0002-4031-2514	
Hesham S. Al- Sallami  	https://orcid.org/0000-0002-0685-327X	

REFERENCES
	 1.	 Holford	 NH,	 Anderson	 BJ.	 Allometric	 size:	 the	 scientific	

theory	 and	 extension	 to	 normal	 fat	 mass.	 Eur J Pharm Sci.	
2017;109:S59-	S64.

	 2.	 Janmahasatian	S,	Duffull	SB,	Ash	S,	Ward	LC,	Byrne	NM,	Green	
B.	 Quantification	 of	 lean	 bodyweight.	 Clin Pharmacokinet.	
2005;44(10):1051-	1065.

	 3.	 Al-	Sallami	 HS,	 Goulding	 A,	 Grant	 A,	 Taylor	 R,	 Holford	
N,	 Duffull	 SB.	 Prediction	 of	 fat-	free	 mass	 in	 children.	 Clin 
Pharmacokinet.	2015;54(11):1169-	1178.

https://orcid.org/0000-0003-2369-2858
https://orcid.org/0000-0003-2369-2858
https://orcid.org/0000-0002-4031-2514
https://orcid.org/0000-0002-4031-2514
https://orcid.org/0000-0002-0685-327X
https://orcid.org/0000-0002-0685-327X


412 |   O'HANLON et al.

	 4.	 Sinha	 J,	 Al-	Sallami	 HS,	 Duffull	 SB.	 An	 extension	 of	
Janmahasatian's	fat-	free	mass	model	for	universal	application	
across	populations	of	different	ethnicities.	Clin Pharmacokinet.	
2020;1-	10:1315.

	 5.	 Cockcroft	 DW,	 Gault	 MH.	 Prediction	 of	 creatinine	 clearance	
from	serum	creatinine.	Nephron.	1976;16:31-	41.

	 6.	 Pottel	H,	Björk	J,	Bökenkamp	A,	et	al.	Estimating	glomerular	
filtration	 rate	 at	 the	 transition	 from	 pediatric	 to	 adult	 care.	
Kidney Int.	2019;95(5):1234-	1243.

	 7.	 Matthews	I,	Kirkpatrick	C,	Holford	N.	Quantitative	justification	
for	 target	concentration	 intervention–	parameter	variability	and	
predictive	performance	using	population	pharmacokinetic	mod-
els	for	aminoglycosides.	Br J Clin Pharmacol.	2004;58(1):8-	19.

	 8.	 Schwartz	GJ.	Does	kL/PCr	estimate	GFR,	or	does	GFR	deter-
mine	k?	Pediatr Nephrol.	1992;6(6):512-	515.

	 9.	 Schwartz	 GJ,	 Brion	 LP,	 Spitzer	 A.	 The	 use	 of	 plasma	 creati-
nine	 concentration	 for	 estimating	 glomerular	 filtration	 rate	
in	 infants,	 children,	 and	 adolescents.	 Pediatr Clin North Am.	
1987;34(3):571-	590.

	10.	 Schwartz	 GJ,	 Munoz	 A,	 Schneider	 MF,	 et	 al.	 New	 equations	
to	 estimate	 GFR	 in	 children	 with	 CKD.	 J Am Soc Nephrol.	
2009;20(3):629-	637.

	11.	 Levey	AS,	Stevens	LA.	Estimating	GFR	using	the	CKD	epide-
miology	 collaboration	 (CKD-	EPI)	 creatinine	 equation:	 more	
accurate	GFR	estimates,	lower	CKD	prevalence	estimates,	and	
better	risk	predictions.	Am J Kidney Dis.	2010;55(4):622-	627.

	12.	 Vyas	DA,	Eisenstein	LG,	Jones	DS.	Hidden	in	plain	sight	-		re-
considering	the	use	of	race	correction	in	clinical	algorithms.	N 
Engl J Med.	2020;383(9):874-	882.

	13.	 Levey	 AS,	 Titan	 SM,	 Powe	 NR,	 Coresh	 J,	 Inker	 LA.	 Kidney	
disease,	 race,	 and	 GFR	 estimation.	 Clin J Am Soc Nephrol.	
2020;15(8):1203-	1212.

	14.	 Diao	JA,	Inker	LA,	Levey	AS,	Tighiouart	H,	Powe	NR,	Manrai	
AK.	In	search	of	a	better	equation	—		performance	and	equity	in	
estimates	of	kidney	function.	N Engl J Med.	2021;384(5):396-	399.

	15.	 Rhodin	MM,	Anderson	BJ,	Peters	AM,	et	al.	Human	renal	func-
tion	 maturation:	 a	 quantitative	 description	 using	 weight	 and	
postmenstrual	age.	Pediatr Nephrol.	2009;24(1):67-	76.

	16.	 De	 Lange	 DW.	 Glomerular	 hyperfiltration	 of	 antibiotics.	
Netherlands J Crit Care.	2013;17(5):1-	14.

	17.	 Duffull	SB,	Dooley	MJ,	Green	B,	Poole	SG,	Kirkpatrick	CM.	A	
standard	weight	descriptor	for	dose	adjustment	in	the	obese	pa-
tient.	Clin Pharmacokinet.	2004;43(15):1167-	1178.

	18.	 West	GB,	Brown	JH,	Enquist	BJ.	A	general	model	for	the	origin	
of	allometric	scaling	laws	in	biology.	Science.	1997;276:122-	126.

	19.	 Boutten	 A,	 Bargnoux	 AS,	 Carlier	 MC,	 Delanaye	 P,	 Rozet	 E,	
Delatour	 V.	 Enzymatic	 but	 not	 compensated	 Jaffe	 methods	
reach	the	desirable	specifications	of	NKDEP	at	normal	levels	of	
creatinine.	Results	of	the	French	multicentric	evaluation.	Clin 
Chim Acta.	2013;419:132-	135.

	20.	 Drion	I,	Cobbaert	C,	Groenier	KH,	et	al.	Clinical	evaluation	of	
analytical	 variations	 in	 serum	 creatinine	 measurements:	 why	
laboratories	 should	 abandon	 Jaffe	 techniques.	 BMC Nephrol.	
2012;13(1):133.

	21.	 Miller	WG,	Myers	GL,	Ashwood	ER,	et	al.	Creatinine	measure-
ment:	state	of	the	art	in	accuracy	and	interlaboratory	harmoni-
zation.	Arch Pathol Lab Med.	2005;129(3):297-	304.

	22.	 Panteghini	M.	Enzymatic	assays	for	creatinine:	time	for	action.	
Clin Chem Lab Med.	2008;46:567-	572.

	23.	 Peake	M,	Whiting	M.	Measurement	of	serum	creatinine–	current	
status	and	future	goals.	Cliniochem Rev.	2006;27(4):173-	184.

	24.	 Kirkpatrick	C,	Duffull	S,	Begg	E.	Pharmacokinetics	of	gentami-
cin	in	957	patients	with	varying	renal	function	dosed	once	daily.	
Br J Clin Pharmacol.	1999;47(6):637-	643.

	25.	 Rosario	M,	Thomson	A,	Jodrell	D,	Sharp	C,	Elliott	H.	Population	
pharmacokinetics	of	gentamicin	 in	patients	with	cancer.	Br J 
Clin Pharmacol.	1998;46(3):229-	236.

	26.	 Anderson	 BJ,	 Holford	 NH.	 Mechanism-	based	 concepts	 of	
size	 and	 maturity	 in	 pharmacokinetics.	 Annu Rev Pharmacol 
Toxicol.	2008;48:303-	332.

	27.	 Allegaert	K,	Peeters	M,	Verbesselt	R,	et	al.	Inter-	individual	vari-
ability	in	propofol	pharmacokinetics	in	preterm	and	term	neo-
nates.	Br J Anaesth.	2007;99(6):864-	870.

	28.	 Anderson	 BJ,	 Holford	 NH.	 Negligible	 impact	 of	 birth	
on	 renal	 function	 and	 drug	 metabolism.	 Pediatr Anesth.	
2018;28(11):1015-	1021.

	29.	 Parke	J,	Holford	NH,	Charles	BG.	A	procedure	for	generating	
bootstrap	samples	for	the	validation	of	nonlinear	mixed-	effects	
population	 models.	 Comput Methods Programs in Biomed.	
1999;59(1):19-	29.

	30.	 Holford	NH.	The	visual	predictive	check	–		superiority	to	stan-
dard	diagnostic	(Rorschach)	plots;	2005.	Accessed	February	13,	
2019.	www.page-	meeti	ng.org/?abstr	act=738

	31.	 Holford	NH.	Systems	Pharmacology	–		Learning	from	GAVamycin;	
2017.	Accessed	February	13,	2019.	https://wwwpa	ganzo	rg/abstr	
acts/syste	ms-	pharm	acolo	gy-	appli	catio	n-	to-	gavam	ycin/

	32.	 Delanaye	 P,	 Björk	 J,	 Courbebaisse	 M,	 et	 al.	 Performance	 of	
creatinine-	based	 equations	 to	 estimate	 glomerular	 filtration	
rate	with	a	methodology	adapted	to	the	context	of	drug	dosage	
adjustment.	Br J Clin Pharmacol.	2022;88(5):2118-	2127.

	33.	 Soveri	I,	Berg	UB,	Björk	J,	et	al.	Measuring	GFR:	a	systematic	
review.	Am J Kidney Dis.	2014;64(3):411-	424.

	34.	 Sarrus	R.	Rapport	sur	une	mémoire	adressé	à	l'Académie	royale	
de	Médecine.	Bull Acad Roy Med Paris.	1838;3:1094-	1100.

	35.	 Hsu	 C-	y,	 Yang	 W,	 Parikh	 RV,	 et	 al.	 Race,	 genetic	 ances-
try,	 and	 estimating	 kidney	 function	 in	 CKD.	 N Engl J Med.	
2021;385(19):1750-	1760.

	36.	 Gutiérrez	 OM,	 Sang	 Y,	 Grams	 ME,	 et	 al.	 Association	 of	
Estimated	GFR	calculated	using	race-	free	equations	with	kid-
ney	 failure	 and	 mortality	 by	 black	 vs	 non-	black	 race.	 JAMA.	
2022;327(23):2306-	2316.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	
in	 the	Supporting	Information	section	at	 the	end	of	 this	
article.

How to cite this article:	O’Hanlon	CJ,	Holford	N,	
Sumpter	A,	Al-Sallami	HS.	Consistent	methods	for	
fat	free	mass,	creatinine	clearance,	and	glomerular	
filtration	rate	to	describe	renal	function	from	
neonates	to	adults.	CPT Pharmacometrics Syst 
Pharmacol.	2023;12:401-412.	doi:10.1002/
psp4.12924

http://www.page-meeting.org/?abstract=738
https://wwwpaganzorg/abstracts/systems-pharmacology-application-to-gavamycin/
https://wwwpaganzorg/abstracts/systems-pharmacology-application-to-gavamycin/
https://doi.org/10.1002/psp4.12924
https://doi.org/10.1002/psp4.12924

	Consistent methods for fat free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults
	Abstract
	INTRODUCTION
	METHODS
	Body size
	Model for FFM
	Data
	Model

	Model for CPR
	Data
	Model

	Prediction of CLcr
	Model for nGFR
	Data
	Model

	Prediction of RF
	Data analysis

	RESULTS
	Model for FFM
	Model for CPR
	Model for nGFR
	Renal function

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


