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Abstract
Quantifying the effect of kidney disease on glomerular filtration rate (GFR) is 
important when describing variability in the clearance of drugs eliminated by the 
kidney. We aimed to develop a continuous model for renal function (RF) from 
prematurity to adulthood based on consistent models for fat  free mass (FFM), 
creatinine production rate (CPR), and GFR. A model for fractional FFM in pre-
mature neonates to adults was developed using pooled data from 4462 subjects 
and 2847 FFM observations. It was found that girls have an FFM higher than that 
predicted from adult women based on height, total body mass, and sex, and boys 
have an FFM lower than adult men until around the onset of puberty, when it ap-
proaches adult male values. Data from 108 subjects with measurements of serum 
creatinine (Scr) and GFR were used to construct a model for CPR. Creatinine 
clearance was predicted using the model for CPR (based on FFM, postmenstrual 
age, and sex) and Scr, and avoids discontinuous predictions between neonates, 
children, and adults. Individual CPR may then be used with individual Scr to 
predict the estimated GFR (eGFR; eGFR  =  CPR/Scr). A previously published 
model for human GFR based on 1153 GFR observations in 923 subjects without 
known kidney disease was updated using the model for fractional FFM to predict 
individual size and age-consistent values for the expected normal GFR (nGFR). 
Individual renal function was then calculated using RF = eGFR/nGFR.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Fat free mass (FFM) is predictable from children to adults using total body mass, 
height, sex, and age. Creatinine-based estimates of glomerular filtration rate 
(GFR) can be problematic if differences in size, body composition, and age are 
not accounted for appropriately.
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INTRODUCTION

Body size is quantitatively the most important factor pre-
dicting drug clearance (CL).1 Size has traditionally been 
described using total body mass (TBM) without considera-
tion of body composition. There is still a lack of consensus 
in how to describe pharmacokinetics in individuals using 
body composition. Normal fat mass (NFM) has been pro-
posed because it can be parameter specific, but it relies 
on knowing fat free mass (FFM).1 Predictive equations 
for FFM have been described in adults.2 That FFM model 
has been extended down to children as young as 3 years of 
age3 and also to include different ethnicities.4 However, 
there is currently no continuous model predicting FFM 
from premature neonates to adults. Such a model would 
be useful to account for body composition in drug phar-
macokinetics across the human age span.

Differences in the ability of the kidney to eliminate a 
drug or metabolites can be described using a metric that 
we call renal function (RF), obtained from a comparison 
between estimated glomerular filtration rate (eGFR) using 
a biomarker (e.g., serum creatinine [Scr]) and normal 
glomerular filtration rate (nGFR). nGFR is the expected 
glomerular filtration rate (GFR) in the absence of kidney 
disease based on size, body composition, and maturation. 
RF is therefore the ratio of eGFR to nGFR under the as-
sumption that eGFR is equal to creatinine CL (CLcr). 
CLcr is typically calculated from Scr and an estimate of 
the creatinine production rate (CPR). There are two types 
of approaches using Scr for the estimation of GFR: mech-
anistic and empirical.

The first is based on mechanistic principles involving 
CPR and Scr to estimate CLcr (CLcr  =  CPR/Scr). This 
method is based on the relationship between the rate 
of elimination and the concentration that defines CL 
(Equation 1).

There are several mechanistic models for CLcr in 
adults5–7 and in children.8–10 These models predict CPR 
using covariates such as TBM (equivalent to weight), age, 
sex, and height and then divide by Scr to obtain CLcr.

The second approach uses empirical regression mod-
els involving similar covariates such as age, sex, race, and 
Scr to estimate GFR, for example, the Modification of 
Diet in Renal Disease (MDRD) method and the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) 
method.11 The MDRD and CKD-EPI methods are only 
useful for adults and contain a race-based covariate (skin 
color), which is challenging to use.12–14 These GFR meth-
ods implicitly use a prediction of CPR divided by Scr, 
although an empirical power function of Scr is typically 
used rather than Scr itself. Methods that scale for size, for 
example, per 1.73 m2, need to be unscaled to obtain CLcr 
in the individual.

A less biased and more precise way of determining GFR 
is to use the gold standard measurement methods (e.g., 
inulin, iothalamate or iohexol CL, or radiolabeled isotope 
methods). However, these are seldom performed because 
of cost and practical difficulty. Instead, CLcr is a widely 
used estimate of GFR because Scr measurement is read-
ily available in most clinical settings. eGFR equations can 
be implemented in pharmacokinetics studies as a quan-
titative way to describe kidney function. However, these 
equations are often developed in specific populations and 
may not be able to be extended down to infants and neo-
nates when developed for adults or vice versa. This means 
a description of kidney function can be challenging in 
pharmacokinetics studies with a wide age range.

A better description of how kidney disease may affect 
drug disposition would be helped by consistent models for 

(1)Rate out = clearance × concentration

WHAT QUESTION DID THIS STUDY ADDRESS?
This study described a model for renal function predicted using the ratio of es-
timated GFR to normal GFR. This accounts for differences in size, maturation, 
body composition, and the effect of birth from neonates to adults.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A method for the prediction of FFM in neonates and infants has been developed 
that is consistent with previous methods for children and adults. Continuous mod-
els for creatinine production rate, creatinine clearance, and GFR are described 
from neonates to adults. These models were used to predict renal function.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This study provided a consistent metric describing renal function suitable for 
dose adjustment from neonates to adults.
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predicting differences based on factors used to calculate 
RF (i.e., body size, body composition, and maturation). An 
update to a previously published GFR model15 has been 
developed using the FFM model presented in this work 
with a birth effect on GFR in addition to the process of 
maturation occurring both before and after birth. An in-
dividual with expected nGFR and no kidney disease will 
have an RF value of one for all combinations of size, body 
composition, and maturation. Typically, kidney disease 
will decrease RF, but values greater than one are expected 
with disease-associated hyperfiltration, which has been 
described in septic states.16 We describe the development 
of consistent FFM, CPR, and GFR models used to calcu-
late individual RF.

METHODS

We developed a continuous model for RF comprising 
three submodels. For each model, the data used in its con-
struction are presented first, followed by the calculation 
of the dependent variable when it is derived from other 
primary observations and then the model itself.

Body size

NFM1 is used as the descriptor for body size in the FFM, 
CPR, and nGFR models described in this work. NFM is an 
extension of the concept of predicted normal weight17 and 
is a size metric derived from TBM, FFM, and theory-based 
allometric concepts. NFM is calculated from FFM and 
TBM with an additional parameter, fraction of fat (Ffat) 
(Equation 2).

The influence of fat mass (TBM–FFM) combined with 
FFM as a predictor of theory-based allometric size is de-
scribed by Ffat. The basis of NFM is to estimate the value 
of Ffat, which is specific to the biological structure or 
function parameter being described. For example, if Ffat is 
estimated to be 0, then FFM alone may be used to predict 
size, whereas if Ffat is 1, then TBM may be used to predict 
size. A standard value for NFM (NFMstd) may be calcu-
lated for a male with a TBM of 70 kg, an FFM of 56.1 kg, a 
height of 1.76 m, and the drug parameter–specific value of 
Ffat (Equation 3).

A size factor, Fsize, can be obtained from NFM, 
NFMstd, and a theory-based allometric exponent WBE 

(Equation  4). WBE is obtained from the West, Brown, 
and Enquist theory, which predicts an allometric ex-
ponent of 1 for structural properties (e.g., V) and ¾ for 
functional properties (e.g., CL).18 NFM allows for body 
composition to be included in the meaning of allometric 
size.

Model for FFM

Data

A model to predict FFM from neonates to adults was devel-
oped using FFM observations and a published adult FFM 
model.2 Data were pooled from 15 studies, which included 
100 mean FFM values and 2747 individual FFM observa-
tions from a total of 4462 subjects (95th percentile post-
menstrual age [PMA] interval [40.6, 1134] weeks). These 
were used to calculate the fraction of adult-predicted FFM 
(predicted from Janmahasatian et al.2). A data summary is 
presented in Table S1, and subject covariate distributions 
are shown in Figure S1.

Model

The dependent variable for the fractional FFM (FRFFM) 
model was calculated using observations of FFM from 
the study data (FFMobserved) and predictions of FFM from 
Janmahasatian et al.2 (FFMadult) using TBM, height, and 
sex (Equation 5).

FRFFM is then a fraction of FFM predicted from the 
adult model,2 relative to the observed FFM. The FRFFM 
model (see Figure 1 and Equation 6) predicts the value of 
FRFFM by combining a baseline (FFMIN), a component 
for neonates and infants (FFNEO), and a component for 
children (FFKID) using PMA and sex.

The baseline, FFMIN, is obtained from FMAT_PRE, 
a parameter describing FRFFM in a 24-week premature 
neonate, and FMAT_MAX, the asymptotic estimate of 
FFMadult (Equation 7).

(2)NFM = FFM + Ffat × (TBM − FFM)

(3)NFMstd = 56.1 + Ffat × (70 − 56.1)

(4)Fsize =

(

NFMi

NFMstd

)WBE

(5)FRFFM =
FFMobserved

FFMadult

(6)FRFFM = FFMIN + FFNEO + FFKID

(7)FFMIN = FMAT_PRE × FMAT_MAX
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The neonatal component, FFNEO, describes the ex-
ponential drop in FFM fraction from FMAT_PRE toward 
FFMIN. TFF_PRE is the half-life of decrease of FFNEO, 
and PMA is in years (Equation 8).

The child component, FFKID, is an asymmetrical sig-
moid Emax model. FFKID rises as PMA approaches adult 
values (FMAT_MAX) from baseline (FFMIN). A50 is the 
PMAY when FFKID is 50% of the adult FRFFM. The HILL 
exponent has a different value when younger (HILL_Y) or 
equal to or older (HILL_O) than A50, and PMA is in years 
(Equation 9). 

Each parameter of the FRFFM model is sex specific. 
The prediction of FRFFM is limited at 1.16 for males 
and 1.19 for females to avoid implausible values at very 
young PMA. These upper limits were obtained from the 
upper 95% percentile of the observed values of FRFFM. 
Figure 1 shows the predicted FRFFM in males and fe-
males with an indication of how the FRFFM model 

parameters influence the time course with increasing 
PMA in years.

Data from each study that provided only average mea-
sured FFM data were combined by weighting the variance 
of the residual error of the FFM prediction in inverse pro-
portion to the number of subjects (Equation 10). Residual 
unexplained variability, coefficient of variation (RUV_CV) 
is a parameter describing the proportional residual error 
associated with the prediction of FRFFM.

Model for CPR

Data

Measurements of GFR and Scr from Rhodin et al.15 were 
used to construct the model for CPR. A total of 108 subjects 
had measurements of both GFR (not indexed to body surface 
area [BSA]) and Scr, with a 95th percentile PMA interval of 
[27.8, 872] weeks. Covariate distributions for these subjects 
are shown in Figure S2. By assuming CLcr is equal to GFR, 
CPR can be calculated using Equation 11.

(8)
FFNEO = (FMAT_PRE − FFMIN) × e

−log(2)

TFF_PRE×
(

PMA− 24
52

)

(9)FFKID =
FMAT_MAX − FFMIN

1 +
(

PMA

A50

)−HILL

(10)SD =

√

(FRFFM×RUV_CV)2

Nsubjects

(11)CPR = GFR × Scr

F I G U R E  1   Predicted fraction of adult FFM (FRFFM) in males and females from neonates to young adults based on postmenstrual 
age, sex, total body mass, and height covariates in the pooled data set. The arrows show the exponential drop from FMAT_PRE to FFMIN. 
In males, FRFFM rises approaching adult fat free mass values caused by the increasing influence of the child component of FRFFM and 
the diminishing influence of the neonate and infant. Parameter values are shown in Table 1. FFMIN, baseline component of the FRFFM; 
FMAT_MAX, asymptotic estimate of the adult fat free mass prediction; FMAT_PRE, lower asymptote of neonate and infant component of 
the FRFFM estimated in a 24-week premature neonate; FRFFM, fractional model for fat free mass; TFF_PRE, half-life of decrease of the 
neonate and infant component of the FRFFM
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Assays for Scr quantitation can have poor analytical 
specificity, for example, the Jaffe colorimetric method.19,20 
The Rhodin et al.15 Scr measurements used a nonspecific 
Jaffe method. Plasma proteins, immunoglobulins, and 
other drugs (e.g., cephalosporins) are known to interfere 
with the Jaffe assay.21 Enzymatic methods used for Scr 
quantitation are more accurate, have greater specificity, 
and are less affected by interfering substances.20,22 The 
Jaffe method for Scr determination is still widely used, 
which can be challenging when CPR is predicted using a 
more specific method. A conversion factor may be used to 
convert Jaffe Scr measurements to the more specific enzy-
matic equivalent (Equation 12).23

The value of 88.4 is the μmol/L equivalent of 1  mg/dL. 
Noncreatinine chromogen  offset, standard  (NCrstd) is the 
offset required to make a Jaffe method measurement ap-
proximately equivalent to an enzymatic method mea-
surement. Olympus 5400 and Roche H917 methods are 
corrected for noncreatinine chromogens with offsets of 26.5 
and 18 μmol/L, respectively.23 Where the machine-type in-
formation is not available, an average offset of 22.25 μmol/L 
may be used, giving a factor for serum creatinine (FScr) value 
of 0.748. The original Rhodin et al.15 Jaffe Scr measurements 
were corrected by FScr to approximate the more specific en-
zymatic measurements.

Model

CPR can be predicted using a population standard for 
CPR, size, and age. The model for CPR based on these fac-
tors is shown in Equation 13.

CPRstd is the standard enzymatic equivalent CPR for 
a 40-year-old male based on the estimate for a male with 
70 kg TBM (0.386 mmol/h/70 kg  =  0.516 mmol/h/70 kg x 
FScr).

7 Size is scaled using FFM because Ffat was estimated 
to be close to zero. The allometric exponent for CPR uses 
the theory-based value of one as CPR comes from muscle 
mass, which is a structural rather than a functional prop-
erty. An empirical maturation function (Fmat,CPR) based on 
PMA was used to describe the maturation of CPR from 
premature neonates to young adults. This function has 
three segments depending on PMA (Equations 14–16).

After accounting for body size, when PMA is less than 
or equal to 37 weeks, the CPR does not seem to increase 
and is described by the constant CPRint (Equation 14).

From infants to adults (PMA >37 to 1080 weeks 
PMAadult/20 years postnatal age [PNA]), the CPR matura-
tion function is described by a linear function (CPRslope; 
Equation  15). Both the CPRint and CPRslope parameters 
are sex specific. 

For adults (>20 years PNA), CPR is calculated using 
the Matthews et al.7 modification of the Cockcroft and 
Gault model (Equation 16).

Low Scr concentrations in adults are more likely to be 
due to low CPR rather than unusually high renal func-
tion. Methods have been proposed where Scr concentra-
tions below 0.06 mmol/L (Jaffe) are simply rounded up 
to 0.06 mmol/L, which ignores the actual Scr.24,25 The 
Matthews et al.7 method (Equation 17) does not discard 
information about RF contained in the Scr. It proposes a 
factor for CPR change with a reduction by 0.7 when Scr 
is less than 0.049 mmol/L (enzymatic equivalent) = 0.06 x 
FScr mmol/L (Jaffe).

Prediction of CLcr

CLcr can then be calculated from a measurement of Scr 
and predicted CPR (Equation 13). This typically assumes 
that Scr is at steady state so that CPR (rate in) is an esti-
mate of the rate of elimination (rate out). When GFR is 
changing rapidly, Scr cannot be assumed to be at steady 
state. Creatinine pharmacokinetics can be used to account 
for rapidly changing Scr by predicting the CLcr at the 
time of Scr measurement. Creatinine is assumed to have 
a single distribution volume (Vcr = 0.5 L/kg * TBM) and 
renal elimination CL (CLcr L/h). The creatinine elimina-
tion rate constant (Kcr; calculated from CLcr/Vcr) is then 
used with the observed Scr (ScrNOW) to calculate CLcr at 
that time. The first Scr is assumed to be at steady state to 
calculate the initial CLcr used to initialize the CLcrLAST 
variable. The time (h) of the first Scr observation is used 
to initialize the HLAST variable. At subsequent times 
(HNOW) of Scr, the CLcr (CLcrNOW) is obtained by solv-
ing the creatinine pharmacokinetic model for ScrNOW.

(12)FScr =

(

88.4 −NCrstd
)

88.4
= 0.748

(13)CPR = CPRstd × Fsize × FMAT,CPR

(14)Fmat,CPR = CPRint

(15)Fmat,CPR = 1 +
CPRslope ×

(

PMAadult − PMA
)

100

(16)FMAT,CPR =
112 −AGE

(112 − 40)
( × 0.82 if female)

(17)Fmat,CPR =
119 −AGE

(119 − 40)
× 0.7
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After each calculation (Equation  18), CLcrNOW be-
comes CLcrLAST and HNOW becomes HLAST to con-
tinue the algorithm. Scr is not reliable as a predictor of 
CLcr immediately after birth because most Scr in the neo-
nate is derived from the mother. At this time, it is usually 
plausible to assume that GFR is normal. The estimate of 
Kcr based on nGFR and Vcr can be used to predict the cre-
atinine half-life and how long it will take for most of the 

maternally derived creatinine to have been eliminated, 
for example, after four creatinine half-lives. After then, it 
becomes reasonable to use measured Scr in neonates to 
estimate CLcr.

Model for nGFR

Data

A model has been previously described for the growth of 
GFR based on gold standard measurements in subjects 
with normal kidney function.15 These data comprised of 
1153 GFR observations in 923 subjects, with a 95th per-
centile PMA interval of [28.3, 1071] weeks.

(18)

DELTA=HNOW−HLAST; time between Scr measurements

Kcr=
CLcrLAST

Vcr

ScrNOW=
CPR×

(

1−e−Kcr×DELTA
)

CLcrNOW
−ScrLAST×e−Kcr×DELTA

CLcrNOW=
CPR×

(

1−e−Kcr×DELTA
)

ScrNOW−ScrLAST×e−Kcr×DELTA

T A B L E  1   Original parameter estimates for the FRFFM model and bootstrap estimates from 100 bootstrap runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

Females

FMAT_PRE 0.837 1.33 0.850 1.76 18.5

TFF_PRE PMA y 0.12 0.10 0.08 0.12 9.4

FFMAT 0 FIXED 0 0 0 –

FMAT_MAX 2.03 2.05 2.02 2.08 0.9

A50 PMA y 1.53 1.95 0.255 4.48 152

HILL_Y 0.0339 0.0290 0.0170 0.0386 20.1

HILL_O 0.0306 0.0249 0.0144 0.0325 20.6

PPV_TFF_PRE 0.016 0.032 0.000 0.118 110.8

PPV_A50 3.67 4.61 3.39 8.01 27.0

Males

FMAT_PRE 5.20 5.03 1.62 9.95 46.3

TFF_PRE PMA year 0.060 0.064 0.051 0.090 16.4

FFMAT 0 FIXED 0 0 0 –

FMAT_MAX 1.74 1.72 1.68 1.75 1.1

A50 PMA year 3.54 3.27 2.34 4.06 12.8

HILL_Y 0.127 0.118 0.063 0.178 28.9

HILL_O 0.164 0.173 0.144 0.206 9.3

PPV_TFF_PRE 0.130 0.128 0.103 0.158 10.5

PPV_A50 1.015 0.964 0.767 1.125 10.0

Residual error

CV_FRFFM 0.046 0.046 0.042 0.051 4.8

Note: The bootstrap 2.5th and 97.5th percentiles form the empirical 95% confidence interval. RSE is calculated from the bootstrap standard deviation divided by 
the bootstrap average.
Abbreviations: A50, age at which the child component of the FRFFM is 50% of the adult value; CV, coefficient of variation (proportional residual error 
calculated from the square root of sigma); FFMAT, fraction of asymptotic estimate of the adult fat free mass prediction that describes the lower asymptote 
of the FRFFM; FMAT_MAX, asymptotic estimate of the adult fat free mass prediction; FMAT_PRE, lower asymptote of the neonate and infant component 
of the FRFFM estimated in a 24-week premature neonate; FRFFM, fractional model for fat free mass; HILL_O, Hill exponent above or equal to the age at 
which the child component of the FRFFM is 50% of the adult value; HILL_Y, Hill exponent below the age at which the child component of the FRFFM; PMA, 
postmenstrual age; PPV, population parameter variability calculated from the square root of omega; RSE, relative standard error; TFF_PRE, half-life decrease 
of the neonate and infant contribution to the FRFFM.
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Model

The Rhodin et al.15 model describing GFR was updated 
using FFM as a measure of size from the FRFFM model 
described previously and the addition of a PNA matura-
tion function, which describes a birth effect (Equation 21). 
nGFR describes GFR predicted under the assumption of 
normal kidney function. nGFR changes rapidly after birth 
due to increasing body size (growth) and increasing age 
(maturation).26 Theory-based allometry and maturation 
models can be used to describe the impact of these pro-
cesses on GFR using Equation 19.

GFRstd is the mature population estimate for GFR of a 
male with TBM 70 kg and height of 176 cm. NFM, specific 
for GFR, was used to predict Fsize (Equation 4). A sigmoid 
Emax model was used to describe the maturation of GFR 
with respect to PMA. To account for maturation of GFR and 
the impact of birth, two maturation fractions were com-
bined based on PMA (Fmat,PMA weeks) and PNA (Fmat,PNA 
days). Fmat,PMA is defined in terms of PMAT50, the matura-
tion half time, that is, the PMA (weeks) at 50% of the fully 
mature value of one, and HILL, a parameter that describes 
the steepness of the maturation curve (Equation 20).

Transition from the intrauterine to the extrauterine en-
vironment is associated with major changes in blood flow 
and oxygenation. This can cause changes in GFR, kidney 
function, and drug metabolism.27,28 Therefore Fmat,PNA 
(PNA maturation) was used to describe changes in addi-
tion to those predicted from PMA alone (Equation 21).

PNAmax is the fractional increase relative to the com-
pletion of the birth-associated component of maturation, 
PNAT50 is the half time required to achieve 50% of this 
maturational change, and PNA is in days. Fmat,PMA and 
Fmat,PNA approach an asymptote of 1, signifying comple-
tion of these maturational processes.

Prediction of RF

RF is defined by the ratio of eGFR to nGFR (Equation 22). 
It differs from the more general term kidney function by 

proposing a quantitative measure of efficiency of all func-
tions of the kidney that are linked with CLcr and GFR.

eGFR can be predicted using CPR and Scr with the as-
sumption that CLcr is the same as GFR (Equation 23).

This makes RF a quantity that is independent of size, 
body composition, maturation, and birth effects when these 
factors are consistently accounted for in both estimated cre-
atinine clearance (eCLcr) and nGFR. The new models pre-
sented here for FFM, CPR, and nGFR allow a continuous 
function to predict RF from premature neonates to adults.

Data analysis

Data were analyzed using NONMEM (ICON Development 
Solutions) Version 7.5.1 and Wings for NONMEM Version 
744 (http://wfn.sourc​eforge.net/). Population parameter 
estimates were obtained using NONMEM's first-order 
conditional estimation method with the interaction op-
tion. The convergence criterion was 3 with tolerance 
SIGLEVEL  =  6. Nonparametric bootstrapping was used 
to evaluate parameter uncertainty in each model.29 A total 
of 100 bootstrap replicates were used to describe the dis-
tribution of the parameter estimates and estimate the un-
certainty of the prediction.

Visual predictive checks were used to evaluate the 
models by comparing the 5th, 50th, and 95th percentiles 
of the observed and model-predicted values.30 The 95% 
confidence intervals were estimated from the distribution 
of each of the prediction percentiles. Further details on 
the data analysis are presented in Appendix S1.

RESULTS

Model for FFM

Sex-specific parameter estimates for the FRFFM model 
are presented in Table 1. Population parameter variability 
(PPV) was estimated for TFF_PRE (half-life decrease of 
FFNEO) and A50 (PMA at 50% of FFKID) with the same 
PPV for males and females. The residual error was de-
scribed using a proportional model for the random effect.

Girls have an FFM larger than adult-predicted FFM 
(see female FRFFM predictions, Figure 1). Boys have an 

(19)nGFR = GFRstd × Fsize × Fmat,PMA × Fmat,PNA

(20)Fmat,PMA =
1

1 +
(

PMA

PMAT50

)−HILL

(21)Fmat,PNA = 1 − PNAmax + PNAmax ×

(

1 − e
−ln(2)×PNA
PNAT50

)

(22)RF =
eGFR

nGFR

(23)eGFR = eCLcr =
CPR

Scr

http://wfn.sourceforge.net/
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FFM lower than adult-predicted FFM until about the 
onset of puberty, when it approaches adult values (see 
male FRFFM predictions, Figure 1). There is high uncer-
tainty in the estimate of A50 in females. This is likely due 
to the sparse data between 1.5 and 4 years PMA. The visual 
predictive checks of the FRFFM model (Figure  2) show 
that the difference between males and females is well de-
scribed by the median prediction of the observed value.

Model for CPR

The parameter estimates for the CPR model are shown 
in Table  2. FFM alone was used to predict the size for 
CPR based on the assumption that muscle mass (the pri-
mary source of creatinine) is not affected by fat mass, and 

therefore FfatCPR = 0. The residual error was described 
using a proportional error model for the random effect. 
The PPV of the coefficient of variation was estimated.

CPR predictions from neonates to adults using data 
from the GAVamycin covariate database are shown in 
Figure  S3. Comparison of CPR predictions between 
our model and other published models are presented in 
Figures S4 and S5. The visual predictive check for the CPR 
model (Figure 3) shows that the observed percentiles are 
well described by the model predictions.

Model for nGFR

The parameter estimates for the updated nGFR model are 
shown in Table 3. Size was predicted using FFM (FfatGFR 

F I G U R E  2   Visual predictive check for the FRFFM model in females (top) and males (bottom). The 5% percentile, median, and 95% 
percentile of the distribution of the observations are red, and predictions are black. The hollow circles in the left-side plots are the individual 
observations. The 95% confidence intervals for the prediction percentiles are shown by the purple-shaded areas in the right-side plots. The 
yellow lines on the x-axis show the data bins used in the construction of the visual predictive check. FRFFM, fractional model for fat free 
mass; PMA, postmenstrual age
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estimated and not distinguishable from zero) in the update 
to the nGFR model reported previously.15 The maturation 
and postnatal effects of birth on GFR were investigated 
using models for PMA maturation and postnatal transi-
tion (PNT).28 The FRFFM model was used to describe GFR 
changes with size. An asymptotic exponential PNT matu-
ration model (PNTexp) described the effect of birth on GFR 
maturation and included factors for PNT and PMA matu-
ration. Figure S6 shows the differences in a PMA matura-
tion model (PMAonly) compared with the PNTexp model 

(PMA plus PNT). Maturation was slower before birth using 
the PNTexp model compared with PMA maturation alone. 
At birth, the relative GFR estimate was 25% less using the 
PNTexp model compared with PMAonly, but this differ-
ence increased to 60% during the first weeks of life. The 
estimated GFRstd was 116 mL/min/70 kg TBM (size equiva-
lent to 56.1 kg FFM) in a standard male. The visual pre-
dictive check for the GFR model (Figure  4) shows good 
agreement between the observed and predicted percen-
tiles, confirming the assumptions of the model.

T A B L E  2   Original parameter estimates from the CPR model and bootstrap estimates from 100 bootstrap runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

Females

CPRint mmol/h 0.720 0.700 0.609 0.822 9.3

CPRslope mmol/h/week PMA −0.0274 −0.0346 −0.0464 −0.0123 27.8

Males

CPRint mmol/h 0.764 0.780 0.623 1.075 15.1

CPRslope mmol/h/week PMA −0.0315 −0.0358 −0.0515 −0.0217 22.3

Residual error

CV_CPR 0.228 0.213 0.169 0.255 10.1

PPV_RUV_CPR 0.503 0.522 0.037 0.820 32.2

Note: The bootstrap 2.5th and 97.5th percentiles form the empirical 95% confidence interval. RSE is calculated from the bootstrap standard deviation divided by 
the bootstrap average.
Abbreviations: CPR, creatinine production rate; CPRint, maturation constant when postmenstrual age ≤37 weeks; CPRslope, linear maturation function gradient 
when postmenstrual age is >37 weeks and ≤1080 weeks; CV, coefficient of variation (proportional residual error calculated from the square root of sigma); 
PMA, postmenstrual age; PPV, population parameter variability calculated from the square root of omega; RSE, relative standard error; RUV, residual 
unexplained variability.

F I G U R E  3   Visual predictive check for the CPR model. The 5% percentile, median, and 95% percentile of the distribution of the 
observations (red lines) and predictions (black lines) compare the distributions. The filled circles in the left-side plot are the individual 
observations. The 95% confidence intervals for the prediction percentiles are shown by the purple-shaded areas in the right-side plot. 
The yellow lines on the x-axis show the data bins used in the construction of the visual predictive check. Data from Rhodin et al.15 CPR, 
creatinine production rate; PMA, postmenstrual age
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Renal function

RF was predicted using Equation (22). Evaluation of pre-
dictions of RF (Figure  S7) was performed using covari-
ates from a large population (9998 patients) treated with 
renally eliminated antibiotics (the GAVamycin covariate 
database31).

DISCUSSION

We propose a definition of RF that is based on GFR. We use 
the term RF as a metric to describe kidney function. This 
is different to the more common use of RF, which is not 
necessarily quantitative. RF accounts for metrics including 
CPR, size, body composition, maturation, and the effect of 

T A B L E  3   Updated parameter estimates for the GFR model using data from Rhodin et al.15 and bootstrap estimates from 100 bootstrap 
runs

Parameter Unit Original
Bootstrap 
average

Bootstrap 2.5th 
percentile

Bootstrap 97.5th 
percentile

Bootstrap 
RSE (%)

PMAT50 PMA week 33.6 33.7 29.5 39.1 7.2

PMA_HILL 3.49 3.55 2.95 4.50 11.4

PNAmax 0.588 0.585 0.474 0.674 9.1

PNAT50 PNA day 6.94 7.13 3.54 11.9 26.4

GFRstd mL/min/70 kg TBM 116 116 112 120 1.6

Ffat 0 FIXED 0 0 0 –

PPV_GFR 0.197 0.193 0.157 0.239 10.2

Residual error

CV_GFR 0.249 0.250 0.209 0.279 10.2

Note: The bootstrap 2.5th and 97.5th percentiles form the empirical 95% confidence interval. RSE is calculated from the bootstrap standard deviation divided by 
the bootstrap average.
Abbreviations: CV, coefficient of variation (proportional residual error calculated from the square root of sigma); Ffat, parameter describing the influence of 
fat mass as a predictor of size; GFR, glomerular filtration rate; GFRstd, population standard glomerular filtration rate; PMA, postmenstrual age; PMA_HILL, 
Hill exponent for the postmenstrual age maturation function; PMAT50, postmenstrual age at 50% of the fully mature value of 1; PNA, postnatal age; PNAMAX, 
fractional increase relative to the completion of the birth associated component of maturation; PNAT50, postnatal age required to achieve 50% of the fractional 
increase relative to the completion of the birth associated component of maturation; PPV, population parameter variability calculated from the square root of 
omega; RSE, relative standard error; TBM, total body mass.

F I G U R E  4   Visual predictive check for the GFR model, based on a theory-based allometric model for size with maturation based on the 
postnatal transition maturation model. The 5th, median and 95thpercentiles of the distribution of the observations are shown as red lines 
and the predictions as black lines. The filled circles in the left-side plot are the individual observations. The 95% confidence intervals for the 
prediction percentiles are shown by the purple-shaded areas in the right side-plot. The yellow lines on the x-axis show the data bins used in 
the construction of the visual predictive check. GFR, glomerular filtration rate; PMA, postmenstrual age
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birth—which in turn are predicted from primary observa-
tions of Scr, TBM, height, sex, and age (postmenstrual and 
postnatal). We developed a continuous model for RF com-
prising submodels of GFR (based on data from Rhodin 
et al.15) and new models for CPR and size based on FFM.

The model for FFM described in this article extends 
the prediction of FFM to neonates and extends the model 
previously reported for children,3 which in turn was based 
on extrapolation from a model developed in adults.2 Using 
NFM as a measure of size can be used to understand how 
body function is related to size and body composition. The 
parameter estimates for the human GFR model15 have 
been updated using the fractional model for FFM extended 
to infants and neonates in the current analysis. We have 
shown that CPR from premature neonates to young adults 
can be predicted using FFM, PMA, and sex. The increase 
in CPR from premature neonates to adults is assumed to 
be a consequence of increasing muscle mass as opposed 
to the decrease in CPR associated with the loss of muscle 
mass that occurs with older age. Our model for CPR shows 
lower predictions in older individuals (Figure  S5) than 
other published models. Empirical models for eGFR do 
not make the explicit assumption that CLcr = GFR, which 
we have used to develop a model for CPR (Equation 23) 
and may explain this prediction difference.

A recent publication comparing creatinine-based meth-
ods to estimate measured GFR found a worst-case bias of 
7% and best-case bias of 0.7%32 when comparing unscaled 
estimates of CLcr and measured GFR. This is similar in mag-
nitude to the bias reported by Soveri et al.33 with different 
methods of measuring GFR directly when compared with 
renal CL of inulin. Thus we think the bias in the estimation 
of GFR using a creatinine-based method is clinically negligi-
ble for the purpose of calculating RF. Even if the estimate of 
RF is biased in relation to GFR, it does not change the use-
fulness of this metric for describing kidney function because 
differences in CPR, size, body composition, and maturation 
are used in a consistent and principled way. This should be 
contrasted with the common practice of expressing GFR as 
a function of estimated BSA when there is no biological link 
between skin and GFR. The use of BSA is widely used to 
standardize GFR across the human size and age range but 
has no rationale apart from clinical tradition derived perhaps 
from the misunderstanding of studies of heat loss,34 which 
can be plausibly linked to BSA, but not to GFR. Systematic 
differences in eGFR predictions have been reported with the 
exclusion of the race covariate from some creatinine-based 
equations.35,36 Our model for eGFR may not have this racial 
bias due to the theory-based, rather than empirical, approach 
to GFR prediction. This could be tested but would have to be 
evaluated in a US population with Black individuals.

Determining drug dosage based on GFR estimates 
should use them in a consistent way that is adapted to all 

sizes, maturation, and body compositions. This is what is 
achieved using our model for RF. It can predict variability 
in renal drug elimination across a broad age range from 
birth to older adulthood. Exploration of a link between RF 
and other covariates such as exposure to potentially neph-
rotoxic medication is now feasible given a consistent age 
and size metric for kidney function.
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